

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХГ

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15356t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

_ _ _ CLKOUT/ OSC1 CLKIN/ OSC2 _ _ _ _ _ _ ICSPCLK ICSPDAT

Pull-up

Y

Y

Y

Y

Y

Y

Υ

Y

Υ

Y

Υ

Υ

Υ

Y

Y

_

_

Basic

_

2 2 2 2 2 2 3 3 3	48-Pin UQFN/T	ADC	Reference	Comparato	NCO	DAC	Timers	ССР	MWA	CWG	dssm	ZCD	EUSART	CLC	ССКК	Interrupt
2 2 2 2 2 3 3 3	21	ANA0	-	C1IN0- C2IN0-		—	-	-		-	-		—	CLCIN0 ⁽¹⁾		IOCA0
2 2 2 2 3 3 3	22	ANA1		C1IN1- C2IN1-	_	—	_	_	_	_	_	_	—	CLCIN1 ⁽¹⁾	l	IOCA1
22	23	ANA2	Ι	C1IN0+ C2IN0+	-	DAC1OUT1	-	-	-	-	-	-	—	-		IOCA2
3	24	ANA3	VREF+	C1IN1+	_	DACREF+	_	_	_	_	_	_	_	_	-	IOCA3
3	25	ANA4	_	C1IN1-	_	_	T0CKI ⁽¹⁾	_	_	_	_	_	—	_		IOCA4
3	26	ANA5 ADACT				_	T1G ⁽¹⁾				SS1 ⁽¹⁾		—	—		IOCA5
	33	ANA6	-	_	_	—	_	_	_	_	_	_	—	—		IOCA6
	32	ANA7			-	_		-	-	-	-	-	—	-		IOCA7
	8	ANB0		C2IN1+	—	_	-	-	_	CWG1 ⁽¹⁾	SS2 ⁽¹⁾	ZCD1	-	—		INT ⁽¹⁾ IOCB0
9	9	ANB1		C1IN3- C2IN3-		_					SCL1 SCK1 ^(1,4)		—	—		IOCB1
1	10	ANB2	Ι	-	-	_	-	-	-	-	SDA1 SDI1 ^(1,4)	-	—	-		IOCB2
1	11	ANB3		C1IN2- C2IN2-	_	_		-	_	-	-	-	—	—		IOCB3
1	16	ANB4 ADACT ⁽¹⁾	I			_							—	—		IOCB4
1	17	ANB5	-	_	_	_	_	_	-	_	_		—	_	Ι	IOCB5
1	18	ANB6	Ι	-	-	_	-	-	-	-	-	-	TX2 CK2 ⁽¹⁾	CLCIN2 ⁽¹⁾		IOCB6
1	19	ANB7			_	DAC1OUT2		-	_				RX2 DT2 ⁽¹⁾	CLCIN3 ⁽¹⁾		IOCB7
3	34	ANC0	-	—	—	_	SOSCO T1CKI ⁽¹⁾	-	-		—		-	—		IOCC0
3	35	ANC1	_	_	_	_	SOSCI	CCP2 ⁽¹⁾	_	_	_	_	_	_	_	IOCC1

48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) TABLE 5:

This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note 1:

All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options. 2:

