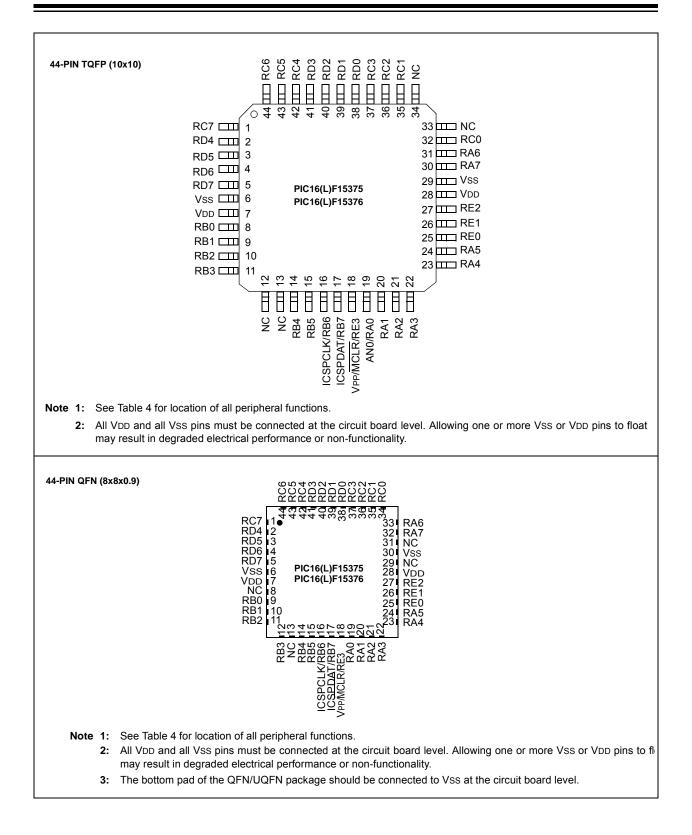


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

•XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15356t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description	
RB3/ANB3/C1IN2-/C2IN2-/IOCB3	RB3	TTL/ST	CMOS/OD	General purpose I/O.	
	ANB3	AN	_	ADC Channel B3 input.	
	C1IN2-	AN	_	Comparator 1 negative input.	
	C2IN2-	AN	_	Comparator 2 negative input.	
	IOCB3	TTL/ST		Interrupt-on-change input.	
RB4/ANB4/ADACT ⁽¹⁾ /IOCB4	RB4	TTL/ST	CMOS/OD	General purpose I/O.	
	ANB4	AN	-	ADC Channel B4 input.	
	ADACT ⁽¹⁾	TTL/ST	-	ADC Auto-Conversion Trigger input.	
	IOCB4	TTL/ST	_	Interrupt-on-change input.	
RB5/ANB5/T1G ⁽¹⁾ /IOCB5	RB5	TTL/ST	CMOS/OD	General purpose I/O.	
	ANB5	AN	-	ADC Channel B5 input.	
	T1G ⁽¹⁾	ST	_	Timer1 Gate input.	
	IOCB5	TTL/ST	_	Interrupt-on-change input.	
RB6/ANB6/CLCIN2 ⁽¹⁾ /IOCB6/TX2/ CK2 ⁽³⁾ /ICSPCLK	RB6	TTL/ST	CMOS/OD	General purpose I/O.	
JK2 ^w /IUSPULK	ANB6	AN	_	ADC Channel B6 input.	
	CLCIN2 ⁽¹⁾	TTL/ST	-	Configurable Logic Cell source input.	
	IOCB6	TTL/ST	-	Interrupt-on-change input.	
	TX2	—	CMOS	EUSART2 asynchronous.	
	CK2 ⁽³⁾	TTL/ST	CMOS/OD	EUSART2 synchronous mode clock input/output.	
	ICSPCLK	ST	-	In-Circuit Serial Programming™ and debugging clock inpu	
RB7/ANB7/RX2/DT2/CLCIN3 ⁽¹⁾ /	RB7	TTL/ST	CMOS/OD	General purpose I/O.	
IOCB7/DAC1OUT2/ICSPDAT	ANB7	AN	-	ADC Channel B7 input.	
	CLCIN3 ⁽¹⁾	TTL/ST	-	Configurable Logic Cell source input.	
	IOCB7	TTL/ST	_	Interrupt-on-change input.	
	RX2 ⁽¹⁾	TTL/ST	_	EUSART2 Asynchronous mode receiver data input.	
	DT2 ⁽³⁾	TTL/ST	CMOS/OD	EUSART2 Synchronous mode data input/output.	
	DAC1OUT2	_	AN	Digital-to-Analog Converter output.	
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming™ and debugging data inpu output.	
RC0/ANC0/T1CKI ⁽¹⁾ /IOCC0/SOSCO	RC0	TTL/ST	CMOS/OD	General purpose I/O.	
	ANC0	AN	_	ADC Channel C0 input.	
	T1CKI ⁽¹⁾	TTL/ST	_	Timer1 external digital clock input.	
	IOCC0	TTL/ST	_	Interrupt-on-change input.	
	SOSCO	_	AN	32.768 kHz secondary oscillator crystal driver output.	

