

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15356-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RD1/AND1/SDA1 ⁽¹⁾ /SDI1 ⁽¹⁾	RD1	TTL/ST	CMOS/OD	General purpose I/O.
	AND1	AN	_	ADC Channel D0 input.
	SDA1 ⁽¹⁾	l ² C	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI serial data input.
RD2/AND2	RD2	TTL/ST	CMOS/OD	General purpose I/O.
	AND2	AN	_	ADC Channel D0 input.
RD3/AND3	RD3	TTL/ST	CMOS/OD	General purpose I/O.
	AND3	AN	_	ADC Channel D0 input.
RD4/AND4	RD4	TTL/ST	CMOS/OD	General purpose I/O.
	AND4	AN	-	ADC Channel D0 input.
RD5/AND5	RD5	TTL/ST	CMOS/OD	General purpose I/O.
	AND5	AN	_	ADC Channel D0 input.
RD6/AND6	RD6	TTL/ST	CMOS/OD	General purpose I/O.
	AND6	AN	_	ADC Channel D0 input.
RD7/AND7	RD7	TTL/ST	CMOS/OD	General purpose I/O.
	AND7	AN	_	ADC Channel D0 input.
RE0/ANE0	RE0	TTL/ST	CMOS/OD	General purpose I/O.
	ANE0	AN	_	ADC Channel D0 input.
RE1/ANE1	RE1	TTL/ST	CMOS/OD	General purpose I/O.
	ANE1	AN	-	ADC Channel D0 input.
RE2/ANE2	RE2	TTL/ST	CMOS/OD	General purpose I/O.
	ANE2	AN	_	ADC Channel D0 input.
RE3/MCLR/IOCE3	RE3	TTL/ST	_	General purpose input only (when $\overline{\text{MCLR}}$ is disabled by the Configuration bit).
	MCLR	ST	_	Master clear input with internal weak pull-up resistor.
	IOCE3	TTL/ST	—	Interrupt-on-change input.
Vdd	Vdd	Power	_	Positive supply voltage input.
Vss	Vss	Power	_	Ground reference.

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output

Note

CMOS = CMOS compatible input or output

= Open-Drain

TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels = Crystal levels XTAI

I²C = Schmitt Trigger input with I^2C

= High Voltage HV

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1: pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 15-5, Table 15-6 and Table 15-6.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, refer to these Microchip Application Notes, available at the corporate website (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

4.3 Data Memory Organization

The data memory is partitioned into 64 memory banks with 128 bytes in each bank. Each bank consists of:

- 12 core registers
- Up to 100 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

FIGURE 4-3: BANKED MEMORY PARTITIONING

4.3.1 BANK SELECTION

The active bank is selected by writing the bank number into the Bank Select Register (BSR). All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 4.6** "**Indirect Addressing**" for more information.

Data memory uses a 13-bit address. The upper six bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

4.3.2 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 4-3.

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

TABLE 4-3: CORE REGISTERS

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

						•	,				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 7	ink 7										
	CPU CORE REGISTERS; see Table 4-3 for specifics										
38Ch	PWM6DCL	DC<1:0>						xx	uu		
38Dh	PWM6DCH	DC<9:0> xxxx xxxx 1							uuuu uuuu		
38Eh	PWM6CON	EN	-	OUT	POL	—	—	—	—	0-00	0-00
38Fh 39Fh	_	Unimplemented — — —							-		

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

TABLE 9-1. NU3C/CU3C BIT SETTINGS	TABLE 9-1:	NOSC/COSC BIT SETTINGS
-----------------------------------	------------	------------------------

NOSC<2:0>/ COSC<2:0>	Clock Source
111	EXTOSC ⁽¹⁾
110	HFINTOSC ⁽²⁾
101	LFINTOSC
100	SOSC
011	Reserved (operates like NOSC = 110)
010	EXTOSC with 4x PLL ⁽¹⁾
001	HFINTOSC with 2x PLL ⁽¹⁾
000	Reserved (it operates like NOSC = 110)

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 5-1).

