

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15375-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA6/ANA6/CLKOUT/IOCA6/OSC1	RA6	TTL/ST	CMOS/OD	General purpose I/O.
	ANA6	AN	_	ADC Channel A6 input.
	CLKOUT	_	CMOS/OD	Fosc/4 digital output (in non-crystal/resonator modes).
	IOCA6	TTL/ST	_	Interrupt-on-change input.
	OSC1	XTAL	_	External Crystal/Resonator (LP, XT, HS modes) driver input.
RA7/ANA7/CLKIN/IOCA7/OSC2	RA7	TTL/ST	CMOS/OD	General purpose I/O.
	ANA7	AN	—	ADC Channel A7 input.
	CLKIN	TTL/ST	_	External digital clock input.
	IOCA7	TTL/ST	_	Interrupt-on-change input.
	OSC2	_	XTAL	External Crystal/Resonator (LP, XT, HS modes) driver output.
$\frac{\text{RB0/ANB0/C2IN1+/ZCD1/\overline{SS2}^{(1)}}{(1)}}{(1)}$	RB0	TTL/ST	CMOS/OD	General purpose I/O.
CWG1 ¹ //INT ¹ //IOCB0	ANB0	AN	_	ADC Channel B0 input.
	C2IN1+	AN	_	Comparator positive input.
	ZCD1	AN	AN	Zero-cross detect input pin (with constant current sink/source).
	SS2 ⁽¹⁾	TTL/ST	_	MSSP2 SPI slave select input.
	CWG1 ⁽¹⁾	TTL/ST	_	Complementary Waveform Generator 1 input.
	INT ⁽¹⁾	TTL/ST	_	External interrupt request input.
	IOCB0	TTL/ST	_	Interrupt-on-change input.
RB1/ANB1/C1IN3-/C2IN3-/	RB1	TTL/ST	CMOS/OD	General purpose I/O.
SULT VSUKT VIUCBT	ANB1	AN	_	ADC Channel B1 input.
	C1IN3-	AN	_	Comparator negative input.
	C2IN3-	AN	_	Comparator negative input.
	SCL1 ⁽¹⁾	I ² C	OD	MSSP1 I ² C input/output.
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK1 is a PPS remappable input and output).
	IOCB1	TTL/ST	—	Interrupt-on-change input.
RB2/ANB2/SDA1 ⁽¹⁾ /SDI1 ⁽¹⁾ /IOCB2	RB2	TTL/ST	CMOS/OD	General purpose I/O.
	ANB2	AN	—	ADC Channel B2 input.
	SDA1 ⁽¹⁾	I ² C	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI serial data input (default input location, SDI1 is a PPS remappable input and output).
	IOCB2	TTL/ST	—	Interrupt-on-change input.
RB3/ANB3/C1IN2-/C2IN2-/IOCB3	RB3	TTL/ST	CMOS/OD	General purpose I/O.
	ANB3	AN	—	ADC Channel B3 input.
	C1IN2-	AN	_	Comparator negative input.
	C2IN2-	AN	_	Comparator negative input.
	IOCB3	TTL/ST	_	Interrupt-on-change input.

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION (CONTINUED)

TTL = TTL compatible input HV = High Voltage

= Schmitt Trigger input with CMOS levels

I²C = Schmitt Trigger input with I²C

Note

= Crystal levels XTAL This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 15-5, Table 15-6 and Table 15-6.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

IADLE	ADEL 4-11. OF ECIAL FORCHOR REGISTER SOMMARY BARRS 0-03 (CONTINUED)										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 15	ank 15										
	CPU CORE REGISTERS; see Table 4-3 for specifics										
78Ch 795h			Unimplemented							-	-
796h	PMD0	SYSCMD	FVRMD	—	—	—	NVMMD	CLKRMD	IOCMD	00000	00000
797h	PMD1	NCO1MD	—	—	—	—	TMR2MD	TMR1MD	TMR0MD	0000	0000
798h	PMD2	—	DAC1MD	ADCMD	—	—	CMP2MD	CMP1MD	ZCDMD	-00000	-00000
799h	PMD3	—	—	PWM6MD	PWM5MD	PWM4MD	PWM3MD	CCP2MD	CCP1MD	00 0000	00 0000
79Ah	PMD4	UART2MD	UART1MD	MSSP2MD	MSSP1MD	—	_	—	CWG1MD	00000	00000
79Bh	PMD5	—	—	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	_	0 000-	0 000-
79Ch	_		Unimplemented							—	—
79Dh	_				Unimpler	mented				_	_
79Eh	_				Unimpler	mented				_	_
79Fh	_				Unimpler	mented				_	_

