

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K × 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15356-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

_ _ _ CLKOUT/ OSC1 CLKIN/ OSC2 _ _ _ _ _ _ ICSPCLK ICSPDAT

Interrupt

Pull-up

Y

Y

Y

Y

Y

Y

Υ

Y

Υ

Y

Y

Υ

Υ

Y

Y

_

_

Basic

_

48-Pin UQFN/	ADC	Referenc	Comparat	NCO	DAC	Timers	ССР	WMd	CWG	dssw	ZCD	EUSART	CLC	ССКК	Interrupt
21	ANA0	Ι	C1IN0- C2IN0-	—	_	-	_		_				CLCIN0 ⁽¹⁾	l	IOCA0
22	ANA1	_	C1IN1- C2IN1-	—	—	—	—	_	—	_	_	_	CLCIN1 ⁽¹⁾	l	IOCA1
23	ANA2	-	C1IN0+ C2IN0+	_	DAC1OUT1	—	—		_				_		IOCA2
24	ANA3	VREF+	C1IN1+	_	DACREF+	-	_	-	_	-		-	_		IOCA3
25	ANA4	—	C1IN1-	—	_	T0CKI ⁽¹⁾	_	_	—	_	_	_	_	_	IOCA4
26	ANA5 ADACT	-	-	_	_	T1G ⁽¹⁾	—		—	SS1 ⁽¹⁾	_	-	—		IOCA5
33	ANA6		-	-	—	—	—	-	-	-	-	_	-		IOCA6
32	ANA7		-	—	_	—	—	-	-	-		_	-		IOCA7
8	ANB0	-	C2IN1+	-	_	—	-	_	CWG1 ⁽¹⁾	SS2 ⁽¹⁾	ZCD1	_	—	_	INT ⁽¹⁾ IOCB0
9	ANB1	-	C1IN3- C2IN3-	—	_	—	—		_	SCL1 SCK1 ^(1,4)			—		IOCB1
10	ANB2	-		_	_	—	—		_	SDA1 SDI1 ^(1,4)			_		IOCB2
11	ANB3	-	C1IN2- C2IN2-	—	_	—	—		_				_		IOCB3
16	ANB4 ADACT ⁽¹⁾	-	—	—	—	—	—	_	—	—	—	—	—		IOCB4
17	ANB5	—	-	—	—	—	—	-	—	_		_	—	١	IOCB5
18	ANB6	-		_	_	—	—		_			TX2 CK2 ⁽¹⁾	CLCIN2 ⁽¹⁾		IOCB6
19	ANB7	—	—	—	DAC1OUT2	_	—	_	—	—	—	RX2 DT2 ⁽¹⁾	CLCIN3 ⁽¹⁾	1	IOCB7
34	ANC0	-	-	-	-	SOSCO T1CKI ⁽¹⁾	-	-	-	-	-	-	-	_	IOCC0
35	ANC1	_	—	_	_	SOSCI	CCP2 ⁽¹⁾	_	—	—	_	_	_	—	IOCC1

48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) TABLE 5:

This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note 1:

All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options. 2:

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

TQFP

I/O⁽²⁾

RA0 RA1

RA2

RA3

RA4

RA5

RA6

RA7

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RC0

RC1

TABLE 4-11. SPECIAL FUNCTION REGISTER SUMMART BANKS 0-03 (CONTINUED)											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 17											
				CPU COF	RE REGISTERS;	see Table 4-3 for	r specifics				
88Ch	CPUDOZE	IDLEN	DOZEN	ROI	DOE	_	DOZE2	DOZE1	DOZE0	0000 -000	u000 -000
88Dh	OSCCON1	—		NOSC<2:0>			ND	IV<3:0>		-qqq 0000	-qqq 0000
88Eh	OSCCON2	—		COSC<2:0>			CD	IV<3:0>		-ववव वववव	-ववव वववव
88Fh	OSCCON3	CSWHOLD	SOSCPWR	—	ORDY	NOSCR	—	—	—	00-0 0	00-0 0
890h	OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	d000 dd-0	dddd dd-d
891h	OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	—	—	0000 00	0000 00
892h	OSCTUNE	—	—			HFT	UN<5:0>			10 0000	10 0000
893h	OSCFRQ	—	—	—	—	—		HFFRQ<2:0	>	ddd	ddd
894h	—				Unimple	mented				—	—
895h	CLKRCON	CLKREN	—	—	CLKRE	DC<1:0>		CLKRDIV<2:0)>	0x xxxx	0u uuuu
896h	CLKRCLK	—	—	—	—		CLKR	CLK<3:0>		0000	0000
897h 89Fh	_				Unimple	mented		_	_		

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

IADLE	ALE 4-11. SPECIAL FUNCTION REGISTER SUMMART BANKS 0-03 (CONTINUED)												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR		
Bank 20													
	CPU CORE REGISTERS; see Table 4-3 for specifics												
A0Ch A18h	-				Unimpler	nented				_	_		
A19h	RC2REG				RC2REC	G<7:0>				0000 0000	0000 0000		
A1Ah	TX2REG				TX2REG	6<7:0>				0000 0000	0000 0000		
A1Bh	SP2BRGL				SP2BRG	L<7:0>				0000 0000	0000 0000		
A1Ch	SP2BRGH				SP2BRG	H<7:0>				0000 0000	0000 0000		
A1Dh	RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000		
A1Eh	TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010		
A1Fh	BAUD2CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00		

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

5.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data memory are controlled independently. Internal access to the program memory is unaffected by any code protection setting.