TABLE 9-2: NDIV/CDIV BIT SETTINGS

NDIV<3:0>/ CDIV<3:0>	Clock divider
1111-1010	Reserved
1001	512
1000	256
0111	128
0110	64
0101	32
0100	16
0011	8
0010	4
0001	2
0000	1

REGISTER 9-3: OSCCON3: OSCILLATOR CONTROL REGISTER 3

R/W/HC-0/0	R/W-0/0	U-0	R-0/0	R-0/0	U-0	U-0	U-0
CSWHOLD	SOSCPWR	—	ORDY	NOSCR	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	CSWHOLD: Clock Switch Hold bit
	 1 = Clock switch will hold (with interrupt) when the oscillator selected by NOSC is ready 0 = Clock switch may proceed when the oscillator selected by NOSC is ready; if this bit
	is clear at the time that NOSCR becomes '1', the switch will occur
bit 6	SOSCPWR: Secondary Oscillator Power Mode Select bit
	1 = Secondary oscillator operating in High-power mode
	0 = Secondary oscillator operating in Low-power mode
bit 5	Unimplemented: Read as '0'.
bit 4	ORDY: Oscillator Ready bit (read-only)
	1 = OSCCON1 = OSCCON2; the current system clock is the clock specified by NOSC
	0 = A clock switch is in progress
bit 3	NOSCR: New Oscillator is Ready bit (read-only)
	 1 = A clock switch is in progress and the oscillator selected by NOSC indicates a "ready" condition 0 = A clock switch is not in progress, or the NOSC-selected oscillator is not yet ready
bit 2-0	Unimplemented: Read as '0'

^{2:} HFINTOSC settings are configured with the HFFRQ bits of the OSCFRQ register (Register 9-6).

REGISTER 10-14: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
_	_	_	_	_	_	TMR2IF	TMR1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set

bit 7-2	Unimplemented: Read as '0'
bit 1	TRM2IF: Timer2 Interrupt Flag bit
	 1 = The TMR2 postscaler overflowed, or in 1:1 mode, a TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 event has occurred
bit 0	TRM1IF: Timer1 Overflow Interrupt Flag bit 1 = Timer1 overflow occurred (must be cleared in software) 0 = No Timer1 overflow occurred
Note:	Interrupt flag bits are set when an interrupt

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

© 2016 Microchip Technology Inc.

13.0 NONVOLATILE MEMORY (NVM) CONTROL

NVM consists of the Program Flash Memory (PFM).

NVM is accessible by using both the FSR and INDF registers, or through the NVMREG register interface.

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

NVM can be protected in two ways; by either code protection or write protection.

Code protection (CP bit in Configuration Word 5) disables access, reading and writing, to the PFM via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be Reset by a device programmer performing a Bulk Erase to the device, clearing all nonvolatile memory, Configuration bits, and User IDs.

Write protection prohibits self-write and erase to a portion or all of the PFM, as defined by the WRT<1:0> bits of Configuration Word 4. Write protection does not affect a device programmer's ability to read, write, or erase the device.

13.1 Program Flash Memory (PFM)

PFM consists of an array of 14-bit words as user memory, with additional words for User ID information, Configuration words, and interrupt vectors. PFM provides storage locations for:

- User program instructions
- User defined data

PFM data can be read and/or written to through:

- CPU instruction fetch (read-only)
- FSR/INDF indirect access (read-only) (Section 13.2 "FSR and INDF Access")
- NVMREG access (Section 13.3 "NVMREG Access"
- In-Circuit Serial Programming[™] (ICSP[™])

Read operations return a single word of memory. When write and erase operations are done on a row basis, the row size is defined in Table 13-1. PFM will erase to a logic '1' and program to a logic '0'.

TABLE 13-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	Total Program Flash (words)	
PIC16(L)F15356			16K	
PIC16(L)F15375/85	32	32	8K	
PIC16(L)F15376/86			16K	

It is important to understand the PFM memory structure for erase and programming operations. PFM is arranged in rows. A row consists of 32 14-bit program memory words. A row is the minimum size that can be erased by user software.

All or a portion of this row can be programmed. Data to be written into the program memory row is written to 14-bit wide data write latches. These latches are not directly accessible, but may be loaded via sequential writes to the NVMDATH:NVMDATL register pair.

