

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Detaile	
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15356-e-sp

TABLE 3: 28-PIN ALLOCATION TABLE (PIC16(L)F15356) (CONTINUED)

I/O ⁽²⁾	28-Pin PDIP/SOIC/SSOP	28-Pin UQFN	ADC	Reference	Comparator	NCO	DAC	Timers	CCP	PWM	CWG	MSSP	αɔz	EUSART	פרכ	CLKR	Interrupt	Pull-up	Basic
RC0	11	8	ANC0	-	_	_	_	SOSCO T1CKI	_	_	_	_	-	_	_	_	IOCC0	Υ	_
RC1	12	9	ANC1	_	_	_	_	SOSCI	CCP2 ⁽¹⁾	_	_	_	_	_	-	_	IOCC1	Υ	_
RC2	13	10	ANC2	_	_	_	_	_	CCP1 ⁽¹⁾	_	_	_	_	_	_	_	IOCC2	Υ	_
RC3	14	11	ANC3	ı	_	_	_	T2IN ⁽¹⁾	_	_	_	SCL1, SCK1 ^(1,4)	ı	ı	ı	_	IOCC3	Υ	_
RC4	15	12	ANC4	-	_	_	_	_	_	_	_	SDA1, SDI1 ^(1,4)	-	-	-	_	IOCC4	Υ	_
RC5	16	13	ANC5	_	_	_	_	_	_	_	_	_	_	_	-	_	IOCC5	Υ	_
RC6	17	14	ANC6	1	_	_	_		_	_	_	_	ı	TX1 CK1 ⁽¹⁾	I	ı	IOCC6	Υ	_
RC7	18	15	ANC7	ı	_	_	_	_	_	_	_	_	ı	RX1 DT1 ⁽¹⁾	ı	_	IOCC7	Υ	_
RE3	1	26	-	_	_	-	_	_	_	-	_	_	_	_	_	-	IOCE3	Υ	MCLR VPP
VDD	20	17	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	VDD
Vss	8	16	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Vss
Vss	19	5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Vss
OUT ⁽²⁾	_	_	_	ı	C1OUT	NCO10UT	_	TMR0	CCP1	PWM3OUT	CWG1A CWG2A	SDO1/2	ı	DT	CLC10UT	CLKR	_	_	_
	-	-	_	-	C2OUT	_	_	_	CCP2	PWM4OUT	CWG1B CWG2B	SCK1/2	-	СК	CLC2OUT	_	_	_	_
	-	-	_	_	_	_	_	_	_	PWM5OUT	CWG1C CWG2C	SCL1 ^(3,4) SCL2 ^(3,4)	_	TX	CLC3OUT	_	_	_	_
	_	_	_		_			_	_	PWM6OUT	CWG1D CWG2D	SDA1 ^(3,4) SDA2 ^(3,4)	-	-	CLC4OUT	_	_	_	_

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

PIC16(L)F15356/75/76/85/86

^{2:} All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one or more PORTx pin options.

^{3:} This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

^{4:} These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

TABLE 5: 48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) (CONTINUED)

1/0(2)	48-Pin UQFN/TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	CCP	MM	CWG	MSSP	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RC2	40	ANC2	_	_	_	_	_	CCP1 ⁽¹⁾	_	_	_	_			_	IOCC2	Υ	_
RC3	41	ANC3	_	l	_	_	T2IN ⁽¹⁾	_	ı	_	SCL1 SCL2 ^(1,4)	_		l	_	IOCC3	Υ	_
RC4	46	ANC4	-	-	_	_	_	-	-	_	SDA1 SDI1 ^(1,4)	-		-	_	IOCC4	Υ	_
RC5	47	ANC5	_	_	_	_	_	_	_	_	_	_	_	_	_	IOCC5	Υ	_
RC6	48	ANC6	_	_	_	_	_	_	_	_	_	_	TX1 CK1 ⁽¹⁾	_	_	IOCC6	Υ	_
RC7	1	ANC7	_	_	_	_	_	_	_	_	_	_	RX1 DT1 ⁽¹⁾	_	_	IOCC7	Υ	_
RD0	42	AND0	_	_	_	_	_	_	_	_	SCK2 SCL2 ^(1,4)	_	_	_	_	_	Υ	_
RD1	43	AND1	_	_	_	_	_	_	_	_	SDA2 SDI2 ^(1,4)	_	_	_	_	_	Υ	_
RD2	44	AND2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Υ	_
RD3	45	AND3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Υ	_
RD4	2	AND4	_	ı	_	_	_		ı	_	_	_	ı	I	-	_	Υ	_
RD5	3	AND5		-	_	_	_	_	I	_	_	_	ı	I	_	_	Υ	_
RD6	4	AND6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Υ	_
RD7	5	AND7	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Υ	_
RE0	27	ANE0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Υ	_
RE1	28	ANE1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Υ	_
RE2	29	ANE2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Υ	_
RE3	20	ı	_	ı	_	_	_	_	ı	_	_	_		ı	_	IOCE3	Y	MCLR VPP
RF0	36	ANF0	_	_	_	_	_	_	_	_	_	_	_	-	_	_	Υ	_
RF1	37	ANF1	_		_	_	_	_	_	_	_				_	_	Υ	_
RF2	38	ANF2	-	_	_	_	_	_	_	_	_	_	_	_	_	_	Υ	_
RF3	39	ANF3	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Υ	_
RF4	12	ANF4	_	_	_	_	_	_	_	_	_	_	_	-	_	_	Υ	_