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

REGISTER 5-3: CONFIGURATION WORD 3: WINDOWED WATCHDOG (CONTINUED)

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

WDTCPS	Value	Divider Ratio		Typical Time Out (FIN = 31 kHz)	of WDTPS?
11111 (1)	01011	1:65536	2 ¹⁶	2 s	Yes
11110	11110		-		
 10011	 10011	1:32	2 ⁵	1 ms	No
10010	10010	1:8388608	2 ²³	256 s	
10001	10001	1:4194304	2 ²²	128 s	
10000	10000	1:2097152	2 ²¹	64 s	
01111	01111	1:1048576	2 ²⁰	32 s	
01110	01110	1:524299	2 ¹⁹	16 s	
01101	01101	1:262144	2 ¹⁸	8 s	
01100	01100	1:131072	2 ¹⁷	4 s	
01011	01011	1:65536	2 ¹⁶	2 s	
01010	01010	1:32768	2 ¹⁵	1 s	
01001	01001	1:16384	2 ¹⁴	512 ms	No
01000	01000	1:8192	2 ¹³	256 ms	
00111	00111	1:4096	2 ¹²	128 ms	
00110	00110	1:2048	2 ¹¹	64 ms	
00101	00101	1:1024	2 ¹⁰	32 ms	
00100	00100	1:512 2		16 ms	
00011	00011	1:256	2 ⁸	8 ms	
00010	00010	1:128	2 ⁷	4 ms	
00001	00001	1:64	2 ⁶	2 ms	
00000	00000	1:32	2 ⁵	1 ms	

Note 1: 0b11111 is the default value of the WDTCPS bits.

© 2016 Microchip Technology Inc.

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0
CLC4IF	CLC3IF	CLC2IF	CLC1IF	—	—	_	TMR1GIF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7	CLC4IF: CLC	4 Interrupt Flag	g bit				
	1 = A CLC40	UT interrupt co	ndition has oc	curred (must l	be cleared in so	ftware)	
	0 = No CLC4	interrupt event	has occurred				
bit 6	CLC3IF: CLC	3 Interrupt Flag	g bit				
	1 = A CLC3O	UT interrupt co	ndition has oc	curred (must l	be cleared in so	ftware)	
		interrupt event	has occurred				
DIT 5		2 Interrupt Flag				6	
	1 = A CLC2O 0 = No CLC2O	O I Interrupt co interrupt event	has occurred	curred (must i	be cleared in so	πware)	
bit 4	CLC1IF: CLC	1 Interrupt Flag	a bit				
	1 = A CLC10	UT interrupt co	ndition has oc	curred (must l	be cleared in so	ftware)	
	0 = No CLC1	interrupt event	has occurred	·		,	
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	TMR1GIF: Tir	mer1 Gate Inte	rrupt Flag bit				
	1 = The Time	r1 Gate has go	ne inactive (th	e acquisition i	s complete)		
	0 = The Time	r1 Gate has no	t gone inactive	9			
Note: Inte	errupt flag bits a	re set when an	interrupt				

REGISTER 10-15: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5

Note:	Interrupt flag bits are set when an interrupt							
	condition occurs, regardless of the state of							
	its corresponding enable bit or the Global							
	Enable bit, GIE, of the INTCON register.							
	User software should ensure the							
	appropriate interrupt flag bits are clear							
	prior to enabling an interrupt.							

11.1.2 INTERRUPTS DURING DOZE

If an interrupt occurs and the Recover-on-Interrupt bit is clear (ROI = 0) at the time of the interrupt, the Interrupt Service Routine (ISR) continues to execute at the rate selected by DOZE<2:0>. Interrupt latency is extended by the DOZE<2:0> ratio.

If an interrupt occurs and the ROI bit is set (ROI = 1) at the time of the interrupt, the DOZEN bit is cleared and the CPU executes at full speed. The prefetched instruction is executed and then the interrupt vector sequence is executed. In Figure 11-1, the interrupt occurs during the 2^{nd} instruction cycle of the Doze period, and immediately brings the CPU out of Doze. If the Doze-On-Exit (DOE) bit is set (DOE = 1) when the RETFIE operation is executed, DOZEN is set, and the CPU executes at the reduced rate based on the DOZE<2:0> ratio.