Note:	To modify only a portion of a previously
	programmed row, the contents of the
	entire row must be read. Then, the new
	data and retained data can be written into
	the write latches to reprogram the row of
	PFM. However, any unprogrammed
	locations can be written without first
	erasing the row. In this case, it is not
	necessary to save and rewrite the other
	proviously programmed locations
	previously programmed locations

13.1.1 PROGRAM MEMORY VOLTAGES

The PFM is readable and writable during normal operation over the full VDD range.

13.1.1.1 Programming Externally

The program memory cell and control logic support write and Bulk Erase operations down to the minimum device operating voltage. Special BOR operation is enabled during Bulk Erase (Section 8.2.4 "BOR is always OFF").

13.1.1.2 Self-programming

The program memory cell and control logic will support write and row erase operations across the entire VDD range. Bulk Erase is not available when selfprogramming.

14.10 PORTE Registers

14.10.1 DATA REGISTER

PORTE is a 4-bit wide port. The corresponding data direction register is TRISE (Register 14-33). Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., disable the output driver). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize PORTE.

Reading the PORTE register (Register 14-33) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATE).

14.10.2 DIRECTION CONTROL

The TRISE register (Register 14-34) controls the PORTE pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISE register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

Note:	The TRISE3 bit is a read-only bit and it
	always reads a '1'.

14.10.3 OPEN-DRAIN CONTROL

The ODCONE register (Register 14-38) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONE bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONE bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I ² C; the I ² C
	module controls the pin and makes the pin open-drain.

14.10.4 SLEW RATE CONTROL

The SLRCONE register (Register 14-39) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONE bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONE bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.10.5 INPUT THRESHOLD CONTROL

The INLVLE register (Register 14-40) controls the input voltage threshold for each of the available PORTE input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTE register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

14.10.6 ANALOG CONTROL

The ANSELE register (Register 14-36) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELE bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELE bits has no effect on digital output functions. A pin with TRIS clear and ANSELE set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELE bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

14.10.7 WEAK PULL-UP CONTROL

The WPUE register (Register 14-37) controls the individual weak pull-ups for each port pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
RC1PPS	_	—	_			RC1PPS<	4:0>		242
RC2PPS	—	_	_			RC2PPS<	4:0>		242
RC3PPS	_	_	_			RC3PPS<	4:0>		242
RC4PPS	_	_	_			RC4PPS<	4:0>		242
RC5PPS	_	_	_			RC5PPS<	4:0>		242
RC6PPS	_	_	_			RC6PPS<	4:0>		242
RC7PPS	_	—	—			RC7PPS<	4:0>		242
RD0PPS ⁽¹⁾	_	_	—			RD0PPS<4	k:0>		242
RD1PPS ⁽¹⁾	_	—	—			RD1PPS<4	k:0>		242
RD2PPS ⁽¹⁾	—	_	—			RD2PPS<4	k:0>		242
RD3PPS ⁽¹⁾	_	—	—			RD3PPS<4	k:0>		242
RD4PPS ⁽¹⁾	—	_	—			RD4PPS<4	l:0>		242
RD5PPS ⁽¹⁾	—		_			RD5PPS<4	k:0>		242
RD6PPS ⁽¹⁾	—	—	—			RD6PPS<4	k:0>		242
RD7PPS ⁽¹⁾	—		-			RD7PPS<4	1:0>		242
RE0PPS ⁽¹⁾	—	—	—			RD5PPS<4	k:0>		242
RE1PPS ⁽¹⁾	—	—	—			RD6PPS<4	k:0>		242
RE2PPS ⁽¹⁾	—		-			RD7PPS<4	1:0>		242
RF0PPS ⁽²⁾	—	—	—			RF0PPS<4	:0>		242
RF1PPS ⁽²⁾	—	—	—			RF1PPS<4	:0>		242
RF2PPS ⁽²⁾	—		-			RF2PPS<4	:0>		242
RF3PPS ⁽²⁾	—	—	—		RF3PPS<4:0>				
RF4PPS ⁽²⁾	—	—	—	RF4PPS<4:0>					242
RF5PPS ⁽²⁾	—	—	—	RF5PPS<4:0>					242
RF6PPS ⁽²⁾	—	—	—			RF6PPS<4	:0>		242
RF7PPS ⁽²⁾	—	_	_			RF7PPS<4	:0>		242

TABLE 15-8: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

Note 1: Present only on PIC16(L)F15375/76/85/86.