TABLE 1-2: PIC16(L)F15356 PINOUT DESCRIPTION (CONTINUED)

Note

Schmitt Trigger input of output
Schmitt Trigger input with CMOS levels
Crystal levels

 $\begin{aligned} HV &= \text{Airadeg input of output} & \text{Since on the comparison of the comparison o$ 1:

2: options as described in Table 15-3. This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and

3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/CLCIN0 ⁽¹⁾ / IOCA0	RA0	TTL/ST	CMOS/OD	General purpose I/O.
IOCAU	ANA0	AN	—	ADC Channel A0 input.
	C1IN0-	AN	—	Comparator negative input.
	C2IN0-	AN	—	Comparator negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA0	TTL/ST	—	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/CLCIN1 ⁽¹⁾ / IOCA1	RA1	TTL/ST	CMOS/OD	General purpose I/O.
IUCAT	ANA1	AN	_	ADC Channel A1 input.
	C1IN1-	AN	—	Comparator negative input.
	C2IN1-	AN	_	Comparator negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA1	TTL/ST	—	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/ DAC1OUT1/IOCA2	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DACTOUTI/IOCAZ	ANA2	AN	_	ADC Channel A2 input.
	C1IN0+	AN	_	Comparator positive input.
	C2IN0+	AN	_	Comparator positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	_	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/DACREF+/	RA3	TTL/ST	CMOS/OD	General purpose I/O.
IOCA3	ANA3	AN	_	ADC Channel A3 input.
	C1IN1+	AN	_	Comparator positive input.
	VREF+	AN	_	External ADC and/or DAC positive reference input.
	IOCA3	TTL/ST	_	Interrupt-on-change input.
RA4/ANA4/T0CKI ⁽¹⁾ /IOCA4	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	_	ADC Channel A4 input.
	T0CKI ⁽¹⁾	TTL/ST	—	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
RA5/ANA5/SS1 ⁽¹⁾ /T1G ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	—	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	T1G ⁽¹⁾	TTL/ST	_	Timer1 gate input.
	IOCA5	TTL/ST	_	Interrupt-on-change input.

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION

CMOS = CMOS compatible input or output Legend: AN = Analog input or output TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels XTAL

HV = High Voltage

Note

= Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1: pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-6.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, 4: instead of the I²C specific or SMBus input buffer thresholds.

