

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15356t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: 48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) (CONTINUED)

I/O ⁽²⁾	48-Pin UQFN/TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	ССР	MWM	CWG	MSSP	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RF5	13	ANF5	—		_	_		_	_	_			—	—	—	—	Y	—
RF6	14	ANF6	—	—	—	—	-	_	—	—	-	—	—	—	—	—	Y	_
RF7	15	ANF7	_	_	—	_		—	—	_	-	_	—	—	—	—	Y	—
VDD	30	—	—	—	—	—	-	_	—	—	-	—	—	—	—	—	Y	VDD
VDD	7	—	—	—	—	_		_	—	—	-	—	—	—	—	—	—	VDD
Vss	6	—	—		_			_	—				_	—	—	—	—	Vss
Vss	31	_	_	—	—	—	_	_	_	—	—	—	—	_	—	_	—	Vss
OUT ⁽²⁾	—	—	—	C1OUT	NCO10UT		TMR0	CCP1	PWM3OUT	CWG1A CWG2A	SDO1 SDO2		DT ⁽³⁾	CLC1OUT	CLKR	—	-	—
	—	—		C2OUT	—	_		CCP2	PWM4OUT	CWG1B CWG2B	SCK1 SCK2	-	CK1 CK2	CLC2OUT	-	—	-	—
	—	-	_	_	-	—	—	_	PWM5OUT	CWG1C CWG2C	SCK1 ^(3,4) SCL2 ^(3,4)	_	TX1 TX2	CLC3OUT	_	_	-	-
	—	_	_	_	_	—	_	_	PWM6OUT	CWG1D CWG2D	SDA1 ^(3,4) SDA2 ^(3,4)	_	—	CLC4OUT	-	_	-	—

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/CLCIN0 ⁽¹⁾ / IOCA0	RA0	TTL/ST	CMOS/OD	General purpose I/O.
IOCAU	ANA0	AN	—	ADC Channel A0 input.
	C1IN0-	AN	—	Comparator negative input.
	C2IN0-	AN	—	Comparator negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA0	TTL/ST	—	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/CLCIN1 ⁽¹⁾ / IOCA1	RA1	TTL/ST	CMOS/OD	General purpose I/O.
IUCAT	ANA1	AN	_	ADC Channel A1 input.
	C1IN1-	AN	—	Comparator negative input.
	C2IN1-	AN	_	Comparator negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA1	TTL/ST	—	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/ DAC1OUT1/IOCA2	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DACTOUTI/IOCAZ	ANA2	AN	_	ADC Channel A2 input.
	C1IN0+	AN	_	Comparator positive input.
	C2IN0+	AN	_	Comparator positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	_	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/DACREF+/	RA3	TTL/ST	CMOS/OD	General purpose I/O.
IOCA3	ANA3	AN	_	ADC Channel A3 input.
	C1IN1+	AN	_	Comparator positive input.
	VREF+	AN	_	External ADC and/or DAC positive reference input.
	IOCA3	TTL/ST	_	Interrupt-on-change input.
RA4/ANA4/T0CKI ⁽¹⁾ /IOCA4	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	_	ADC Channel A4 input.
	T0CKI ⁽¹⁾	TTL/ST	—	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
RA5/ANA5/SS1 ⁽¹⁾ /T1G ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	—	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	T1G ⁽¹⁾	TTL/ST	_	Timer1 gate input.
	IOCA5	TTL/ST	_	Interrupt-on-change input.

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION

CMOS = CMOS compatible input or output Legend: AN = Analog input or output TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels XTAL

HV = High Voltage

Note

= Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1: pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-6.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, 4: instead of the I²C specific or SMBus input buffer thresholds.

⁼ Open-Drain 1²C = Schmitt Trigger input with I²C

4.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Program Flash Memory
 - Device Information Area (DIA)
 - Device Configuration Information (DCI)
 - Revision ID
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing
- NVMREG access

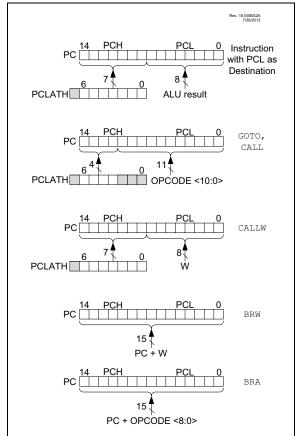
TABLE 4-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Size (Words)	Last Program Memory Address
PIC16(L)F15356	16384	3FFFh
PIC16(L)F15375	8192	1FFFh
PIC16(L)F15376	16384	3FFFh
PIC16(L)F15385	8192	1FFFh
PIC16(L)F15386	16384	3FFFh