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

PIC16(L)F15356/75/76/85/86

^{2:} All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

^{3:} This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

^{4:} These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

TABLE 4-7: PIC16(L)F15356/75/76/85/86 MEMORY MAP, BANK 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 4-3)	C80h	Core Registers (Table 4-3)	D00h D0Bh	Core Registers (Table 4-3)	D80h D8Bh	Core Registers (Table 4-3)	E00h	Core Registers (Table 4-3)	E80h	Core Registers (Table 4-3)	F00h	Core Registers (Table 4-3)	F80h	Core Registers (Table 4-3)
						DODII		EUDII		CODII		FUBII		FODII	
C0Ch	Unimplemented Read as '0'	C8Ch	Unimplemented Read as '0'	D0Ch	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
C20h		CA0h													
	General Purpose Register 80 Bytes ⁽¹⁾		General Purpose Register 80 Bytes ⁽¹⁾												
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Present only in PIC16(L)F15356/76/86.

5.2 Register Definitions: Configuration Words

REGISTER 5-1: CONFIGURATION WORD 1: OSCILLATORS

R/P-1	U-1	R/P-1	U-1	U-1	R/P-1
FCMEN	_	CSWEN	_	_	CLKOUTEN
bit 13					bit 8

U-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1
_	RSTOSC2	RSTOSC1	RSTOSC0	1	FEXTOSC2	FEXTOSC1	FEXTOSC0
bit 7							bit 0

Legend:			
R = Readable bit	P = Programmable bit	x = Bit is unknown	U = Unimplemented bit, read as '1'
'0' = Bit is cleared	'1' = Bit is set	W = Writable bit	n = Value when blank or after Bulk Erase

bit 13 FCMEN: Fail-Safe Clock Monitor Enable bit

1 = FSCM timer enabled0 = FSCM timer disabled

bit 12 Unimplemented: Read as '1'

bit 11 CSWEN: Clock Switch Enable bit

1 = Writing to NOSC and NDIV is allowed

0 = The NOSC and NDIV bits cannot be changed by user software

bit 10-9 Unimplemented: Read as '1'

bit 8 CLKOUTEN: Clock Out Enable bit

If FEXTOSC = EC (high, mid or low) or Not Enabled:

1 = CLKOUT function is disabled; I/O or oscillator function on OSC2
 0 = CLKOUT function is enabled; FOSC/4 clock appears at OSC2

Otherwise:

This bit is ignored.

bit 7 Unimplemented: Read as '1'

bit 6-4 RSTOSC<2:0>: Power-up Default Value for COSC bits

This value is the Reset-default value for COSC and selects the oscillator first used by user software.

111 = EXTOSC operating per FEXTOSC bits (device manufacturing default)

110 = HFINTOSC with HFFRQ = 3'b010

101 = LFINTOSC

100 = SOSC

011 = Reserved

010 = EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC bits

001 = EXTOSC with 2x PLL, with EXTOSC operating per FEXTOSC bits

000 = HFINTOSC with CDIV = 1:1 and HFFRQ = 3'b110

bit 3 Unimplemented: Read as '1'

bit 2-0 FEXTOSC<2:0>:FEXTOSC External Oscillator Mode Selection bits

111 = EC (External Clock) above 8 MHz; PFM set to high power (device manufacturing default)

110 = EC (External Clock) for 100 kHz to 8 MHz; PFM set to medium power

101 = EC (External Clock) below 100 kHz

100 = Oscillator not enabled

011 = Reserved (do not use)

010 = HS (Crystal oscillator) above 4 MHz; PFM set to high power

001 = XT (Crystal oscillator) above 100 kHz, below 4 MHz; PFM set to medium power

000 = LP (Crystal oscillator) optimized for 32.768 kHz; PFM set to low power

7.0 DEVICE CONFIGURATION INFORMATION

The Device Configuration Information (DCI) is a dedicated region in the Program Flash Memory mapped from 8200h to 821Fh. The data stored in the DCI memory is hard-coded into the device during manufacturing.