⁼ Open-Drain 1²C = Schmitt Trigger input with I²C

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

			NEOIOTEN		Brance		,				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62 (Continued)											
1F2Ah	RD2PPS ⁽¹⁾	_	_	_			RD2PPS<4:0	>		00 0000	uu uuuu
1F2Bh	RD3PPS ⁽¹⁾	—	_	_			RD3PPS<4:0	>		00 0000	uu uuuu
1F2Ch	RD4PPS ⁽¹⁾	—	_	_			00 0000	uu uuuu			
1F2Dh	RD5PPS ⁽¹⁾	_	_	_			00 0000	uu uuuu			
1F2Eh	RD6PPS ⁽¹⁾	_	_	_			RD6PPS<4:0	>		00 0000	uu uuuu
1F2Fh	RD7PPS ⁽¹⁾	_	_	_			00 0000	uu uuuu			
1F30h	RE0PPS	_	_	_			RD5PPS<4:0	>		00 0000	uu uuuu
1F31h	RE1PPS	_	_	—		RD6PPS<4:0>					uu uuuu
1F32h	RE2PPS	_	_	—			00 0000	uu uuuu			
1F33h 1F37h	_	E2PPS — — RD7PPS<4:0> — Unimplemented Unimplemented						_	_		

© 2016 Microchip Technology Inc.

Legend: x = unknown, u = unchanged, g = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note 1: Present only on PIC16(L)F15375/76/85/86.

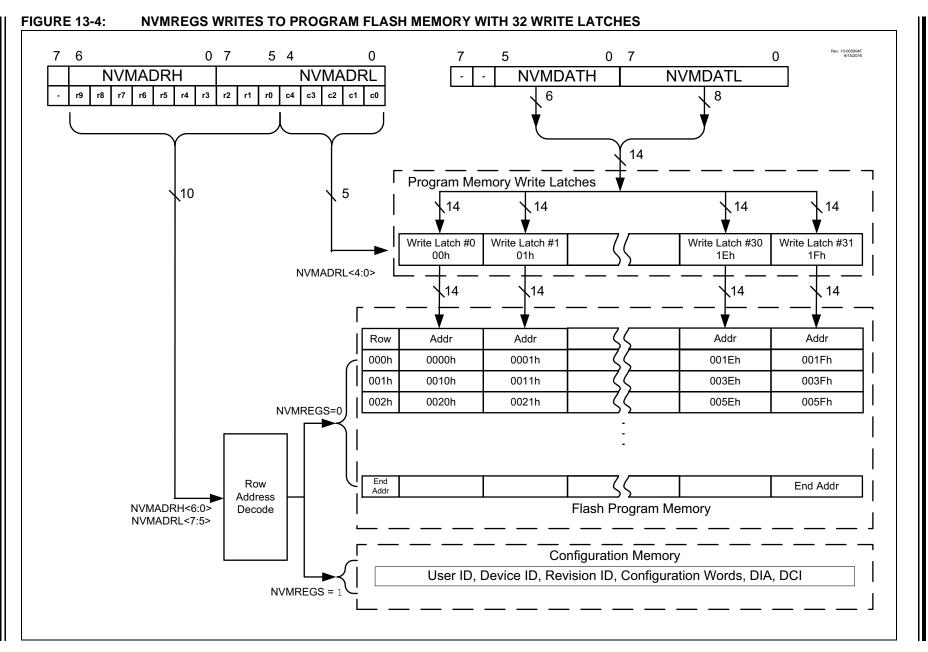
REGISTER	9-6: OSCF	RQ: HFINTO	SC FREQUE		TION REGIS	TER			
U-0	U-0	U-0	U-0	U-0	R/W-q/q	R/W-q/q	R/W-q/q		
_	—	_	—	—	ŀ	HFFRQ<2:0> ⁽¹)		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is uncl	hanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-3	Unimplemer	ted: Read as '	0'						
bit 2-0	HFFRQ<2:0>	-: HFINTOSC F	requency Sel	ection bits					
	Nominal Freq (MHz):								
	111 = Reserved								
	110 = 32								
	101 = 16								
	100 = 12								
	011 = 8								