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

TQFP

I/O⁽²⁾

RA0 RA1

RA2

RA3

RA4

RA5

RA6

RA7

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RC0

RC1

Н	
	_
	O
	Ŧ
	35
	5
	UT I
	6
I	
I	85/
I	
I	8
I	ő
н	

Preliminary

I/O ⁽²⁾	48-Pin UQFN/TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	CCP	MWM	SWC	ASSM	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RC2	40	ANC2	—	—	—	_	—	CCP1 ⁽¹⁾	-	—	—		—	-	—	IOCC2	Y	—
RC3	41	ANC3	-	-	-	_	T2IN ⁽¹⁾	-	_	_	SCL1 SCL2 ^(1,4)	_	—	_	-	IOCC3	Y	-
RC4	46	ANC4	-	_	_	_	-	—	_	-	SDA1 SDI1 ^(1,4)	_	—	_	_	IOCC4	Y	_
RC5	47	ANC5	_	—	_	_	_	_	_	_	_	_	—	_	_	IOCC5	Υ	_
RC6	48	ANC6	-	—	—	_	—	—	_	—	—		TX1 CK1 ⁽¹⁾	_	-	IOCC6	Y	—
RC7	1	ANC7	-	—	—	_	—	—	_	—	_		RX1 DT1 ⁽¹⁾	_	-	IOCC7	Y	—
RD0	42	AND0	-	—	-	-	-	—	—	-	SCK2 SCL2 ^(1,4)	—	-	—	-	-	Y	—
RD1	43	AND1	—	—	—		—	—	_	—	SDA2 SDI2 ^(1,4)		_	_	-	—	Y	—
RD2	44	AND2	_	_	—	_	_	_	-	_	_	_	—	-	_	_	Y	_
RD3	45	AND3	_	_	_	_	_	_		_	_		_		—	_	Y	_
RD4	2	AND4	_	_	—	_	_	—	_	_	_	_	_	_	_	_	Υ	_
RD5	3	AND5	_	—	—	_	_	—	-	_	_	-	_	-	_	_	Υ	_
RD6	4	AND6	_	_	—	_	_	_	_	—	_	_	_	_	_	—	Υ	_
RD7	5	AND7	—	—	—	_	—	—	-	—	—	-	—	-	—	—	Υ	—
RE0	27	ANE0	-	—	—	_	—	—	-	—	—	-	—	-	—	—	Υ	—
RE1	28	ANE1	_	—	—	_	-	—	_	-	_	_	_	_	—	-	Υ	—
RE2	29	ANE2	_	—	—	—	—	—	—	—	—	_	—	—	—	—	Y	—
RE3	20	_	-	—	—		—	—	_	—	—	_	—	_	_	IOCE3	Y	MCLR VPP
RF0	36	ANF0	_	_	—	_	—	_	_	—	_		_	_	_	—	Υ	_
RF1	37	ANF1	_	—	—	_	-	—	-	—	—	_	—	-	—	—	Υ	—
RF2	38	ANF2	_	—	—	_	-	_	_	—	—	_	—	_	—	—	Υ	_
RF3	39	ANF3	_	—	—	_	-	—	-	—	—	_	—	-	—	—	Υ	—
RF4	12	ANF4	—	—	—		—	—		_	_		_		—	—	Υ	—

TABLE 5: 48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) (CONTINUED)

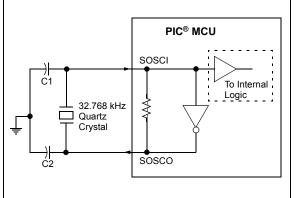
Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.
 All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

9.2.1.4 4x PLL

The oscillator module contains a PLL that can be used with external clock sources and internal oscillator to provide a system clock source. The input frequency for the PLL must fall within specifications. See the PLL Clock Timing Specifications in Table 37-9.


The PLL may be enabled for use by one of two methods:

- 1. Program the RSTOSC bits in the Configuration Word 1 to enable the EXTOSC with 4x PLL.
- 2. Write the NOSC bits in the OSCCON1 register to enable the EXTOSC with 4x PLL.

9.2.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 32.768 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. Refer to **Section 9.3 "Clock Switching"** for more information.

FIGURE 9-5: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	
CLC4IE	CLC3IE	CLC2IE	CLC1IE	—	—	—	TMR1GIE	
bit 7							bit 0	
Legend:								
R = Readab		W = Writable		•	mented bit, read			
u = Bit is unchanged $x = Bit is unknown$ $-n/n = Value at POR and BOR/Value at all other Resets$								
'1' = Bit is se	et	'0' = Bit is cle	ared	HS = Hardwa	are set			
bit 7	1 = CLC4 i	C4 Interrupt Ena nterrupt enabled nterrupt disable	t					
bit 6	1 = CLC3 i	C3 Interrupt Ena nterrupt enableo nterrupt disable	b					
bit 5	1 = CLC2 i	C2 Interrupt Ena nterrupt enabled nterrupt disable	t					
bit 4	1 = CLC1 i	C1 Interrupt Ena nterrupt enableo nterrupt disable	b					
bit 3-1	Unimpleme	nted: Read as '	0'					
bit 0	1 = Enable	imer1 Gate Inte s the Timer1 ga s the Timer1 ga	te acquisition	interrupt				
s	Bit PEIE of the IN set to enable a controlled by regis	any peripheral	interrupt					

REGISTER 10-7: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

R/W/HS-0	0/0 R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF
bit 7							bit (
Legend:							
R = Reada		W = Writable	bit	•	mented bit, read		
u = Bit is u	•	x = Bit is unkr			at POR and BO	R/Value at all c	other Resets
'1' = Bit is s	set	'0' = Bit is cle	ared	HS = Hardwa	re clearable		
bit 7	BCOLE. EUS	ART2 Receive	ntorrunt Elog	(Road Only) bi	(1)		
					at least one by	te)	
		SART2 receive			at least one by	,	
bit 6	TX2IF: EUSA	RT2 Transmit	Interrupt Flag	(Read-Only) b	it(2)		
					unoccupied spa		
	0 = The EUS TXxREG		it buffer is cu	rrently full. Th	ne application f	irmware should	d not write to
bit 5		ART1 Receive	nterrupt Flag	(read-only) bit	(1)		
					at least one by	te)	
		SART1 receive			-	,	
bit 4		RT1 Transmit					
					unoccupied sp		d wat unite t
					ne application f in the transmit		
bit 3		SP2 Bus Collisi					
		lision was dete	-	-	ware)		
		ollision was det					
bit 2	-	chronous Seria	-		-		`
		or the Transmi			lete (must be cl on in progress	eared in softwa	are)
bit 1		SP1 Bus Collisi	•	•			
		llision was dete collision was de	•	cleared in sof	tware)		
bit 0	SSP1IF: Syn	chronous Seria	I Port (MSSP1	I) Interrupt Fla	g bit		
					lete (must be cl	eared in softwa	are)
	0 = Waiting f	or the Transmi	ssion/Receptic	on/Bus Conditi	on in progress		
	The RCxIF flag is times to remove al				firmware must	read from RCx	REG enough
	The TXxIF flag is a						
	the firmware must TXxIF flag does no	•		•	•	•	ouffer. The
	Interrupt flag bits a						
	condition occurs, r its corresponding						
	Enable bit, GIE, c						
	User software	should ensu	ure the				
	appropriate interr		are clear				

prior to enabling an interrupt.

© 2016 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_		_	_	_	INTEDG	146
PIE0	_	—	TMR0IE	IOCIE	_	_	—	INTE	147
PIE1	OSFIE	CSWIE	_	_	—	_	—	ADIE	148
PIE2	_	ZCDIE	_	_	_	_	C2IE	C1IE	149
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIE4	_	—	_	_	—	_	TMR2IE	TMR1IE	151
PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	—	_	—	TMR1GIE	152
PIE6	_	—	_	_	—	_	CCP2IE	CCP1IE	153
PIE7	_	—	NVMIE	NCO1IE	—	_	—	CWG1IE	154
PIR0		—	TMR0IF	IOCIF	—		—	INTF	155
PIR1	OSFIF	CSWIF	-		_	_	—	ADIF	156
PIR2	-	ZCDIF	_	-	—	_	C2IF	C1IF	157
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
PIR4	—		—	—		—	TMR2IF	TMR1IF	159
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	—	_	—	TMR1GIF	160
PIR6	_	—	—	—	—	_	CCP2IF	CCP1IF	161
PIR7		_	NVMIF	NCO1IF	_		—	CWG1IF	162

TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	_	—	_	INTEDG	146
PIE0	—		TMR0IE	IOCIE	—	_		INTE	147
PIE1	OSFIE	CSWIE	_		—	—	_	ADIE	148
PIE2	_	ZCDIE	_	_	_	_	C2IE	C1IE	149
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIE4	—	_	_	—	—	—	TMR2IE	TMR1IE	151
PIR0	—	_	TMR0IF	IOCIF	—	—		INTF	155
PIR1	OSFIF	CSWIF	_		_	_	_	ADIF	156
PIR2	—	ZCDIF		_	—	—	C2IF	C1IF	157
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
PIR4	_		_		—	_	TMR2IF	TMR1IF	159
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	255
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	255
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	256
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	257
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	257
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	258
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	259
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	259
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	259
IOCEP	—			_	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾	260
IOCEN	—	_	_	—	IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾	260
IOCEF	—			_	IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾	261
STATUS	_	_	_	TO	PD	Z	DC	С	54
VREGCON	_	_	_	_	_	—	VREGPM	_	168
CPUDOZE	IDLEN	DOZEN	ROI	DOE	_		169		
WDTCON0	—	—		١	WDTPS<4:0	>		SWDTEN	175

TABLE 11-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: Present only in PIC16(L)F15375/76/85/86.

REGISTER 14-35: LATE: PORTE DATA LATCH REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	_	_	—	LATE2	LATE1	LATE0
bit 7							bit 0

Legend:

bit 2-0

•		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 LATE<2:0>: PORTE Output Latch Value bits

Note 1: Present on PIC16(L)F15375/76/85/86 only.

2: Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.

REGISTER 14-36: ANSELE: PORTE ANALOG SELECT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	_	_	_	_	ANSE2	ANSE1	ANSE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

ANSE<2:0>: Analog Select between Analog or Digital Function on Pins RE<2:0>, respectively⁽²⁾ 0 = Digital I/O. Pin is assigned to port or digital special function.

1 = Analog input. Pin is assigned as analog input⁽²⁾. Digital input buffer disabled.

Note 1: Present on PIC16(L)F15375/76/85/86 only.

2: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

VALC	VALUES				
Desired Input Pin	Value to Write to Register				
RA0	0x00				
RA1	0x01				
RA2	0x02				
RA3	0x03				
RA4	0x04				
RA5	0x05				
RA6	0x06				
RA7	0x07				
RB0	0x08				
RB1	0x09				
RB2	0x0A				
RB3	0x0B				
RB4	0x0C				
RB5	0x0D				
RB6	0x0E				
RB7	0x0F				
RC0	0x10				
RC1	0x11				
RC2	0x12				
RC3	0x13				
RC4	0x14				
RC5	0x15				
RC6	0x16				
RC7	0x17				
RD0 ⁽²⁾	0x18				
RD1 ⁽²⁾	0x19				
RD2 ⁽²⁾	0x1A				
RD3 ⁽²⁾	0x1B				
RD4 ⁽²⁾	0x1C				
RD5 ⁽²⁾	0x1D				
RD6 ⁽²⁾	0x1E				
RD7 ⁽²⁾	0x1F				
RE0 ⁽²⁾	0x20				
RE1 ⁽²⁾	0x21				
RE2 ⁽²⁾	0x22				
l	1				

TABLE 15-4: PPS INPUT REGISTER VALUES

Note 1: Only a few of the values in this column are valid for any given signal. For example, since the INT signal can only be mapped to PORTA or PORTB pins, only the register values 0x00-0x0F (corresponding to RA<7:0> and RB<7:0>) are valid values to write to the INTPPS register.

- 2: Present on PIC16(L)F15375/76/85/86 only.
- **3:** Present on PIC16(L)F15385/86 only.

TABLE 15-4: PPS INPUT REGISTER VALUES

Desired Input Pin	Value to Write to Register
RF0 ⁽³⁾	0x28
RF1 ⁽³⁾	0x29
RF2 ⁽³⁾	0x2A
RF3 ⁽³⁾	0x2B
RF4 ⁽³⁾	0x2C
RF5 ⁽³⁾	0x2D
RF6 ⁽³⁾	0x2E
RF7 ⁽³⁾	0x2F

Note 1: Only a few of the values in this column are valid for any given signal. For example, since the INT signal can only be mapped to PORTA or PORTB pins, only the register values 0x00-0x0F (corresponding to RA<7:0> and RB<7:0>) are valid values to write to the INTPPS register.

- 2: Present on PIC16(L)F15375/76/85/86 only.
- **3:** Present on PIC16(L)F15385/86 only.

REGISTER 17-10: IOCEP: INTERRUPT-ON-CHANGE PORTE POSITIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
	—	_	—	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾
bit 7						•	bit 0
Legend:							

•		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	Unimplemented: Read as '0'

bit 3-0 **IOCEP<3:0>:** Interrupt-on-Change PORTE Positive Edge Enable bit

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

Note 1: Present only on PIC16(L)F15375/76/85/86.

REGISTER 17-11: IOCEN: INTERRUPT-ON-CHANGE PORTE NEGATIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	_			IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4 Unimplemented: Read as '0'

bit 3-0 IOCEN<3:0>: Interrupt-on-Change PORTE Negative Edge Enable bit

1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

Note 1: Present only on PIC16(L)F15375/76/85/86.

REGISTER 20-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u R/W-x/u <t< th=""><th></th><th>,</th><th></th><th></th><th></th><th></th><th></th></t<>		,					
bit 7	R/W-x/u R/W-x/	R/W-x/u R/W	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			S<9:2>	ADRE			
l egend:	ł						bit 7
l agand:							
Legena.							Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	s 'O'	nented bit, read as '0'	U = Unimple		W = Writable I	bit	R = Readable
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all ot	/alue at all other Rese	-n/n = Value at POR and BOR/Value at all other F				anged	u = Bit is uncha

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

'1' = Bit is set

REGISTER 20-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

'0' = Bit is cleared

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | 6<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

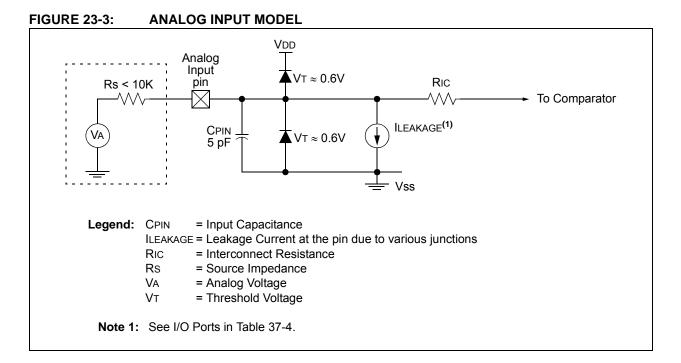
bit 7-6 **ADRES<1:0>**: ADC Result Register bits Lower two bits of 10-bit conversion result

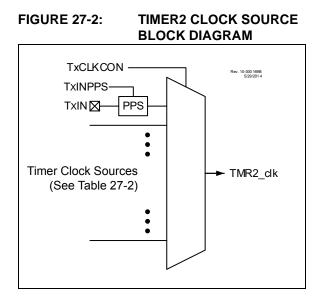
Lower two bits of 10-bit conversion

bit 5-0 Reserved: Do not use.

© 2016 Microchip Technology Inc.

23.8 Comparator Response Time


The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 37-14 for more details.


23.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 23-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

27.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 27-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- · any device Reset
- External Reset Source event that resets the timer.

Note:	TMR2 is	s not	cleared	when	T2CON	is
	written.					

27.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each TMR2_clk cycle. When the two values match, the comparator resets the value of TMR2 to 00h on the next rising TMR2_clk edge and increments

the output postscaler counter. When the postscaler count equals the value in the OUTPS<4:0> bits of the TMRxCON1 register, a one TMR2_clk period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

27.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

27.1.3 MONOSTABLE MODE

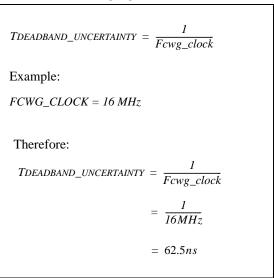
Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

27.2 Timer2 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2CON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- The ADC module, as an Auto-conversion Trigger
- · COG, as an auto-shutdown source

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See **Section 28.0** "**Capture/Compare/PWM Modules**" for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in **Section 27.5** "**Operation Examples**" for examples of how the varying Timer2 modes affect CCP PWM output.


27.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2 with the T2RST register. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

30.8 **Dead-Band Uncertainty**

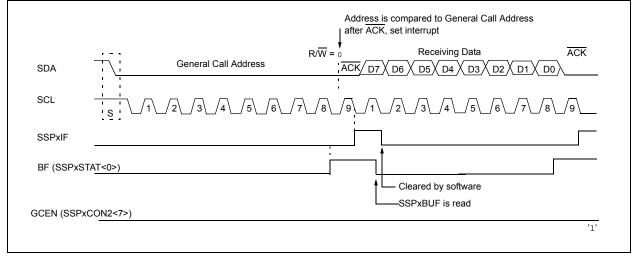
When the rising and falling edges of the input source are asynchronous to the CWG clock, it creates uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 30-1 for more details.

EQUATION 30-1: **DEAD-BAND** UNCERTAINTY

MODE0 CWG1A CWG1B CWG1C CWG1D No delay CWG1DBR 🕂 No delay CWG1DBF CWG1_data Note 1: WGPOL{ABCD} = 0 2: The direction bit MODE<0> (Register 30-1) can be written any time during the PWM cycle, and takes effect at the next rising CWG1 data. 3: When changing directions, CWG1A and CWG1C switch at rising CWG1_data; modulated CWG1B and CWG1D are held inactive for the dead band duration shown; dead band affects only the first pulse after the direction change.

FIGURE 30-8: EXAMPLE OF PWM DIRECTION CHANGE

32.5.8 GENERAL CALL ADDRESS SUPPORT


The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address $0 \ge 0.00$. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 32-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

32.5.9 SSP MASK REGISTER

An SSP Mask (SSPxMSK) register (Register 32-5) is available in I²C Slave mode as a mask for the value held in the SSPxSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care". This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<6:3>) \rightarrow PC<14:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \hline \overline{TO}, \ \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits $\overline{\text{TO}}$ and $\overline{\text{PD}}$ are set.

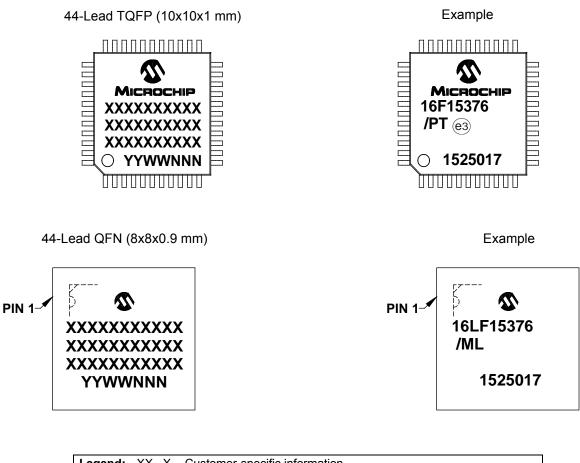
CALLW	Subroutine Call With W	COMF
Syntax:	[label] CALLW	Syntax:
Operands:	None	Operands:
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>	Operation: Status Affect Description:
Status Affected:	None	Description.
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.	

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f	
Syntax:	[label] CLRF f	
Operands:	$0 \leq f \leq 127$	
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	
Status Affected:	Z	
Description:	The contents of register 'f' are cleared and the Z bit is set.	

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is

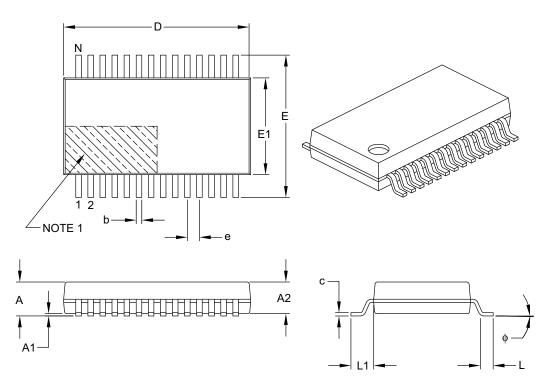

set.

TRIS	Load TRIS Register with W		
Syntax:	[label] TRIS f		
Operands:	$5 \leq f \leq 7$		
Operation:	(W) \rightarrow TRIS register 'f'		
Status Affected:	None		
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.		

XORLW	Exclusive OR literal with W		
Syntax:	[<i>label</i>] XORLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	(W) .XOR. $k \rightarrow (W)$		
Status Affected:	Z		
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.		

XORWF	Exclusive OR W with f			
Syntax:	[label] XORWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .XOR. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

40.1 Package Marking Information (Continued)



Legend	: XXX	Customer-specific information			
	Y	Y Year code (last digit of calendar year)			
	ΥY	Year code (last 2 digits of calendar year)			
	WW Week code (week of January 1 is week '01')				
	NNN Alphanumeric traceability code				
	Pb-free JEDEC [®] designator for Matte Tin (Sn)				
	* This package is Pb-free. The Pb-free JEDEC designator ((e3))				
	can be found on the outer packaging for this package.				
Note:	In the eve	ent the full Microchip part number cannot be marked on one line, it will			
	be carrie	d over to the next line, thus limiting the number of available			
	characters for customer-specific information.				
		,			

© 2016 Microchip Technology Inc.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	N 28		
Pitch	е	0.65 BSC		
Overall Height	А	_	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (12/2016)

Initial release of the document.