2: Present only on PIC16(L)F15385/86.

20.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the ADCRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine (ISR).

20.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 20-3 shows the two output formats.

FIGURE 20-3: 10-BIT ADC CONVERSION RESULT FORMAT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	146
PIE1	OSFIE	CSWIE	—	—	—	—	—	ADIE	148
PIR1	OSFIF	CSWIF	_	_	_	_	_	ADIF	156
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	200
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	206
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	211
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	201
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	207
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	212
ADCON0			CHS<	:5:0>			GO/DONE	ADON	277
ADCON1	ADFM		ADCS<2:0>		_	—	ADPREF	<1:0>	279
ADACT	—	—	—	—		ADA	ACT<3:0>		280
ADRESH				ADRE	SH<7:0>				281
ADRESL				ADRE	ESL<7:0>				281
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVR<	<1:0>	264
DAC1CON1	_	_	—			DAC1R<4	:0>		287
OSCSTAT1	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR	137

TABLE 20-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

REGISTER	22-2: NC	CO1CLK: NCO1	INPUT CLO	CK CONTRO	L REGISTER		
R/W-0/0	R/W-0/0) R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	N1PWS<2:0	> ^(1,2)			N1CK	S<3:0>	
bit 7				·			bit 0
Legend:							
R = Readabl	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is und	changed	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 4	111 = NC 110 = NC 101 = NC 100 = NC 011 = NC 010 = NC 001 = NC 000 = NC Unimplem	CO1 output is activ CO1 output is activ nented: Read as 'C	e for 128 inpu e for 64 input e for 32 input e for 16 input e for 8 input c e for 4 input c e for 2 input c e for 1 input c y	t clock periods clock periods clock periods clock periods lock periods lock periods lock periods lock period			
bit 3-0	N1CKS<3 1011-111 1010 = L 1001 = L 0111 = L 0110 = C 0101 = S 0100 = M 0011 = M 0011 = L 0001 = H 0000 = F	:0>: NCO1 Clock \$ 11 = Reserved .C4_out .C3_out .C2_out .C1_out .C1_out CLKR SOSC /FINTOSC (32 kH: /FINTOSC (500 kH .FINTOSC IFINTOSC IFINTOSC .Sosc	Source Select z) Hz)	bits			

Note 1: N1PWS applies only when operating in Pulse Frequency mode.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	U-0	U-0	
GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	_	_	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	/are		
bit 7	bit 7 GE: Timer1 Gate Enable bit If ON = 0: This bit is ignored If ON = 1: 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 is always counting							
bit 6	GPOL: Timer 1 = Timer1 ga 0 = Timer1 ga	1 Gate Polarity ate is active-hig ate is active-lo	[,] bit gh (Timer1 co w (Timer1 cou	unts when gate ints when gate i	is high) s low)			
bit 5	GTM: Timer1 1 = Timer1 G 0 = Timer1 G Timer1 gate fl	Gate Toggle M Gate Toggle mo Gate Toggle mo Lip-flop toggles	lode bit de is enabled de is disabled on every risin	and toggle flip- g edge.	flop is cleared			
bit 4	GSPM: Timer1 Gate Single-Pulse Mode bit 1 = Timer1 Gate Single-Pulse mode is enabled 0 = Timer1 Gate Single-Pulse mode is disabled							
bit 3	GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started This bit is automatically cleared when GSPM is cleared							
bit 2	GVAL: Timer	, 1 Gate Value S	tatus bit					
	Indicates the Unaffected by	current state o / Timer1 Gate I	f the Timer1 g Enable (GE)	ate that could b	e provided to T	MR1H:TMR1L		
bit 1-0	Unimplemen	ted: Read as '	0'					

REGISTER 26-2: T1GCON: TIMER1 GATE CONTROL REGISTER

				-		
PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 28-2:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