- 010 = 4 001 = 2 000 = 1
- Note 1: When RSTOSC=110 (HFINTOSC 1 MHz), the HFFRQ bits will default to '010' upon Reset; when RSTOSC = 001 (HFINTOSC 32 MHz), the HFFRQ bits will default to '101' upon Reset.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
		NVMIE	NCO1IE				CWG1IE
bit 7			NOONE				bit C
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	other Resets
'1' = Bit is s	set	'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7-6 bit 5 bit 4	NVMIE: NV/ 1 = NVM to 0 = NVM to NCO1IE: NC 1 = NCO r	ented: Read as ' M Interrupt Enat ask complete int nterrupt not enal CO Interrupt Ena ollover interrupt ollover interrupt	ole bit errupt enable oled able bit enabled	d			
bit 3-1 bit 0	CWG1IE: C 1 = CWG1	ented: Read as ' omplementary V interrupt is ena interrupt disable	Vaveform Ger bled	nerator (CWG)	2 Interrupt Enab	ole bit	
	Bit PEIE of the I set to enable controlled by reg	any peripheral	interrupt				

REGISTER 10-9: PIE7: PERIPHERAL INTERRUPT ENABLE REGISTER 7

REGISTER 10-14: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4


U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
_	_			_	_	TMR2IF	TMR1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set

bit 7-2 bit 1	Unimplemented: Read as '0' TRM2IF: Timer2 Interrupt Flag bit 1 = The TMR2 postscaler overflowed, or in 1:1 mode, a TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 event has occurred
bit 0	TRM1IF: Timer1 Overflow Interrupt Flag bit 1 = Timer1 overflow occurred (must be cleared in software) 0 = No Timer1 overflow occurred
Note:	Interrupt flag bits are set when an interrupt

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

© 2016 Microchip Technology Inc.

14.11 Register Definitions: PORTE

REGISTER 14-33: PORTE: PORTE REGISTER

U-0	U-0	U-0	U-0	R-x/u	R-x/u	R-x/u	R-x/u
_	—	—	_	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾
bit 7		•		·			bit 0
Legend:							
R = Readable I	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value a	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-4	Unimplemented: Read as '0'
bit 3-0	RE<3:0>: PORTE Input Pin bits
	1 = Port pin is > Vін
	0 = Port pin is < Vı∟

Note 1: Present on PIC16(L)F15375/76/85/86 only.

REGISTER 14-34: TRISE: PORTE TRI-STATE REGISTER

U-0	U-0	U-0	U-0	U-1	R/W-1/1	R/W-1/1	R/W-1/1
_	_	_	_	(2)	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾
bit 7			•				bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

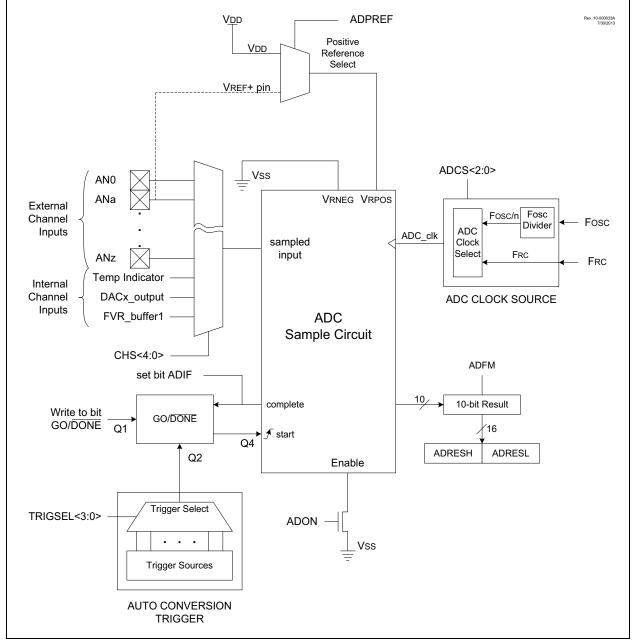
bit 7-4 Unimplemented: Read as '0'

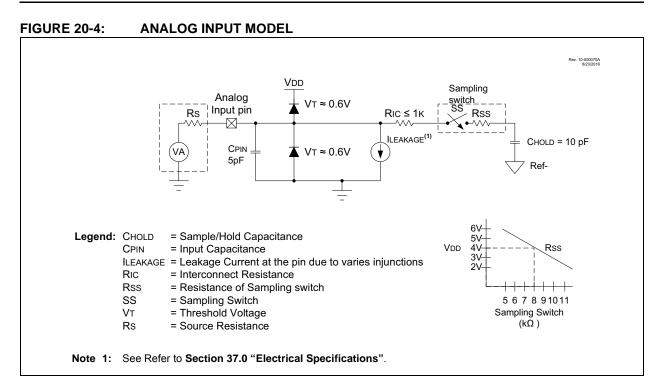
bit 3 Unimplemented: Read as '1'

bit 2-0 **TRISA<2:0>:** PORTA Tri-State Control bit⁽¹⁾ 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