4.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing $32K \times 14$ program memory space. Table 4-1 shows the memory sizes implemented. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 4-1).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 61											
				CPU COP	RE REGISTERS	; see Table 4-3 for	specifics				
1E8Ch	_				Unimple	mented					_
1E8Dh	—				Unimple	mented				—	_
1E8Eh	_				Unimple	mented				—	
1E8Fh	PPSLOCK	—	—	—	—	—	-	—	PPSLOCKED	0	0
1E90h	INTPPS	—	—			INTP	PS<5:0>			00 1000	uu uuuu
1E91h	TOCKIPPS	_	_			TOCKI	PPS<5:0>			00 0100	uu uuuu
1E92h	T1CKIPPS	—	—			T1CKI	PPS<5:0>			01 0000	uu uuuu
1E93h	T1GPPS	—	_			T1GF	PS<5:0>			00 1101	uu uuuu
1E94h 1E9Bh	—		Unimplemented						_	-	
1E9Ch	T2INPPS	_	_			T2INF	PPS<5:0>			01 0011	uu uuuu
1E9Dh 1EA0h	_	Unimplemented							-	_	
1EA1h	CCP1PPS	_	_			CCP1	PPS<5:0>			01 0010	uu uuuu
1EA2h	CCP2PPS	_	_			CCP2	PPS<5:0>			01 0001	uu uuuu
1EA3h 1EB0h	_				Unimple	mented				_	_
1EB1h	CWG1PPS	_	_			CWG1	PPS<5:0>			00 1000	uu uuuu
1EB2h 1EBAh	_				Unimple	mented				_	_
1EBBh	CLCIN0PPS	_	_			CLCIN)PPS<5:0>			00 0000	uu uuuu
1EBCh	CLCIN1PPS	_	_			CLCIN	1PPS<5:0>			00 0001	uu uuuu
1EBDh	CLCIN2PPS	—	—		CLCIN2PPS<5:0>						uu uuuu
1EBEh	CLCIN3PPS	CLCIN3PPS<5:0>							00 1111	uu uuuu	
1EBFh 1EC2h	_	Unimplemented							_	_	
1EC3h	ADACTPPS	_	_			CLCIN	3PPS<5:0>			001100	uuuuuu
1EC4h	_		·		Unimple	mented				_	-


TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

 $Legend: \quad x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.$

4.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 4-4 shows the five situations for the loading of the PC.

FIGURE 4-4: LOADING OF PC IN DIFFERENT SITUATIONS

4.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

4.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

4.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

4.4.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 + the signed value of the operand of the BRA instruction.

REGISTER	10-3: PIE1:	PERIPHERAI		PT ENABLE	REGISTER 1		
R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
OSFIE	CSWIE	—	—	—	—	—	ADIE
bit 7							bit 0
Legend:]
R = Readab	la hit	W = Writable	h:t		nantad hit raad	aa 'O'	
					nented bit, read		
u = Bit is un	changed	x = Bit is unkr	iown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 6	0 = Disables CSWIE: Cloc 1 = The clock	he Oscillator Fa the Oscillator F k Switch Comp switch module	ail Interrupt lete Interrupt I interrupt is er	nabled			
h :1 F 4		switch module	•	sabled			
bit 5-1	-	ted: Read as '					
bit 0 ADIE: Analog-to-Digital Converter (ADC) Interrupt Enable bit 1 = Enables the ADC interrupt 0 = Disables the ADC interrupt							
Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt controlled by registers PIE1-PIE7							

12.0 WINDOWED WATCHDOG TIMER (WWDT)

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The Windowed Watchdog Timer (WWDT) differs in that CLRWDT instructions are only accepted when they are performed within a specific window during the time-out period.

The WDT has the following features:

- Selectable clock source
- · Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Configurable window size from 12.5 to 100 percent of the time-out period
- Multiple Reset conditions
- Operation during Sleep

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: RB<7:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register returns actual I/O pin values.

REGISTER 14-12: ANSELB: PORTB ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSB7 | ANSB6 | ANSB5 | ANSB4 | ANSB3 | ANSB2 | ANSB1 | ANSB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ANSB<7:0>: Analog Select between Analog or Digital Function on pins RB<7:0>, respectively

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

14.6 PORTC Registers

14.6.1 DATA REGISTER

PORTC is an 8-bit wide bidirectional port. The corresponding data direction register is TRISC (Register 14-18). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 14-17) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

The PORT data latch LATC (Register 14-19) holds the output port data, and contains the latest value of a LATC or PORTC write.

