

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15356-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: 40/44-PIN ALLOCATION TABLE (PIC16(L)F15375, PIC16(L)F15376) (CONTINUED)

								-			-	-									
I/O ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	ССР	PWM	CWG	MSSP	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
OUT ⁽²⁾	-	-	-	-		—	C1OUT	NCO10UT	_	TMR0	CCP1	PWM3OUT	CWG1A CWG2A	SDO1 SDO2	—	DT(3)	CLC10UT	CLKR	_	—	_
	-	-	-	-	_	-	C2OUT	-	Ι	_	CCP2	PWM4OUT	CWG1B CWG2B	SCK1 SCK2	_	CK1 CK2	CLC2OUT	-	_	—	Ι
	_	-	-	_		—	—	—	—		—	PWM5OUT	CWG1C CWG2C	SCL1 ^(3,4) SCL2 ^(3,4)	—	TX1 TX2	CLC3OUT	—	_	—	-
	_	_	-		_	_	_	_	_	_	_	PWM6OUT	CWG1D CWG2D	SDA1 ^(3,4) SDA2 ^(3,4)	_	_	CLC4OUT	_	_	—	_

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

L	
I	
I	
I	
I	
I	
L	
L	
L	
L	0,
L	
L	
I	
I	
I	
I	<u>ک</u> ا
L	
L	I CT
L	1.5
L	
L	
L	
I	
I	
I	
I	
I	U
I	
I	
I	
I	
I	
I	
I	1
I	
I	
I	
I	
L	

Preliminary

I/O ⁽²⁾	48-Pin UQFN/TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	ССР	PWM	CWG	MSSP	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RC2	40	ANC2	_	-	_	_	_	CCP1 ⁽¹⁾	_	_	_	_	_	_		IOCC2	Υ	_
RC3	41	ANC3	_	_	_	—	T2IN ⁽¹⁾	_	_	-	SCL1 SCL2 ^(1,4)	-	_	-	_	IOCC3	Y	-
RC4	46	ANC4	_	-	_	_	_	_	_	-	SDA1 SDI1 ^(1,4)	-	_	_	—	IOCC4	Y	_
RC5	47	ANC5	_		_	—	_	_	-		_		-	-	_	IOCC5	Y	_
RC6	48	ANC6	_	-	_	—	-	_	_	-	—	-	TX1 CK1 ⁽¹⁾	-	_	IOCC6	Y	-
RC7	1	ANC7	_	-	_	_	-	_	-	-	—	-	RX1 DT1 ⁽¹⁾	-	_	IOCC7	Y	-
RD0	42	AND0	_	_	_	-	-	—	_	_	SCK2 SCL2 ^(1,4)	_	—	_	—	_	Y	-
RD1	43	AND1	_	_	-	_	-	—	_	_	SDA2 SDI2 ^(1,4)	_	—	_	—	_	Y	-
RD2	44	AND2	—		—	—	—	_			_				-		Υ	_
RD3	45	AND3	_	_	—	_	_	—	_	_	_	_	_	_	_	_	Y	_
RD4	2	AND4	—	_	—	—	_	—	_	_	_	_	_	_	_	_	Y	_
RD5	3	AND5	—	_	-	_	_	—	_	_	_	_	_	_	-	_	Y	-
RD6	4	AND6	—	—	—	—	—	—	—	—	—	—	—	—	—	—	Y	—
RD7	5	AND7	_	_	_	_		_	_	_	_	_	_	_	_	_	Y	_
RE0	27	ANE0	_	—	—	_	—	—	—	—	—	—	—	—	_	—	Y	-
RE1	28	ANE1	-	_	_	_	_	_	_	_	_	_		_	-	_	Y	_
RE2	29	ANE2	_	—	—	_	_	—	—	—	_	—	—	—	-	—	Y	_
RE3	20	—	—	_	-	_	—	—	-	_	—	_	_	-	_	IOCE3	Y	MCLR VPP
RF0	36	ANF0	—	_	—	—	_	—	_	_	_	_	_	_	_	_	Y	_
RF1	37	ANF1	_		-	_		—	_		—			_			Y	—
RF2	38	ANF2	—	—	—	—	-	—	—	—	—	_	_	—	—	—	Y	_
RF3	39	ANF3	_	_	-	—		—	_	_	_						Y	_
RF4	12	ANF4	—	_	-	_	_	_	_	_	_	_	_	—	_	_	Y	_

TABLE 5: 48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) (CONTINUED)

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.
 All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

3.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 10.5 "Automatic Context Saving"** for more information.