Refer to Table 7-1 for the complete DCI table address and description. The DCI holds information about the device which is useful for programming and bootloader applications. These locations are read-only and cannot be erased or modified.

TABLE 7-1: DEVICE CONFIGURATION INFORMATION FOR PIC16(L)F15356/75/76/85/86 DEVICES

ADDRESS	Name	DESCRIPTION	VALUE	UNITS
ADDRESS	Name	DESCRIPTION	PIC16(L)F15356/75/76/85/86	UNITS
8200h	ERSIZ	Erase Row Size	32	Words
8201h	WLSIZ	Number of write latches	32	Latches
8202h	URSIZ	Number of User Rows	See Table 7-2	Rows
8203h	EESIZ	EE Data memory size	0	Bytes
8204h	PCNT	Pin Count	See Table 7-3	Pins

TABLE 7-2: MEMORY SIZE AND NUMBER OF USER ROWS

Part Name	Memory size	Number of user rows
PIC16(L)F15356	16K	512
PIC16(L)F15375/85	8K	256
PIC16(L)F15376/86	16K	512

TABLE 7-3: PIN COUNT

Part Number	Pin Count
PIC16(L)F15356	28
PIC16(L)F15375/76	40/44
PIC16(L)F15385/86	48

7.1 DIA and DCI Access

The DIA and DCI data are read-only and cannot be erased or modified. See 13.3.6 "NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Words" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the DIA and DCI regions, similar to the Device ID and Revision ID.

REGISTER 10-2: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
_	_	TMR0IE	IOCIE	_	_		INTE
bit 7							bit 0

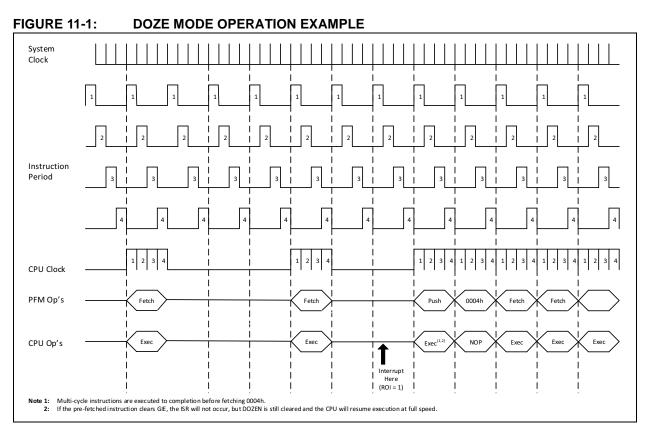
Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is clearedHS = Hardware set

bit 7-6 Unimplemented: Read as '0' bit 5 TMR0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt bit 4 IOCIE: Interrupt-on-Change Interrupt Enable bit 1 = Enables the IOC change interrupt 0 = Disables the IOC change interrupt bit 3-1 Unimplemented: Read as '0' bit 0 **INTE:** INT External Interrupt Flag bit⁽¹⁾ 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt

Note 1: The External Interrupt GPIO pin is selected by INTPPS (Register 15-1).

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt controlled by PIE1-PIE7. Interrupt sources controlled by the PIE0 register do not require PEIE to be set in order to allow interrupt vectoring (when GIE is set).

11.0 POWER-SAVING OPERATION MODES


The purpose of the Power-Down modes is to reduce power consumption. There are three Power-Down modes: DOZE mode, IDLE mode, and SLEEP mode.

11.1 DOZE Mode

DOZE mode allows for power saving by reducing CPU operation and program memory (PFM) access, without affecting peripheral operation. DOZE mode differs from Sleep mode because the system oscillators continue to

operate, while only the CPU and PFM are affected. The reduced execution saves power by eliminating unnecessary operations within the CPU and memory.