14.6.2 DIRECTION CONTROL

The TRISC register (Register 14-18) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.6.3 OPEN-DRAIN CONTROL

The ODCONC register (Register 14-22) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONC bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONC bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I^2C ; the I^2C
	module controls the pin and makes the pin open-drain.

14.6.4 SLEW RATE CONTROL

The SLRCONC register (Register 14-23) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONC bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONC bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.6.5 INPUT THRESHOLD CONTROL

The INLVLC register (Register 14-24) controls the input voltage threshold for each of the available PORTC input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTC register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

14.6.6 ANALOG CONTROL

The ANSELC register (Register 14-20) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELC bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELC bits has no effect on digital output functions. A pin with TRIS clear and ANSELC set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELC bits default to the Analog							
	mode after Reset. To use any pins as							
	digital general purpose or peripheral							
	inputs, the corresponding ANSEL bits							
	must be initialized to '0' by user software.							

14.6.7 WEAK PULL-UP CONTROL

The WPUC register (Register 14-21) controls the individual weak pull-ups for each port pin.

14.6.8 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

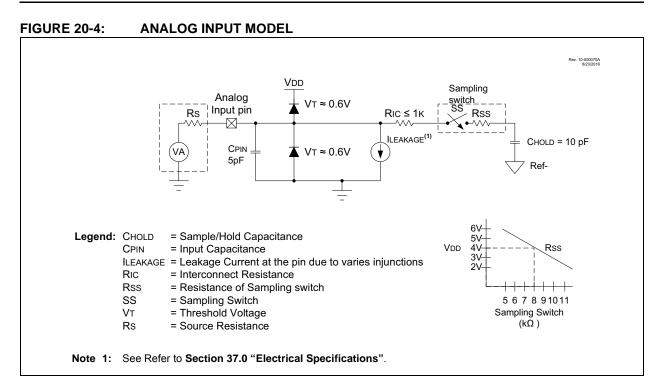
TABLE 14-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTE	—				RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	222
TRISE	—	—	_	_	(2)	TRISE2 ⁽¹⁾	TRISE2 ⁽¹⁾	TRISE2 ⁽¹⁾	222
LATE ⁽¹⁾	—	—				LATE2	LATE2	LATE2	223
ANSELE ⁽¹⁾	—	—	-	-	-	ANSE2	ANSE1	ANSE0	217
WPUE	—	—			WPUE3	WPUE2 ⁽¹⁾	WPUE1 ⁽¹⁾	WPUE0 ⁽¹⁾	224
ODCONE ⁽¹⁾	—	—	-	-	-	ODCE2	ODCE1	ODCE0	224
SLRCONE	_	_	_	_	SLRE3	SLRE2 ⁽¹⁾	SLRE1 ⁽¹⁾	SLRE0 ⁽¹⁾	225
INLVLE	—				INLVLE3	INLVLE2 ⁽¹⁾	INLVLE1 ⁽¹⁾	INLVLE0 ⁽¹⁾	225

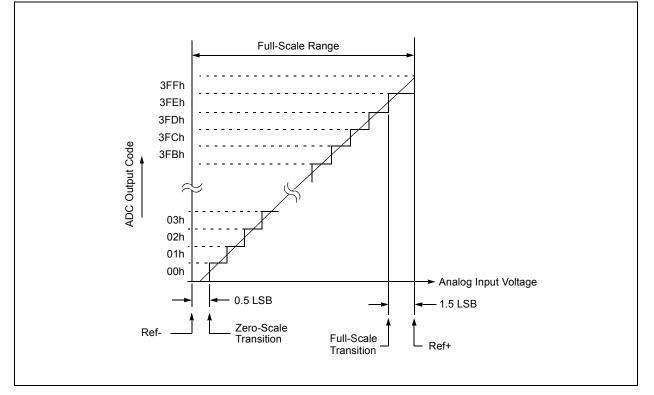
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: Present only in PIC16(L)F15375/76/85/86.