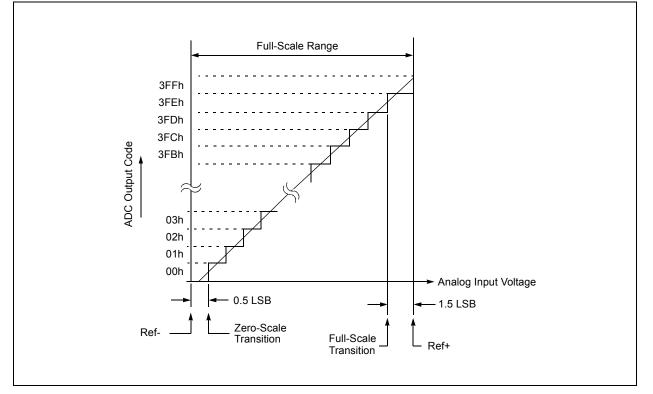
Note 1: Present on PIC16(L)F15375/76/85/86 only.

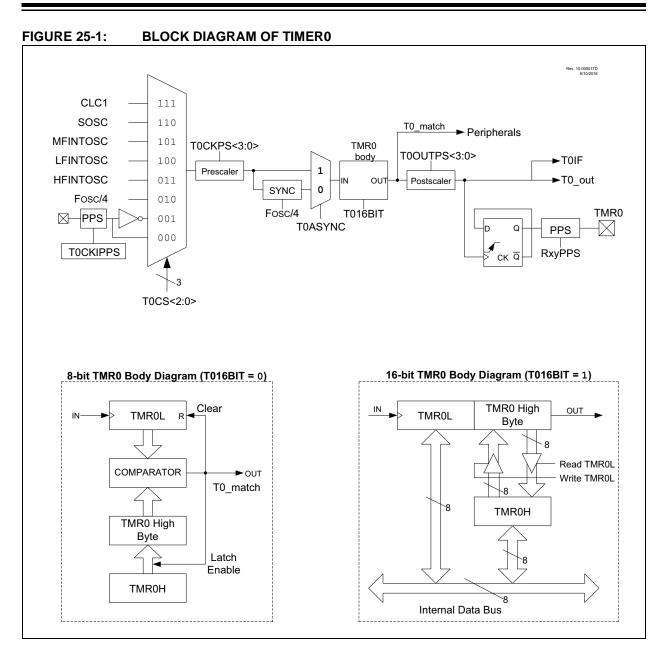
2: Unimplemented, read as '1'.

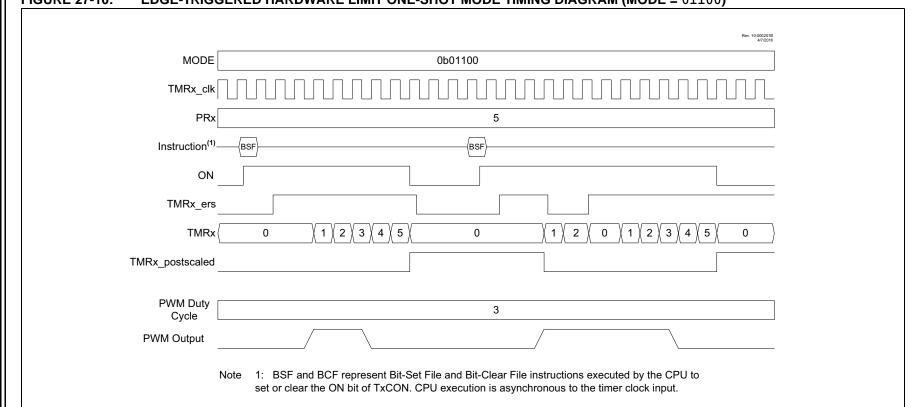

20.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE


The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 20-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.