When the Doze Enable (DOZEN) bit is set (DOZEN = 1), the CPU executes only one instruction cycle out of every N cycles as defined by the DOZE<2:0> bits of the CPUDOZE register. For example, if DOZE<2:0> = 100, the instruction cycle ratio is 1:32. The CPU and memory execute for one instruction cycle and then lay idle for 31 instruction cycles. During the unused cycles, the peripherals continue to operate at the system clock speed.

11.1.1 DOZE OPERATION

The Doze operation is illustrated in Figure 11-1. For this example:

- Doze enable (DOZEN) bit set (DOZEN = 1)
- DOZE<2:0> = 001 (1:4) ratio
- Recover-on-Interrupt (ROI) bit set (ROI = 1)

As with normal operation, the PFM fetches for the next instruction cycle. The Q-clocks to the peripherals continue throughout.

PIC16(L)F15356/75/76/85/86

11.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- · Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- External interrupt pin/interrupt-on-change pins
- Timer1 (with external clock source)

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

Note:

The PIC16LF15356/75/76/85/86 does not have a configurable Low-Power Sleep mode. PIC16LF15356/75/76/85/86 is an unregulated device and is always in the lowest power state when in Sleep, with no wake-up time penalty. This device has a lower maximum VDD and I/O voltage than the PIC16F15356/75/76/85/86. See Section 37.0 "Electrical Specifications" for more information.

11.3 IDLE Mode

When the Idle Enable (IDLEN) bit is clear (IDLEN = 0), the <code>SLEEP</code> instruction will put the device into full Sleep mode (see **Section 11.2 "Sleep Mode"**). When IDLEN is set (IDLEN = 1), the <code>SLEEP</code> instruction will put the device into IDLE mode. In IDLE mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to DOZE mode, except that in IDLE both the CPU and PFM are shut off.

Note:

Peripherals using Fosc will continue running while in Idle (but not in Sleep). Peripherals using HFINTOSC, LFINTOSC, or SOSC will continue running in both Idle and Sleep.

Note:

If CLKOUT is enabled (CLKOUT = 0, Configuration Word 1), the output will continue operating while in Idle.

11.3.0.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can re-enter IDLE by executing the SLEEP instruction.

If Recover-on-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU execution when doze is also enabled.

11.3.0.2 Idle and WDT

When in IDLE, the WDT Reset is blocked and will instead wake the device. The WDT wake-up is not an interrupt, therefore ROI does not apply.

Note:

The WDT can bring the device out of IDLE, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

14.3 Register Definitions: PORTA

REGISTER 14-1: PORTA: PORTA REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

'1' = Bit is set '0' = Bit is cleared

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾

1 = Port pin is \geq VIH 0 = Port pin is \leq VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register returns of actual I/O pin values.

REGISTER 14-2: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

'1' = Bit is set '0' = Bit is cleared

bit 7-0 TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

21.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC1) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- · External VREF pins
- VDD supply voltage
- · FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- · Comparator positive input
- · ADC input channel
- DAC1OUT pin

The Digital-to-Analog Converter (DAC) is enabled by setting the DAC1EN bit of the DAC1CON0 register.

21.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DAC1R<4:0> bits of the DAC1CON1 register.

The DAC output voltage is determined by Equation 21-1:

EQUATION 21-1: DAC OUTPUT VOLTAGE

$$\begin{split} V_{OUT} &= \left(V_{SOURCE+} - V_{SOURCE-} \times \frac{DAC1R\langle 4:0 \rangle}{2^5} \right) + \left(V_{SOURCE-} \right) \\ V_{SOURCE+} &= V_{DD} \quad or \quad V_{REF+} \quad or \ FVR \\ V_{SOURCE-} &= V_{SS} \quad or \ V_{REF-} \end{split}$$

21.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 37-15.

21.3 DAC Voltage Reference Output

The DAC voltage can be output to the DAC1OUT1/2 pins by setting the DAC1OE1/2 bits of the DAC1CON0 register, respectively. Selecting the DAC reference voltage for output on the DAC1OUT1/2 pins automatically overrides the digital output buffer and digital input threshold detector functions, disables the weak pull-up, and disables the current-controlled drive function of that pin. Reading the DAC1OUT1/2 pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to the DAC1OUT1/2 pins. Figure 21-2 shows an example buffering technique.

VPULLUP optional V_{DD} **RPULLUP ZCDxIN R**SERIES External **RPULLDOWN** Zcpinv voltage source optional ZCD Output for other modules ZCDxPOL ZCDxOUT pin Interrupt det Set ZCDxINTP ZCDxIF **ZCDxINTN** flag Interrupt det

FIGURE 24-2: SIMPLIFIED ZCD BLOCK DIAGRAM

27.5.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

PIC16(L)F15356/75/76/85/86

31.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- · Data selection
- · Data gating
- · Logic function selection
- · Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

31.1.1 DATA SELECTION

There are 40 signals available as inputs to the configurable logic. Four 40-input multiplexers are used to select the inputs to pass on to the next stage.