5.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Self-writing the program memory is dependent upon the write protection setting. See **Section 5.4** "Write **Protection**" for more information.

5.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRTAPP, WRTSAF, WRTB, WRTC bits in Configuration Words (Register 5-4) define whether the corresponding region of the program memory block is protected or not.

5.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 13.3.6 "NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Words" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC16(L)F153xx Memory Programming Specification" (DS40001838).

REGIST	ER 5-7:	REVI	SIONIE): REVIS	SION IC	REGIS	STER						
R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0			MJRRE	EV<5:0>			MNRREV<5:0>					
bit 13								bit 0					
Legend:													
	R = Read	able bit											
	'0' = Bit is	cleared	l			'1' = Bi'	t is set		x = Bit	is unkno	own		

bit 13-12 **Fixed Value**: Read-only bits

These bits are fixed with value `10' for all devices included in this data sheet.

bit 11-6 **MJRREV<5:0>**: Major Revision ID bits These bits are used to identify a major revision. bit 5-0 **MNRREV<5:0>**: Minor Revision ID bits

These bits are used to identify a minor revision.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	216
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	216
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	216
ANSELF	ANSF7	ANSF6	ANSF5	ANSF4	ANSF3	ANSF2	ANSF1	ANSF0	217
WPUF	WPUF7	WPUF6	WPUF5	WPUF4	WPUF3	WPUF2	WPUF1	WPUF0	217
ODCONF	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	218
SLRCONF	SLRF7	SLRF6	SLRF5	SLRF4	SLRF3	SLRF2	SLRF1	SLRF0	218
INLVLF	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF2	INLVLF1	INLVLF0	218

TABLE 14-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Legend: - = unimplemented locations read as '0'. Shaded cells are not used by PORTF.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
RC1PPS	_	_	_			RC1PPS<	4:0>		242		
RC2PPS	—	_	_			RC2PPS<	4:0>		242		
RC3PPS	_	_	_		RC3PPS<4:0>						
RC4PPS	_	_	_		RC4PPS<4:0>						
RC5PPS	_	_	_		RC5PPS<4:0>						
RC6PPS	_	_	_		RC6PPS<4:0>						
RC7PPS	_	—	—			RC7PPS<	4:0>		242		
RD0PPS ⁽¹⁾	_	_	_			RD0PPS<4	k:0>		242		
RD1PPS ⁽¹⁾	_	—	—			RD1PPS<4	k:0>		242		
RD2PPS ⁽¹⁾	—	_	—			RD2PPS<4	k:0>		242		
RD3PPS ⁽¹⁾	—	—	—			RD3PPS<4	k:0>		242		
RD4PPS ⁽¹⁾	—	_	—			RD4PPS<4	l:0>		242		
RD5PPS ⁽¹⁾	—		_			RD5PPS<4	k:0>		242		
RD6PPS ⁽¹⁾	—	—	—			RD6PPS<4	k:0>		242		
RD7PPS ⁽¹⁾	—		-			RD7PPS<4	1:0>		242		
RE0PPS ⁽¹⁾	—	—	—			RD5PPS<4	k:0>		242		
RE1PPS ⁽¹⁾	—	—	—			RD6PPS<4	k:0>		242		
RE2PPS ⁽¹⁾	—		-			RD7PPS<4	1:0>		242		
RF0PPS ⁽²⁾	—	—	—			RF0PPS<4	:0>		242		
RF1PPS ⁽²⁾	—	—	—			RF1PPS<4	:0>		242		
RF2PPS ⁽²⁾	—		-			RF2PPS<4	:0>		242		
RF3PPS ⁽²⁾	—	—	—			RF3PPS<4	:0>		242		
RF4PPS ⁽²⁾	—	—	—			RF4PPS<4	:0>		242		
RF5PPS ⁽²⁾	—	—	—			RF5PPS<4	:0>		242		
RF6PPS ⁽²⁾	—	—	—	RF6PPS<4:0>					242		
RF7PPS ⁽²⁾	—	_	_	RF7PPS<4:0>					242		

TABLE 15-8: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

Note 1: Present only on PIC16(L)F15375/76/85/86.

2: Present only on PIC16(L)F15385/86.