The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.




FIGURE 20-5: ADC TRANSFER FUNCTION

© 2016 Microchip Technology Inc.

DS40001866A-page 276

FIGURE 27-10:

EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 01100)

28.2.1 CCPX PIN CONFIGURATION

The software must configure the CCPx pin as an output by clearing the associated TRIS bit and defining the appropriate output pin through the RxyPPS registers. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more details.

The CCP output can also be used as an input for other peripherals.

Note: Clearing the CCPxCON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch.

28.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See **Section 26.0 "Timer1 Module with Gate Control"** for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

28.2.3 AUTO-CONVERSION TRIGGER

All CCPx modes set the CCP interrupt flag (CCPxIF). When this flag is set and a match occurs, an Auto-conversion Trigger can take place if the CCP module is selected as the conversion trigger source.

Refer to **Section 20.2.5 "Auto-Conversion Trigger"** for more information.

Note:	Removing the match condition by							
	changing the contents of the CCPRxH							
	and CCPRxL register pair, between the							
	clock edge that generates the							
	Auto-conversion Trigger and the clock							
	edge that generates the Timer1 Reset, will							
	preclude the Reset from occurring							

28.2.4 COMPARE DURING SLEEP

Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep, unless the timer is running. The device will wake on interrupt (if enabled).

28.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

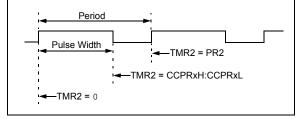
PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

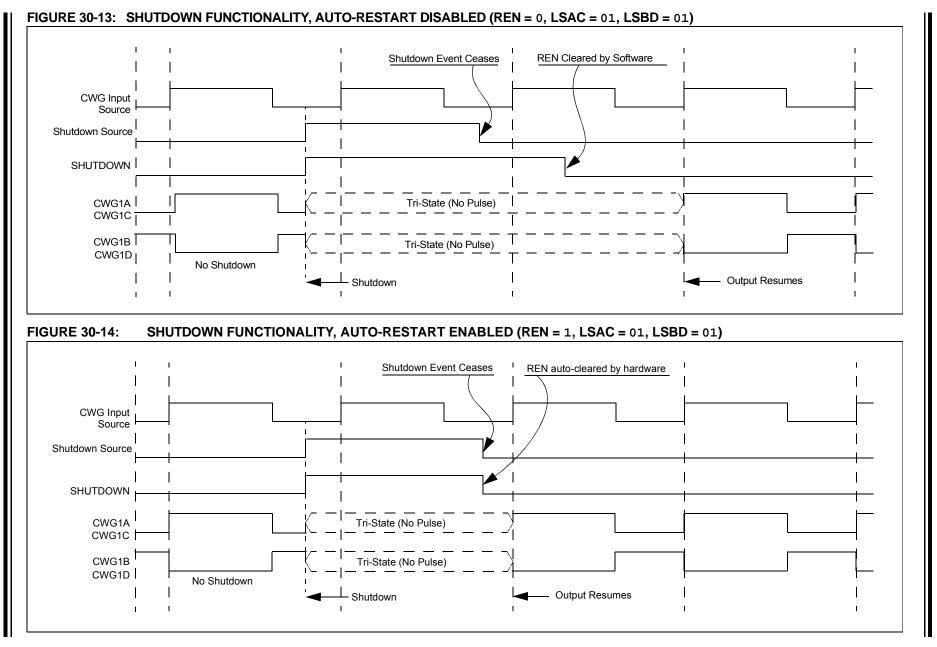
The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 28-3 shows a typical waveform of the PWM signal.