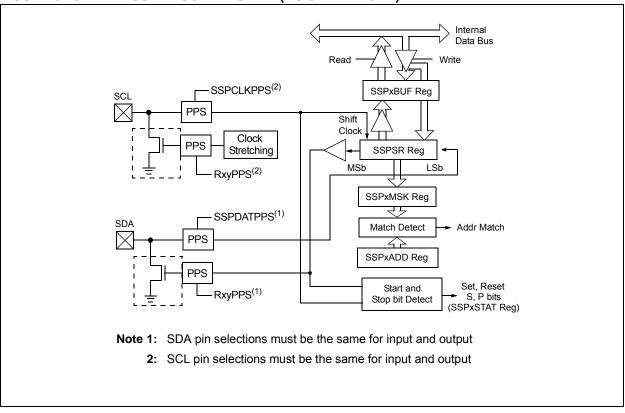
Data selection is through four multiplexers as indicated on the left side of Figure 31-2. Data inputs in the figure are identified by a generic numbered input name.

Table 31-2 correlates the generic input name to the actual signal for each CLC module. The column labeled 'LCxDyS<4:0> Value' indicates the MUX selection code for the selected data input. LCxDyS is an abbreviation to identify specific multiplexers: LCxD1S<4:0> through LCxD4S<4:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 31-3 through Register 31-6).

TABLE 31-2: CLCx DATA INPUT SELECTION

LCxDyS<4:0> Value	CLCx Input Source
101000 to 111111 [40+]	Reserved
100111 [39]	CWG1B output
100110 [38]	CWG1A output
100101 [37]	MSSP2 SCK output
100100 [36]	MSSP2 SDO output
100011 [35]	MSSP1 SCK output
100010 [34]	MSSP1 SDO output
100001 [33]	EUSART2 (TX/CK) output
100000 [32]	EUSART2 (DT) output
011111 [31]	EUSART1 (TX/CK) output
011110 [30]	EUSART1 (DT) output
011101 [29]	CLC4 output
011100 [28]	CLC3 output
011011 [27]	CLC2 output
011010 [26]	CLC1 output
011001 [25]	IOCIF
011000 [24]	ZCD output
010111 [23]	C2OUT
010110 [22]	C1OUT
010101 [21]	NCO1 output
010100 [20]	PWM6 output
010011 [19]	PWM5 output
010010 [18]	PWM4 output
010001 [17]	PWM3 output
010000 [16]	CCP2 output
001111 [15]	CCP1 output
001110 [14]	Timer2 overflow
001101 [13]	Timer1 overflow
001100 [12]	Timer0 overflow
001011 [11]	CLKR
001010 [10]	ADCRC
001001 [9]	SOSC
001000 [8]	MFINTOSC (32 kHz)
000111 [7]	MFINTOSC (500 kHz)
000110 [6]	LFINTOSC
000101 [5]	HFINTOSC
000100 [4]	Fosc
000011 [3]	CLCIN3PPS
000010 [2]	CLCIN2PPS
000001 [1]	CLCIN1PPS
000000 [0]	CLCIN0PPS


REGISTER 31-11: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT
bit 7				•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	MLC4OUT: Mirror copy of LC4OUT bit
bit 2	MLC3OUT: Mirror copy of LC3OUT bit
bit 1	MLC2OUT: Mirror copy of LC2OUT bit
bit 0	MLC10UT: Mirror copy of LC10UT bit

FIGURE 32-3: MSSP BLOCK DIAGRAM (I²C SLAVE MODE)