17.5 Register Definitions: Interrupt-on-Change Control

REGISTER 17-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1 ⁽¹⁾	IOCAP0 ⁽¹⁾				
bit 7	bit 7 bit 0										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: read as '0'

bit 5-0

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 17-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1 ⁽¹⁾	IOCAN0 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: read as '0'

IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 17-7: IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER

-							
bit 7							bit 0
IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCCP<7:0>: Interrupt-on-Change PORTC Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

REGISTER 17-8: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCCN<7:0>: Interrupt-on-Change PORTC Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

REGISTER 17-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0 **IOCCF<7:0>:** Interrupt-on-Change PORTC Flag bits

- 1 = An enabled change was detected on the associated pin
 - Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.
- 0 = No change was detected, or the user cleared the detected change

Note 1: Present only on the PIC16(L)F15345 20-pin devices.

28.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

The Capture/Compare/PWM modules available are shown in Table 28-1.

TABLE 28-1:	AVAILABLE CCP MODULES
-------------	-----------------------

Device	CCP1	CCP2
PIC16(L)F15356/75/76/85/86	•	•

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

30.1.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated, alternating copies of the input as illustrated in Figure 30-2. This alternation creates the push-pull effect required for driving some transformer-based power supply designs.

The push-pull sequencer is reset whenever EN = 0 or if an auto-shutdown event occurs. The sequencer is clocked by the first input pulse, and the first output appears on CWG1A.

The unused outputs CWG1C and CWG1D drive copies of CWG1A and CWG1B, respectively, but with polarity controlled by the POLC and POLD bits of the CWG1CON1 register, respectively.

30.1.3 FULL-BRIDGE MODES

In Forward and Reverse Full-Bridge modes, three outputs drive static values while the fourth is modulated by the input data signal. In Forward Full-Bridge mode, CWG1A is driven to its active state, CWG1B and CWG1C are driven to their inactive state, and CWG1D is modulated by the input signal. In Reverse Full-Bridge mode, CWG1C is driven to its active state, CWG1A and CWG1D are driven to their inactive states, and CWG1B is modulated by the input signal. In Full-Bridge mode, the dead-band period is used when there is a switch from forward to reverse or vice-versa. This dead-band control is described in Section 30.5 "Dead-Band Control", with additional details in Section 30.6 "Rising Edge and Reverse Dead Band" and Section 30.7 "Falling Edge and Forward Dead Band".

The mode selection may be toggled between forward and reverse toggling the MODE<0> bit of the CWG1CON0 while keeping MODE<2:1> static, without disabling the CWG module.

30.1.4 STEERING MODES

In Steering modes, the data input can be steered to any or all of the four CWG output pins. In Synchronous Steering mode, changes to steering selection registers take effect on the next rising input.

In Non-Synchronous mode, steering takes effect on the next instruction cycle. Additional details are provided in **Section 30.9 "CWG Steering Mode"**.

30.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWG1CLKCON register.

30.3 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 30-2.

TABLE 30-2: SELECTABLE INPUT SOURCES

Source Peripheral	Signal Name
CWG input PPS pin	CWG1IN PPS
CCP1	CCP1_out
CCP2	CCP2_out
PWM3	PWM3_out
PWM4	PWM4_out
PWM5	PWM5_out
PWM6	PWM6_out
NCO	NCO1_out
Comparator C1	C1OUT_sync
Comparator C2	C2OUT_sync
CLC1	LC1_out
CLC2	LC2_out
CLC3	LC3_out
CLC4	LC4_out

The input sources are selected using the CWG1ISM register.

30.4 Output Control

30.4.1 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLx bits of the CWG1CON1. Auto-shutdown and steering options are unaffected by polarity.

REGISTER 31-3: CLCxSEL0: GENERIC CLCx DATA 0 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—			LCxD	1S<5:0>		
bit 7		•					bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplement	ted bit, read as '0'		

		b = 0 in the period bit, feat us v
u = Bit is unchanged	x = Bit is unknown	-n/n = value at POR and BOR/value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LCxD1S<5:0>: CLCx Data1 Input Selection bits See Table 31-2.

REGISTER 31-4: CLCxSEL1: GENERIC CLCx DATA 1 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			LCxD2	2S<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0
---------	---------------------------

bit 5-0 LCxD2S<5:0>: CLCx Data 2 Input Selection bits See Table 31-2.

REGISTER 31-5: CLCxSEL2: GENERIC CLCx DATA 2 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	LCxD3S<5:0>					
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LCxD3S<5:0>: CLCx Data 3 Input Selection bits See Table 31-2.

REGISTER 31-6: CLCxSEL3: GENERIC CLCx DATA 3 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—	LCxD4S<5:0>					
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LCxD4S<5:0>: CLCx Data 4 Input Selection bits See Table 31-2.

FIGURE 32-7: SPI DAISY-CHAIN CONNECTION

32.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an $\overline{\text{ACK}}$ is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the \overline{ACK} value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

There are certain conditions where an ACK will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

© 2016 Microchip Technology Inc

Preliminary

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	N	44			
Pitch	е	0.65 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2