28.3.1 STANDARD PWM OPERATION

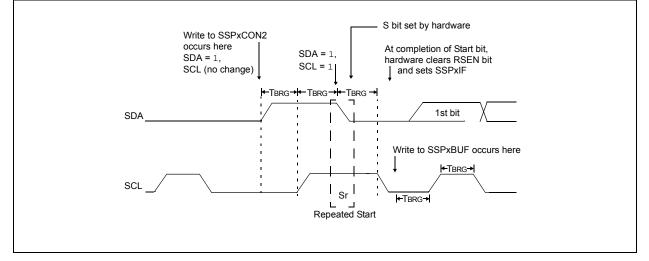
The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

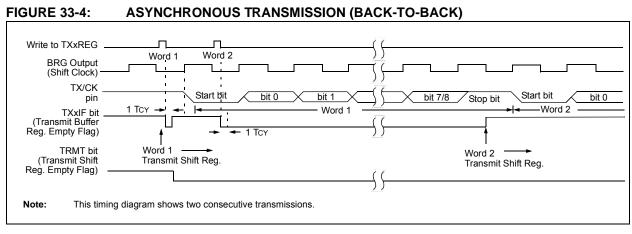

- · PR2 registers
- T2CON registers
- CCPRxL registers
- CCPxCON registers


Figure 28-4 shows a simplified block diagram of PWM operation.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.

FIGURE 28-3: CC




32.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 32-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 32-27: REPEATED START CONDITION WAVEFORM

33.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 33-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCxREG register.

33.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCxSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

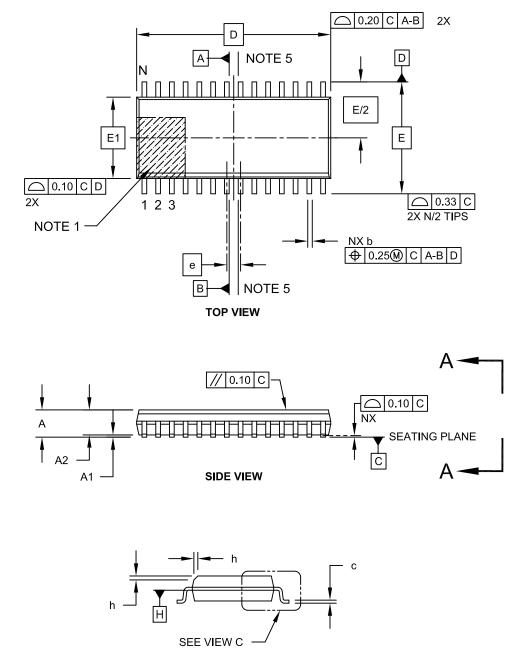
Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

33.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 33.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RXxIF interrupt flag bit of the PIR3 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCxREG register.

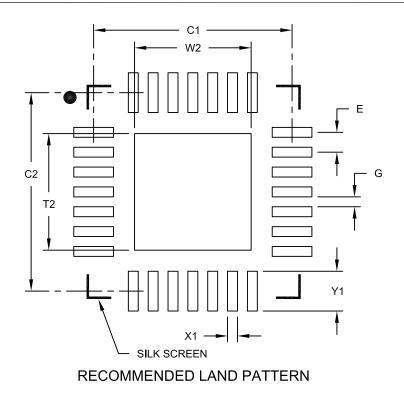
Note: If the receive FIFO is overrun, no additional characters will be received until the overrun condition is cleared. See Section 33.1.2.5 "Receive Overrun Error" for more information on overrun errors.


40.1 Package Marking Information (Continued)

Legend:	XXX	XXX Customer-specific information					
	Y	Year code (last digit of calendar year)					
	ΥY	Year code (last 2 digits of calendar year)					
	WW	Week code (week of January 1 is week '01')					
	NNN						
		Pb-free JEDEC [®] designator for Matte Tin (Sn)					
	*	This package is Pb-free. The Pb-free JEDEC designator ((e_3)) can be found on the outer packaging for this package.					
		can be round on the outer packaging for this package.					
	In the event the full Microchip part number cannot be marked on one line, it will						
	be carried over to the next line, thus limiting the number of available characters for customer-specific information.						

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch E		0.40 BSC		
Optional Center Pad Width	W2			2.35
Optional Center Pad Length	T2			2.35
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A