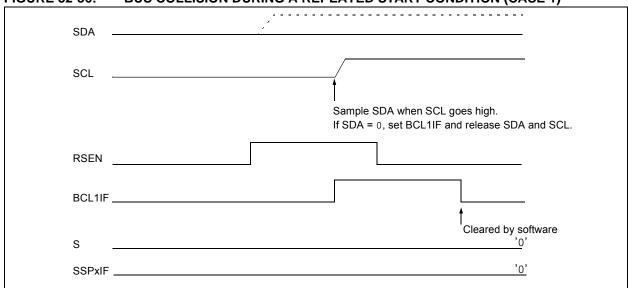
PIC16(L)F15356/75/76/85/86

32.6.13.2 Bus Collision During a Repeated Start Condition

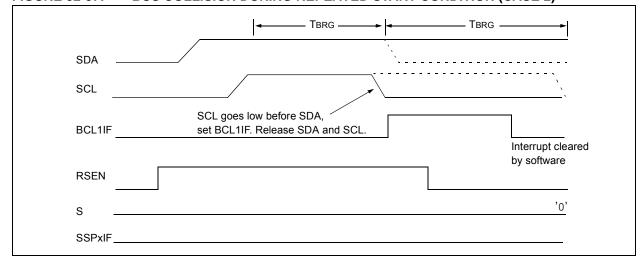
During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.


If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 32-36). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 32-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 32-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

CALL	Call Subroutine
Syntax:	[label] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<6:3>) \rightarrow PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{WDT} \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits $\overline{\text{TO}}$ and PD are set.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	$(PC) +1 \rightarrow TOS,$ $(W) \rightarrow PC<7:0>,$ $(PCLATH<6:0>) \rightarrow PC<14:8>$
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle

Complement f
[label] COMF f,d
$0 \le f \le 127$ $d \in [0,1]$
$(\overline{f}) \rightarrow (destination)$
Z
The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$00h \to (f)$ $1 \to Z$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

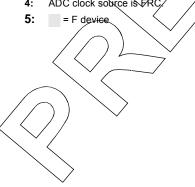
instruction.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$00h \to (W)$ $1 \to Z$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set

TABLE 37-3: POWER-DOWN CURRENT (IPD)(1,2)

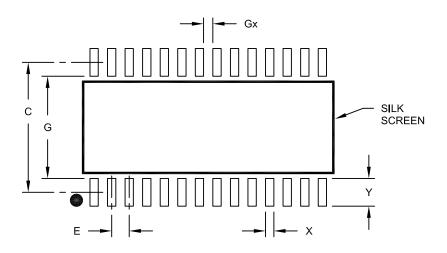
PIC16LF15356/75/76/85/86				Standard Operating Conditions (unless otherwise stated)					
PIC16F15356/75/76/85/86				Standard Operating Conditions (unless otherwise stated) VREGPM = 1					
Param. No.	Symbol	Device Characteristics	Min.	Тур.†	Max. +85°C	Max. +125°C	Units	VDD	Conditions
D200	IPD	IPD Base	_	0.06	2	9	μΑ	3.0%	
D200	IPD	IPD Base	_	0.4	4	12	~#A_	3.0V	
D200A			_	18	22	27 \	μA	3.04	VREĞPM = 0
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	1	0.8	4.0	11.5	μĀ	73.0₩	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	_	0.9	5.0 <	13	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.6	/5_	13	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.8	8.5 ~	15	μA	3.0V	
D203	IPD_FVR	FVR	_	3/3	47	47	μΑ	3.0V	
D203	IPD_FVR	FVR	-	28	44	44	μΑ	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)	_^	10	17	19	μΑ	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)	7	14	18	20	μΑ	3.0V	
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	_/	0.5	4	10	μΑ	3.0V	
D207	IPD_ADCA	ADC - Active	/-	250	\nearrow	_	μΑ	3.0V	ADC is converting (4)
D207	IPD_ADCA	ADC - Active	7	280	_	_	μΑ	3.0V	ADC is converting (4)
D208	IPD_CMP	Comparator	7	30	42	44	μΑ	3.0V	
D208	IPD_CMP	Comparator		3 3	44	45	μΑ	3.0V	


Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not

The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is enabled. The Note 1: peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max. values should be used when calculating total current consumption.

The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

All peripheral ourrents listed are on a per-peripheral basis if more than one instance of a peripheral is available.


ADC clock source is FRC,

Preliminary © 2016 Microchip Technology Inc. DS40001866A-page 524

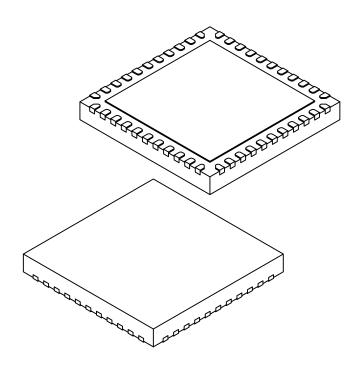
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	II LLIMETER	S
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Υ			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

e: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	per of Pins N 44				
Pitch	е	0.65 BSC			
Overall Height	Α	0.80 0.90		1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	Е		8.00 BSC		
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2