2: Unimplemented, read as '1'


TABLE 14-7: SUMMARY OF CONFIGURATION WORD WITH PORTE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		_	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV		102
CONFIG2	7:0	BOREN	l <1:0>	LPBOREN			_	PWRTE	MCLRE	103


Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTE.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	
UART2MD	UART1MD	MSSP2MD	MSSP1MD	<u> </u>			CWG1MD	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplem	ented bit, read	as '0'		
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	t POR and BOF	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condition	on		
bit 7 UART2MD: Disable EUSART2 bit 1 = EUSART2 module disabled 0 = EUSART2 module enabled								
bit 6	1 = EUSART	visable EUSAR ⁻ 1 module disab 1 module enab	led					
bit 5	1 = MSSP2 n	isable MSSP2 nodule disablec nodule enabled	1					
bit 4	bit 4 MSSP1MD: Disable MSSP1 bit 1 = MSSP1 module disabled 0 = MSSP1 module enabled							
bit 3-1	Unimplement	ted: Read as '0)'					
bit 0 CWG1MD: Disable CWG1 bit 1 = CWG1 module disabled 0 = CWG1 module enabled								

REGISTER 16-5: PMD4: PMD CONTROL REGISTER 4

FIGURE 20-5: ADC TRANSFER FUNCTION

© 2016 Microchip Technology Inc.

DS40001866A-page 276

R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
T0EN	_	TOOUT	T016BIT		TOOUTI	PS<3:0>				
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
u = Bit is unc	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is se	t	'0' = Bit is cle	ared							
bit 7	TOEN: Time	r0 Enable bit								
		dule is enabled								
		dule is disabled		vest power mod	de					
bit 6	Unimpleme	nted: Read as	0'							
bit 5	T0OUT: Tim Timer0 outp	er0 Output bit (ı ut bit	read-only)							
bit 4	T016BIT: Tir	T016BIT: Timer0 Operating as 16-bit Timer Select bit								
-		1 = Timer0 is a 16-bit timer								
	0 = Timer0 i	s an 8-bit timer								
bit 3-0	T0OUTPS<	TOOUTPS<3:0>: Timer0 output postscaler (divider) select bits								
		1111 = 1:16 Postscaler								
	1110 = 1:15 1101 = 1:14									
	1101 - 1.14 1100 = 1:13									
	1011 = 1:12									
	1010 = 1:11									
	1001 = 1:10	Postscaler								
	1000 = 1:9	Postscaler								
	0111 = 1:8 									
		0110 = 1:7 Postscaler								
		0101 = 1:6 Postscaler 0100 = 1:5 Postscaler								
	0100 = 1:5 0011 = 1:4									
	0011 = 1.41 0010 = 1:31									
	0001 = 1:2									
	0000 = 1:1									

M - 1-	MODE	<4:0>	Output	Onenetien		Timer Control		
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop	
		000		Software gate (Figure 27-4)	ON = 1	_	ON = 0	
		001	Period Pulse	Hardware gate, active-high (Figure 27-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0	
		010	Fuise	Hardware gate, active-low	ON = 1 and TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1	
Free	0.0	011		Rising or falling edge Reset		TMRx_ers		
Running Period	00	100	Period	Rising edge Reset (Figure 27-6)	-	TMRx_ers ↑	ON = 0	
		101	Pulse	Falling edge Reset	-	TMRx_ers ↓		
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0	
		111 Reset	Reset	High level Reset (Figure 27-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1	
		000	One-shot	Software start (Figure 27-8)	ON = 1	_		
		001	Edge	Rising edge start (Figure 27-9)	ON = 1 and TMRx_ers ↑	_		
		010 s	start		Falling edge start	ON = 1 and TMRx_ers ↓	—	ON = 0 or Next clock
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers			
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 27-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	after TMRx = PRx	
		101	triggered start and hardware Reset	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	(Note 2)	
		110		Rising edge start and Low level Reset (Figure 27-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0		
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1		
		000		Rese	rved			
		001	Edge	Rising edge start (Figure 27-12)	ON = 1 and TMRx_ers ↑	_	ON = 0 or	
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	-	TMRx = PRx (Note 3)	
Reserved	10	100		Rese	rved			
Reserved		101		Rese	rved			
		110	Level triggered	High level start and Low level Reset (Figure 27-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or	
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)	
Reserved	11	xxx		Rese	rved			

TABLE 27-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

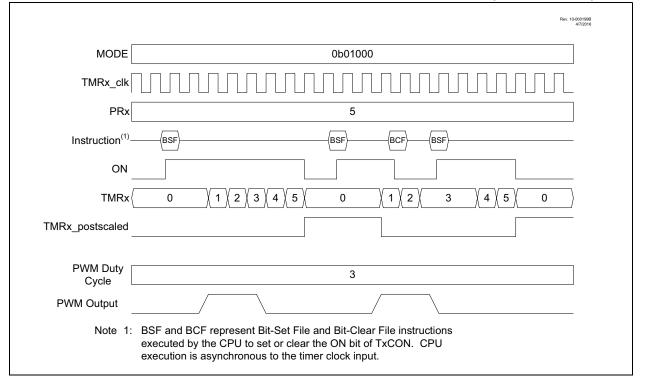
3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