TABLE 28-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

28.3.8 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

28.3.9 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

28.3.10 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	_	—	_	INTEDG	146
PIR4	—	—	—	—	—	—	TMR2IF	TMR1IF	159
PIE4	—	—	—	—	_	—	TMR2IE	TMR1IE	151
CCP1CON	EN	—	OUT	FMT		MODE	<3:0>		366
CCP1CAP	—	—	—	—	—		CTS<2:0>		368
CCPR1L	Capture/Con	npare/PWM F	Register 1 (LS	B)		·			
CCPR1H	Capture/Con	npare/PWM F	Register 1 (MS	SB)		369			
CCP2CON	EN	—	OUT	FMT		MODE	366		
CCP2CAP	—	—	—	—	_		368		
CCPR2L	Capture/Con	npare/PWM F	Register 1 (LS	ster 1 (LSB)					368
CCPR2H	Capture/Con	ompare/PWM Register 1 (MSB)					368		
CCP1PPS	_				CCP1PI	241			
CCP2PPS	—	_			CCP2PI	PS<5:0>			241
RxyPPS	—	_	_			RxyPPS<4:0>	>		242
ADACT	—	—	—	—		ADACT<3:0>			280
CLCxSELy	_	_	_			412			
CWG1ISM	_	_	_	_		IS<3:0>			

TABLE 28-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.

© 2016 Microchip Technology Inc

Preliminary

36.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 36-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine entry takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

36.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 36-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Prepost increment-decrement mode selection

TABLE 36-2: ABBREVIATION DESCRIPTIONS

Field	Description				
PC	Program Counter				
TO	Time-Out bit				
С	Carry bit				
DC	Digit Carry bit				
Z	Zero bit				
PD	Power-Down bit				

36.2 General Format for Instructions

TABLE 36-3:	INSTRUCTION SET

Mnemonic, Operands		Description		14-Bit Opcode)	Status	Notes
				MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f. d	Decrement f	1	00	0011	dfff	ffff	z	2
INCF	f. d	Increment f	1	0.0	1010	dfff	ffff	z	2
IORWE	fd	Inclusive OR W with f	1	0.0	0100	dfff	ffff	7	2
MOVE	f d	Move f	1	0.0	1000	dfff	ffff	7	2
MOVWE	f., 🕰	Move W to f	1	0.0	0000	1fff	ffff	-	2
RIF	fd	Rotate Left f through Carry	1	0.0	1101	dfff	ffff	C	2
RRF	f d	Rotate Right f through Carry	1	00	1100	dfff	ffff	C	2
SUBWE	f d	Subtract W from f	1	00	0010	dfff	ffff		2
SUDWED	i, u f d	Subtract with Borrow W/ from f	1	11	1011	JEEE		C, DC, Z	2
SUBWFD	i, u f d	Subiraci with Borrow W Ironn i	1	11	1110	arre	LILL	C, DC, Z	2
SWAFF	i, u f d	Swap hipples in I	1	00	0110	arre	LILL	7	2
JURWF	1, U				0110	aiii	IIII	2	2
	£ _				1 0 1 1	1666			4.0
DECFSZ	r, a f. d	Increment f. Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCESZ	., -								-, _
		BIT-ORIENTED FILE REGIST			5			r	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	t, b	Bit Set f	1	01	01bb	bfff	ffff		2
BIT-ORIENTED SKIP OPERATIONS									
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL OPERATIONS									
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	000	0k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVIW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C DC Z	
XORIW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	7	
				l <u>+ +</u>	TOTO		12121212	<u> </u>	<u>ــــــــــــــــــــــــــــــــــــ</u>

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

TABLE 37-24: I²C BUS START/STOP BITS REQUIREMENTS

Param. No.	Symbol	Charact	Min.	Тур	Max.	Units	Conditions		
SP90*	TSU:STA	Start condition	100 kHz mode	4700	\searrow		ns	Only relevant for Repeated Start	
		Setup time	400 kAz mode	600		Ι		condition	
SP91*	THD:STA	Start condition	100 kHzmode	4000	_	_	ns	After this period, the first clock	
		Hold time	400 kHz mode	600	_	_		pulse is generated	
SP92*	TSU:STO	Stop condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	_	_			
SP93	THD:STO	Stop condition	100 kHz mode	4000	—	_	ns		
		Hold time	400 kHz mode	600	—	_			

These parameters are characterized but not tested.

12C BUS DATA TIMING **FIGURE 37-22:**