3.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 4.5 "Stack**" for more details.

3.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. See **Section 4.6** "**Indirect Addressing**" for more details.

3.4 Instruction Set

There are 48 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 36.0 "Instruction Set Summary**" for more details.

	Bank 60		Bank 61		Bank 62		Bank 63
1E0Ch	—	1E8Ch	RF7PPS ⁽²⁾	1F0Ch	-	1F8Ch	_
1E0Dh	_	1E8Dh	_	1F0Dh	_	1F8Dh	_
1E0Eh	_	1E8Eh	_	1F0Eh	_	1F8Eh	-
1E0Fh	CLCDATA	1E8Fh	PPSLOCK	1F0Fh	_	1F8Fh	_
1E10h	CLC1CON	1E90h	INTPPS	1F10h	RA0PPS	1F90h	_
1E11h	CLC1POL	1E91h	TOCKIPPS	1F11h	RA1PPS	1F91h	_
1E12h	CLC1SEL0	1E92h	T1CKIPPS	1F12h	RA2PPS	1F92h	_
1E13h	CLC1SEL1	1E93h	T1GPPS	1F13h	RA3PPS	1F93h	
1E14h	CLC1SEL2	1E94h	_	1F14h	RA4PPS	1F94h	-
1E15h	CLC1SEL3	1E95h	—	1F15h	RA5PPS	1F95h	—
1E16h	CLC1GLS0	1E96h	—	1F16h	RA6PPS	1F96h	—
1E17h	CLC1GLS1	1E97h	_	1F17h	RA7PPS	1F97h	—
1E18h	CLC1GLS2	1E98h	_	1F18h	RB0PPS	1F98h	—
1E19h	CLC1GLS3	1E99h		1F19h	RB1PPS	1F99h	
1E1Ah	CLC2CON	1E9Ah		1F1Ah	RB2PPS	1F9Ah	
1E1Bh	CLC2POL	1E9Bh		1F1Bh	RB3PPS	1F9Bh	
1E1Ch	CLC2SEL0	1E9Ch	T2INPPS	1F1Ch	RB4PPS	1F9Ch	
1E1Dh	CLC2SEL1	1E9Dh		1F1Dh	RB5PPS	1F9Dh	
1E1Eh	CLC2SEL2	1E9Eh		1F1Eh	RB6PPS	1F9Eh	
1E1Fh	CLC2SEL3	1E9Fh		1F1Fh	RB7PPS	1F9Fh	
1E20h	CLC2GLS0	1EA0h	_	1F20h	RC0PPS	1FA0h	_
1E21h	CLC2GLS1	1EA1h	CCP1PPS	1F21h	RC1PPS	1FA1h	_
1E22h	CLC2GLS2	1EA2h	CCP2PPS	1F22h	RC2PPS	1FA2h	_
1E23h	CLC2GLS3	1EA3h	_	1F23h	RC3PPS	1FA3h	_
1E24h	CLC3CON	1EA4h	_	1F24h	RC4PPS	1FA4h	_
1E25h	CLC3POL	1EA5h	—	1F25h	RC5PPS	1FA5h	-
1E26h	CLC3SEL0	1EA6h	_	1F26h	RC6PPS	1FA6h	_
1E27h	CLC3SEL1	1EA7h	—	1F27h	RC7PPS	1FA7h	—
1E28h	CLC3SEL2	1EA8h	_	1F28h	RD0PPS ⁽¹⁾	1FA8h	_
1E29h	CLC3SEL3	1EA9h	_	1F29h	RD1PPS ⁽¹⁾	1FA9h	-
1E2Ah	CLC3GLS0	1EAAh	_	1F2Ah	RD2PPS ⁽¹⁾	1FAAh	_
1E2Bh	CLC3GLS1	1EABh	_	1F2Bh	RD3PPS ⁽¹⁾	1FABh	_
1E2Ch	CLC3GLS2	1EACh	_	1E2Ch	RD4PPS ⁽¹⁾	1EACh	_
1E2Dh	CLC3GLS3	1EADh	_	1E2Dh	RD5PPS(1)	1EADh	_
1000h				1525h			
		IEAEI				IFAEI	
1E2FN		1EAFN		1F2FN	RD/PPS()	1FAFN	
1E30h	CLC4SEL0	IEBUII		1F30h	REOPPS("	1FB0h	
1E31h	CLC4SEL1	1EB1h	CWG1PPS	1F31h	RE1PPS()	1FB1h	_
1E32h	CLC4SEL2	1EB2h	_	1F32h	RE2PPS ⁽¹⁾	1FB2h	-
1E33h	CLC4SEL3	1EB3h	—	1F33h	—	1FB3h	—
1E34h	CLC4GLS0	1EB4h	_	1F34h	_	1FB4h	_
1E35h	CLC4GLS1	1EB5h	_	1F35h	_	1FB5h	_
1E36h	CLC4GLS2	1EB6h	—	1F36h	—	1FB6h	—
1E37h	CLC4GLS3	1EB7h	—	1F37h	—	1FB7h	—
1E38h	RF0PPS ⁽²⁾	1EB8h	—	1F38h	ANSELA	1FB8h	—
1E39h	RF1PPS ⁽²⁾	1EB9h	_	1F39h	WPUA	1FB9h	-
1E3Ah	RF2PPS ⁽²⁾	1EBAh	_	1F3Ah	ODCONA	1FBAh	—
1E3Bh	RF3PPS ⁽²⁾	1EBBh	CLCIN0PPS	1F3Bh	SLRCONA	1FBBh	_
1E3Ch	RF4PPS ⁽²⁾	1FBCh	CLCIN1PPS	1E3Cb	INLVLA	1FBCh	_
1E3Dh	RE5PPS(2)	16004	CI CIN2PPS	15306		1EBDh	_
				4505	IOCAN		
TESEN	KFUPP3''	TEBEN	ULUIN3PP3	IF3EN	IUCAN	ILRFU	

TABLE 4-9: PIC16(L)F15356/75/76/85/86 MEMORY MAP, BANKS 60, 61, 62, AND 63

Legend: = Unimplemented data memory locations, read as '0'

Note 1: Present only on PIC16(L)F15375/76/85/86.

2: Present only on PIC16(L)F15385/86

REGISTER 5-3: CONFIGURATION WORD 3: WINDOWED WATCHDOG (CONTINUED)

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

WDTCPS	Value	Divider Ra	atio	Typical Time Out (FIN = 31 kHz)	of WDTPS?
11111 (1)	01011	1:65536	2 ¹⁶	2 s	Yes
11110	11110		-		
 10011	 10011	1:32	2 ⁵	1 ms	No
10010	10010	1:8388608	2 ²³	256 s	
10001	10001	1:4194304	2 ²²	128 s	
10000	10000	1:2097152	2 ²¹	64 s	
01111	01111	1:1048576	2 ²⁰	32 s	
01110	01110	1:524299	2 ¹⁹	16 s	
01101	01101	1:262144	2 ¹⁸	8 s	
01100	01100	1:131072	2 ¹⁷	4 s	
01011	01011	1:65536	2 ¹⁶	2 s	
01010	01010	1:32768	2 ¹⁵	1 s	
01001	01001	1:16384	2 ¹⁴	512 ms	No
01000	01000	1:8192	2 ¹³	256 ms	
00111	00111	1:4096	2 ¹²	128 ms	
00110	00110	1:2048	2 ¹¹	64 ms	
00101	00101	1:1024	2 ¹⁰	32 ms	
00100	00100	1:512	2 ⁹	16 ms	
00011	00011	1:256	2 ⁸	8 ms	
00010	00010	1:128	2 ⁷	4 ms	
00001	00001	1:64	2 ⁶	2 ms	
00000	00000	1:32	2 ⁵	1 ms	

Note 1: 0b11111 is the default value of the WDTCPS bits.

© 2016 Microchip Technology Inc.

8.4 Low-Power Brown-out Reset (LPBOR)

The Low-Power Brown-out Reset (LPBOR) is an important part of the Reset subsystem. Refer to Figure 8-1 to see how the BOR and LPBOR interact with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset.

8.4.1 ENABLING LPBOR

The LPBOR is controlled by the \overrightarrow{LPBOR} bit of the Configuration Word (Register 5-1). When the device is erased, the LPBOR module defaults to disabled.

8.4.2 LPBOR MODULE OUTPUT

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. When this occurs, a register bit (BOR) is changed to indicate that a BOR Reset has occurred. The same bit is set for either the BOR or the LPBOR (refer to Register 8-3). This signal is OR'd with the output of the BOR module to provide the generic BOR signal, which goes to the PCON register and to the power control block. Refer to Figure 8-1 for the OR gate connections of the BOR and LPBOR Reset signals, which eventually generates one common BOR Reset.

8.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 8-2).

 TABLE 8-2:
 MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

8.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up. Refer to **Section 2.3 "Master Clear (MCLR) Pin"** for recommended MCLR connections.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

8.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 14.1 "I/O Priorities"** for more information.

8.6 Windowed Watchdog Timer (WWDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period and the window is open. The TO and PD bits in the STATUS register and the WDT bit in PCON are changed to indicate a WDT Reset caused by the timer overflowing, and WDTWV bit in the PCON register is changed to indicate a WDT Reset caused by a window violation. See Section 12.0 "Windowed Watchdog Timer (WWDT)" for more information.

8.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 8-4 for default conditions after a RESET instruction has occurred.

8.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 4.5.2** "**Overflow/Underflow Reset**" for more information.

8.9 Programming Mode Exit

Upon exit of In-Circuit Serial Programming[™] (ICSP[™]) mode, the device will behave as if a POR had just occurred (the device does not reset upon run time self-programming/erase operations).

8.10 Power-up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\mathsf{PWRTE}}$ bit of the Configuration Words.

The Power-up Timer provides a nominal 64 ms time out on POR or Brown-out Reset. The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in the Configuration Words. The Power-up Timer starts after the release of the POR and BOR. For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*" (DS00607).

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 14-5: WPUA: WEAK PULL-UP PORTA REGISTER

bit 7-0 WPUA<7:0>: Weak Pull-up Register bits 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 14-6: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCA7 | ODCA6 | ODCA5 | ODCA4 | ODCA3 | ODCA2 | ODCA1 | ODCA0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

ODCA<7:0>: PORTA Open-Drain Enable bits bit 7-0

For RA<7:0> pins, respectively

- 1 = Port pin operates as open-drain drive (sink current only)
- 0 = Port pin operates as standard push-pull drive (source and sink current)

© 2016 Microchip Technology Inc.

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRA7 | SLRA6 | SLRA5 | SLRA4 | SLRA3 | SLRA2 | SLRA1 | SLRA0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

REGISTER 14-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRA<7:0>:** PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 14-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLA<7:0>: PORTA Input Level Select bits

For RA<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

© 2016 Microchip Technology Inc.

14.10.8 PORTE FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

21.6 Register Definitions: DAC Control

REGISTER 21-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DAC1EN	—	DAC10E1	DAC10E2	DAC1P	SS<1:0>	_	DAC1NSS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	DAC1EN: DA	C1 Enable bit					
	1 = DAC is enabled						
	0 = DAC is d	isabled					
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	DAC10E1: D	AC1 Voltage C	output 1 Enabl	e bit			
	1 = DAC volt	age level is an	output on the	DAC1OUT1 pi	n		
	0 = DAC volt	age level is dis	connected fro	m the DAC100	J I 1 pin		
bit 4	DAC10E2: D	AC1 Voltage C	Output 1 Enabl	e bit	_		
	1 = DAC volt	age level is an	output on the	DAC10012 pl	N IT2 nin		
hit 2 2				Coloct bito	512 pill		
DIL 3-2	11 = Reserve	ed do not use	suive Source S	belect bits			
	10 = FVR out	itput					
	01 = VREF+	pin					
	00 = VDD						
bit 1	Unimplemen	ted: Read as '	0'				

bit 0 DAC1NSS: Read as '0'

REGISTER 21-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DAC1R<4:0>	1	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DAC1R<4:0>: DAC1 Voltage Output Select bits VOUT = (VSRC+ - VSRC-)*(DAC1R<4:0>/32) + VSRC

23.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 37-14 for more details.

23.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 23-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

23.12 Register Definitions: Comparator Control

REGISTER 23-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ON	OUT	—	POL	—	—	HYS	SYNC
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, rea	ad as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and B	OR/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7 ON: Comparator Enable bit 1 = Comparator is enabled 0 = Comparator is disabled and consumes no active power							
bit 6	OUT: Comparator Output bit $\frac{\text{If } CxPOL = 1 \text{ (inverted polarity):}}{1 = CxVP < CxVN}$ $0 = CxVP > CxVN$ $\frac{\text{If } CxPOL = 0 \text{ (noninverted polarity):}}{1 = CxVP > CxVN}$ $0 = CxVP < CxVN$						
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	POL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted						
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	HYS: Comparator Hysteresis Enable bit 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled						
bit 0	SYNC: Comp 1 = Compara Output up 0 = Compara	arator Output S tor output to T odated on the f tor output to Ti	Synchronous M Timer1 and I/C Talling edge of mer1 and I/O	Mode bit) pin is synchr Timer1 clock s pin is asynchro	onous to chan ource. onous	iges on Timer1	clock source.

© 2016 Microchip Technology Inc.

30.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces half-bridge, full-bridge, and steering of PWM waveforms. It is backwards compatible with previous ECCP functions.

The CWG has the following features:

- · Six operating modes:
 - Synchronous Steering mode
 - Asynchronous Steering mode
 - Full-Bridge mode, Forward
 - Full-Bridge mode, Reverse
 - Half-Bridge mode
 - Push-Pull mode
- Output polarity control
- Output steering
 - Synchronized to rising event
 - Immediate effect
- Independent 6-bit rising and falling event deadband timers
 - Clocked dead band
 - Independent rising and falling dead-band enables
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

The CWG modules available are shown in Table 30-1.

TABLE 30-1: AVAILABLE CWG MODULES

Device	CWG1
PIC16(L)F15356/75/76/85/86	•

30.1 Fundamental Operation

The CWG module can operate in six different modes, as specified by MODE of the CWG1CON0 register:

- Half-Bridge mode (Figure 30-9)
- Push-Pull mode (Figure 30-2)
 - Full-Bridge mode, Forward (Figure 30-3)
 - Full-Bridge mode, Reverse (Figure 30-3)
- Steering mode (Figure 30-10)
- Synchronous Steering mode (Figure 30-11)

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. Thus, all output modes support auto-shutdown, which is covered in **30.10** "Auto-Shutdown".

30.1.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 30-9. A non-overlap (dead-band) time is inserted between the two outputs as described in **Section 30.5 "Dead-Band Control"**.

The unused outputs CWG1C and CWG1D drive similar signals, with polarity independently controlled by the POLC and POLD bits of the CWG1CON1 register, respectively.

FIGURE 30-3: SIMPLIFIED CWG BLOCK DIAGRAM (FORWARD AND REVERSE FULL-BRIDGE MODES)

PIC16(L)F15356/75/76/85/86

U-1	U-1	U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	—	AS4E	AS3E	AS2E	AS1E	AS0E
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7-5	Unimplemented: Read as '0'						
bit 4	AS4E: CLC2	Output bit					
	1 = LC2_out	shut-down is e	nabled				
	$0 = LC2_out$	shut-down is d	isabled				
bit 3	AS3E: Compa	arator C2 Outp	ut bit				
	1 = C2 outpu	t shut down is	enabled				
hit 0		rator C1 Outp					
		t abut down ia					
	1 = C1 output = 0 = C1 output = 0 = C1 output = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	t shut-down is	disabled				
bit 2	AS1E: TMR2	Postscale Out	put bit				
	1 = TMR2 Postscale shut-down is enabled						
	0 = TMR2 Pc	stscale shut-d	own is disable	d			
bit 0	AS0E: CWG1	Input Pin bit					
	1 = Input pin	selected by CV	WG1PPS shut	-down is enab	led		
	0 = Input pin	selected by CV	NG1PPS shut	-down is disab	led		

REGISTER 30-6: CWG1AS1: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 1

32.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 32-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

32.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition generated
- · Stop condition generated
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

32.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 32.7** "**Baud Rate Generator**" for more detail.

33.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 9.2.2.2** "Internal Oscillator Frequency **Adjustment**" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 33.3.1** "**Auto-Baud Detect**"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

PIC16(L)F15356/75/76/85/86

FIGURE 37-13: **CAPTURE/COMPARE/PWM TIMINGS (CCP)**

TABLE 37-19: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standar Operatir	Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C							
Param. No.	Sym.	Characteristic		Min.	Турт	Max	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	$ \neq $	<u> </u>	ns	
			With Prescaler	20/	1	\checkmark	ns	
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	1	/	ns	
			With Prescaler	29	X	_	ns	
CC03*	TccP	CCPx Input Period		<u>3767 + 40</u> N		> -	ns	N = prescale value

These parameters are characterized but not tested. Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	ILLIMETER	S	
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	E 0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B