11.2 Sleep Mode

Sleep mode is entered by executing the SLEEP instruction, while the Idle Enable (IDLEN) bit of the CPUDOZE register is clear (IDLEN = 0). If the SLEEP instruction is executed while the IDLEN bit is set (IDLEN = 1), the CPU will enter the IDLE mode (Section 11.2.3 "Low-Power Sleep Mode").

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running if enabled for operation during Sleep
- 2. The PD bit of the STATUS register is cleared
- 3. The $\overline{\text{TO}}$ bit of the STATUS register is set
- 4. CPU Clock and System Clock
- 5. 31 kHz LFINTOSC, HFINTOSC and SOSC are unaffected and peripherals using them may continue operation in Sleep.
- 6. ADC is unaffected if the dedicated FRC oscillator is selected the conversion will be left abandoned if FOSC is selected and ADRES will have an incorrect value
- 7. I/O ports maintain the status they had before Sleep was executed (driving high, low, or high-impedance). This does not apply in the case of any asynchronous peripheral which is active and may affect the I/O port value
- 8. Resets other than WDT are not affected by Sleep mode

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or VSS externally to avoid switching currents caused by floating inputs.

Any module with a clock source that is not Fosc can be enabled. Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 21.0 "5-Bit Digital-to-Analog Converter (DAC1) Module", Section 18.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

11.2.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled.
- 2. BOR Reset, if enabled.
- 3. POR Reset.
- 4. Watchdog Timer, if enabled.
- 5. Any external interrupt.
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information).

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 8.12 "Memory Execution Violation**".

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes-up from Sleep, regardless of the source of wake-up.

11.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- External interrupt pin/interrupt-on-change pins
- Timer1 (with external clock source)

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

Note:	The PIC16LF15356/75/76/85/86 does not
	have a configurable Low-Power Sleep
	mode. PIC16LF15356/75/76/85/86 is an
	unregulated device and is always in the
	lowest power state when in Sleep, with no
	wake-up time penalty. This device has a
	lower maximum VDD and I/O voltage than
	the PIC16F15356/75/76/85/86. See
	Section 37.0 "Electrical
	Specifications" for more information.

11.3 IDLE Mode

When the Idle Enable (IDLEN) bit is clear (IDLEN = 0), the SLEEP instruction will put the device into full Sleep mode (see **Section 11.2 "Sleep Mode"**). When IDLEN is set (IDLEN = 1), the SLEEP instruction will put the device into IDLE mode. In IDLE mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to DOZE mode, except that in IDLE both the CPU and PFM are shut off.

Note:	Peripherals using Fosc will continue							
	running while in Idle (but not in Sleep).							
	Peripherals using HFINTOSC,							
	LFINTOSC, or SOSC will continue							
	running in both Idle and Sleep.							

Note: If CLKOUT is enabled (CLKOUT = 0, Configuration Word 1), the output will continue operating while in Idle.

11.3.0.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can re-enter IDLE by executing the SLEEP instruction.

If Recover-on-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU execution when doze is also enabled.

11.3.0.2 Idle and WDT

When in IDLE, the WDT Reset is blocked and will instead wake the device. The WDT wake-up is not an interrupt, therefore ROI does not apply.

Note: The WDT can bring the device out of IDLE, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

-n/n = Value at POR and BOR/Value at all other Resets

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7		•					bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				

REGISTER 14-13: WPUB: WEAK PULL-UP PORTB REGISTER

x = Bit is unknown

'0' = Bit is cleared

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

1 = Pull-up enabled

u = Bit is unchanged

'1' = Bit is set

bit 7-0

0 = Pull-up disabled

REGISTER 14-14: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCB7 | ODCB6 | ODCB5 | ODCB4 | ODCB3 | ODCB2 | ODCB1 | ODCB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

ODCB<7:0>: PORTB Open-Drain Enable bits

For RB<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

© 2016 Microchip Technology Inc.

									Degister
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	on Page
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	216
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	216
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	216
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	217
WPUD	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	217
ODCOND	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	218
SLRCOND	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	218
INLVLD	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	218

TABLE 14-5: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

REGISTER 17-10: IOCEP: INTERRUPT-ON-CHANGE PORTE POSITIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	—	—	—	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	Unimplemented: Read as '0)'
		· .

bit 3-0 **IOCEP<3:0>:** Interrupt-on-Change PORTE Positive Edge Enable bit

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

Note 1: Present only on PIC16(L)F15375/76/85/86.

REGISTER 17-11: IOCEN: INTERRUPT-ON-CHANGE PORTE NEGATIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	—	—	—	IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4 Unimplemented: Read as '0'

bit 3-0 IOCEN<3:0>: Interrupt-on-Change PORTE Negative Edge Enable bit

1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

Note 1: Present only on PIC16(L)F15375/76/85/86.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—		—	—	INTEDG	146
PIR7	_	—	NVMIF	NCO1IF	_	—	—	CWG1IF	162
PIE7			NVMIE	NCO1IE	—		—	CWG1IE	154
NCO1CON	N1EN	—	N1OUT	N1POL	—	—	—	N1PFM	294
NCO1CLK	N1PWS<2:0> — N1CKS<3:0>						295		
NCO1ACCL				NCO1ACC<	<7:0>				296
NCO1ACCH			I	NCO1ACC<	15:8>				296
NCO1ACCU	—	—	—	—		NCO1ACC	<19:16>		296
NCO1INCL	NCO1INC<7:0>						297		
NCO1INCH	NCO1INC<15:8>						297		
NCO1INCU	—	—	—	—		NCO1AINC	C<19:16>		297
RxyPPS	_	_	_		R	xyPPS<4:0>			242

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCO

Legend: – = unimplemented read as '0'. Shaded cells are not used for NCO module.

27.5 Operation Examples

Unless otherwise specified, the following notes apply to the following timing diagrams:

- Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits in the TxCON register are cleared).
- The diagrams illustrate any clock except Fosc/4 and show clock-sync delays of at least two full cycles for both ON and Timer2_ers. When using Fosc/4, the clock-sync delay is at least one instruction period for Timer2_ers; ON applies in the next instruction period.
- The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the PWM function of the CCP module as described in **Section 28.0 "Capture/Compare/PWM Modules"**. The signals are not a part of the Timer2 module.

27.5.1 SOFTWARE GATE MODE

This mode corresponds to legacy Timer2 operation. The timer increments with each clock input when ON = 1 and does not increment when ON = 0. When the TMRx count equals the PRx period count the timer resets on the next clock and continues counting from 0. Operation with the ON bit software controlled is illustrated in Figure 27-4. With PRx = 5, the counter advances until TMRx = 5, and goes to zero with the next clock.

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
ON ⁽¹⁾	CKPS<2:0>				OUTP	S<3:0>			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	vare			
bit 7	ON: Timerx	On bit							
	1 = Timerx	is on	s on						
	0 = Timerx	is off: all counte	rs and state n	nachines are res	set				
bit 6-4	CKPS<2:0>:	: Timer2-type Cl	ock Prescale	Select bits					
	111 = 1:128	Prescaler							
	110 = 1:64	Prescaler							
	101 = 1.321	Prescaler							
	011 = 1:8 P	rescaler							
	010 = 1:4 P	rescaler							
	001 = 1:2 P	rescaler							
	000 = 1:1 P	rescaler							
bit 3-0	OUTPS<3:0	>: Timerx Outpu	It Postscaler S	Select bits					
	1111 = 1:16	Postscaler							
	1110 = 1.13 1101 = 1.14	Postscaler							
	1100 = 1:13	Postscaler							
	1011 = 1:12	Postscaler							
	1010 = 1:11	Postscaler							
	1001 = 1:10	Postscaler							
	1000 = 1.9 Postscaler								
	0111 = 1.01 0110 = 1.7 F	Postscaler							
	0101 = 1:6 Postscaler								
0100 = 1:5 Postscaler									
	0011 = 1:4 F	Postscaler							
	0010 = 1:3 F								
	0001 = 1.2 F	Postscaler							
	5000 - 1.11	001000101							

REGISTER 27-2: T2CON: TIMER2 CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 27.5 "Operation Examples".

© 2016 Microchip Technology Inc.

30.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 30-12.

30.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

30.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWG1AS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event.

30.10.2 EXTERNAL INPUT SOURCE

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Comparator C1OUT_sync
- Comparator C2OUT_sync
- · Timer2 TMR2_postscaled
- CWG1IN input pin

Shutdown inputs are selected using the CWG1AS1 register (Register 30-6).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

30.11 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep when all the following conditions are met:

- CWG module is enabled
- · Input source is active
- HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, then the CPU will go idle during Sleep, but the HFINTOSC will remain active and the CWG will continue to operate. This will have a direct effect on the Sleep mode current.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7	OVRD: Steer	ng Data D bit					
bit 6	OVRC: Steer	ng Data C bit					
bit 5	OVRB: Steer	ng Data B bit					
bit 4	OVRA: Steer	ng Data A bit					
bit 3	STRD: Steeri	ng Enable D bi	(2)				
	1 = CWG1D	output has the	CWG1_data	waveform with	polarity control	from POLD bit	
1.11.0	0 = CWG1D	output is assigi	ned the value	of OVRD bit			
bit 2	SIRC: Steeri	ng Enable C bi					
	1 = CWG1C 0 = CWG1C	output nas the	CWG1_data	waveform with	polarity control	from POLC bit	
bit 1	STRB: Steeri	na Enable B bit	(2)				
	1 = CWG1B output has the CWG1 data waveform with polarity control from POLB bit						
	0 = CWG1B	output is assig	ned the value	of OVRB bit			
bit 0	STRA: Steeri	ng Enable A bi	(2)				
	1 = CWG1A	output has the	CWG1_data	waveform with	polarity control	from POLA bit	
	0 = CWG1A	output is assigi	ned the value	of OVRA bit			
Note 1: Th	e bits in this re	gister apply onl	v when MOD	E<2:0> = 00x.			

REGISTER 30-7: CWG1STR: CWG1 STEERING CONTROL REGISTER⁽¹⁾

2: This bit is effectively double-buffered when MODE<2:0> = 001.

PIC16(L)F15356/75/76/85/86

32.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

32.6.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

32.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCL1IF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

32.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCL1IF and reset the I²C port to its Idle state (Figure 32-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 32-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0
SPEN ⁽¹⁾	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7	SDEN: Soria	l Port Enable bi	₊ (1)				
	1 = Serial po	ort enabled	L				
	0 = Serial po	ort disabled (hel	d in Reset)				
bit 6	RX9: 9-Bit R	eceive Enable b	bit				
	1 = Selects 9	9-bit reception					
	0 = Selects	8-bit reception					
bit 5	SREN: Singl	e Receive Enab	ble bit				
	Asynchronou	<u>is mode –</u> value	ignored				
	Synchronous	<u>s mode – Maste</u>	<u>r:</u>				
	1 = Enables	single receive					
	0 = Disables	s single receive	ation in compl	ata			
	Synchronous	s mode – Slave		ele.			
	Unused in th	is mode – value	ignored				
bit 4	CREN: Conti	inuous Receive	Enable bit				
	<u>Asynchronou</u>	<u>is mode</u> :					
	1 = Enables	continuous rec	eive until enal	ole bit CREN i	s cleared		
	0 = Disables	s continuous rec s mode:	eive				
	1 = Enables	continuous rec	eive until enat	ole bit CREN i	s cleared (CREN	N overrides SRE	EN)
	0 = Disables	s continuous rec	eive		,		,
bit 3	ADDEN: Add	dress Detect En	able bit				
	Asynchronou	<u>is mode 9-bit (F</u>	<u> X9 = 1)</u> :				
	1 = Enables	address detect	ion – enable i	nterrupt and lo	bad of the receiv	e buffer when t	he ninth bit in
	0 = Disables	address detec	tion, all bytes	are received a	and ninth bit can	be used as par	ity bit
	<u>Asynchronou</u>	<u>ıs mode 8-bit (F</u>	<u>RX9 = 0</u>):				
	Unused in th	is mode – value	eignored				
bit 2	FERR: Fram	ing Error bit					
	1 = Framing 0 = No frami	error (can be u ing error	pdated by rea	Iding RCxREG	B register and re	ceive next valid	byte)
bit 1	OERR: Over	run Error bit					
	1 = Overrun	error (can be c	leared by clea	ring bit CREN)		
hit 0		iun error bit of Bossived	Data				
	This can be a	DILUI RECEIVED	Dala or a narity hit	and must be	calculated by us	er firmware	
Note 1: 7	The EUSART mod associated TRIS b	dule automatica bits for TX/CK a	Illy changes th nd RX/DT to 2	ne pin from tri-	state to drive as	needed. Config	gure the

REGISTER 33-2: RCxSTA: RECEIVE STATUS AND CONTROL REGISTER

PIC16(L)F15356/75/76/85/86

TRIS	Load TRIS Register with W
Syntax:	[<i>label</i>] TRIS f
Operands:	$5 \le f \le 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

XORWF	Exclusive OR W with f					
Syntax:	[label] XORWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

© 2016 Microchip Technology Inc.

40.1 Package Marking Information (Continued)

Legend:	XXX V	Customer-specific information
	YY	Year code (last 2 digits of calendar year)
	VVVV NNN	Alphanumeric traceability code
	*	Pb-free JEDEC [®] designator for Matte Tin (Sn)
	^	This package is Pb-free. The Pb-free JEDEC designator ((e_3)) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

40.1 Package Marking Information (Continued)