27.5.2 HARDWARE GATE MODE

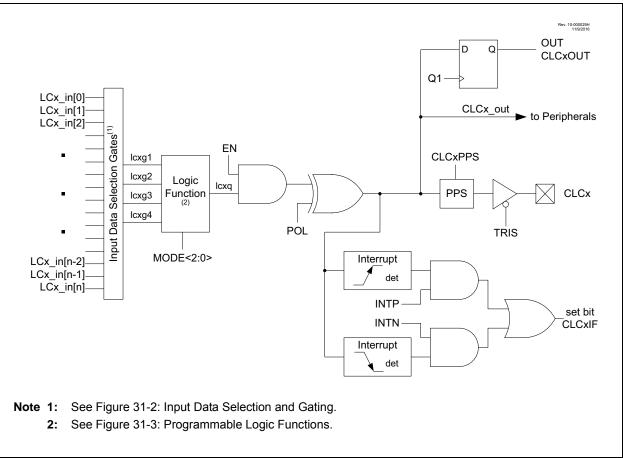
The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal gates the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 27-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.


	Rev. 10.0011988 530/2014	
MODE	0b00001	
TMRx_dk		
TMRx_ers_		
PRx	5	
TMRx	$0 \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1$	
TMRx_postscaled		
PWM Duty Cycle PWM Output	3	

27.5.5 SOFTWARE START ONE-SHOT MODE


In One-Shot mode the timer resets and the ON bit is cleared when the timer value matches the PRx period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 27-8. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the CCP PWM operation the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the PRx match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a PRx period count match.

FIGURE 27-8: SOFTWARE START ONE-SHOT MODE TIMING DIAGRAM (MODE = 01000)

REGISTER 33-4: RCxREG⁽¹⁾: RECEIVE DATA REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
RCxREG<7:0>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **RCxREG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 33-2)

Note 1: RCxREG (including the 9th bit) is double buffered, and data is available while new data is being received.

REGISTER 33-5: TXxREG⁽¹⁾: TRANSMIT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	TXxREG<7:0>									
bit 7	bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TXxREG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 33-1)

Note 1: TXxREG (including the 9th bit) is double buffered, and can be written when previous data has started shifting.

REGISTER 33-6: SPxBRGL⁽¹⁾: BAUD RATE GENERATOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	SPxBRG<7:0>									
bit 7	bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SPxBRG<7:0>: Lower eight bits of the Baud Rate Generator

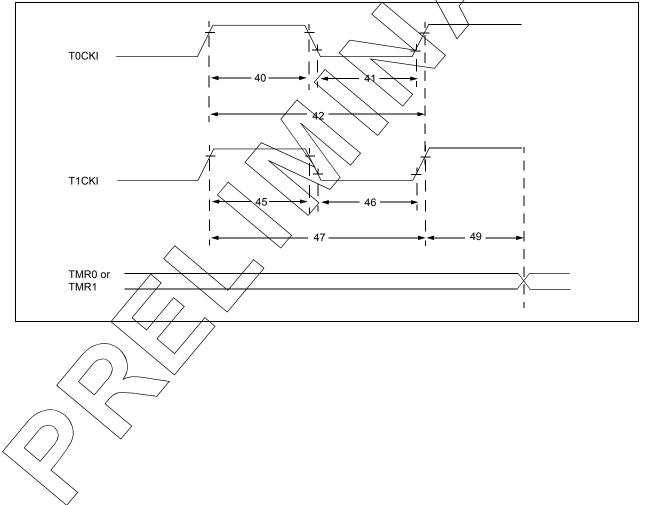

Note 1: Writing to SP1BRG resets the BRG counter.

TABLE 37-17: ZERO CROSS DETECT (ZCD) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C							
Param. No.	Sym.	Characteristics	Min.	Тур†	Max.	Units	Comments
ZC01	VPINZC	Voltage on Zero Cross Pin	—	0.75	—	V	\sim
ZC02	IZCD_MAX	Maximum source or sink current	_	_	600	μΑ)	
ZC03	TRESPH	Response Time, Rising Edge	—	1		/us	
	TRESPL	Response Time, Falling Edge	_	1	_	μs	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 37-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

39.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- · Flexible macro language
- MPLAB X IDE compatibility

39.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

39.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

39.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility