

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15375-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLL -											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 4	ank 4										
	CPU CORE REGISTERS; see Table 4-3 for specifics										
20Ch	TMR1L	Holding Register for t	he Least Significa	ant Byte of the 16	-bit TMR1 Regis	ter				0000 0000	uuuu uuuu
20Dh	TMR1H	Holding Register for th	e Most Significant	Byte of the 16-bit	TMR1 Register					0000 0000	uuuu uuuu
20Eh	T1CON	—	_	CKPS	6<1:0>	_	SYNC	RD16	ON	00 -000	uu -u0u
20Fh	T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	-	0000 0x	uuuu ux
210h	T1GATE	-	_	—			GSS<4:0>			0 0000	u uuuu
211h	T1CLK	—	_	_	— CS<3:0> 0000 uut						uuuu
212h 21Fh	_		Unimplemented								_

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

	0.20										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 14											
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
70Ch	PIR0	—	—	TMR0IF	IOCIF	—	_		INTF	000	000
70Dh	PIR1	OSFIF	CSWIF	—	_	_	—	—	ADIF	0000	0000
70Eh	PIR2	_	ZCDIF	_	—	_	—	C2IF	C1IF	-000	-000
70Fh	PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	0000 0000	0000 0000
710h	PIR4	_	_	—	_	_	—	TMR2IF	TMR1IF	00	00
711h	PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	—	—	TMR1GIF	00000	00000
712h	PIR6	_	_	—	—	-	—	CCP2IF	CCP1IF	00	00
713h	PIR7	_	_	NVMIF	NCO1IF	-	—	—	CWG1IF		000
714h	_				Unimple	mented				_	—
715h	—				Unimple	mented				—	—
716h	PIE0	—	—	TMR0IE	IOCIE	—	—	—	INTE	000	000
717h	PIE1	OSFIE	CSWIE	_	—	_	—	—	ADIE	0000	0000
718h	PIE2	—	ZCDIE	_	_	_	_	C2IE	C1IE	-000	-000
719h	PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	0000 0000	0000 0000
71Ah	PIE4	-	—	—	—	_	—	TMR2IE	TMR1IE	00	00
71Bh	PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	_	—	—	TMR1GIE	00000	00000
71Ch	PIE6	_	—		—	_	_	CCP2IE	CCP1IE	00	00
71Dh	PIE7			NVMIE	NCO1IE	_	—	—	CWG1IE	000	000
71Eh	_				Unimple	mented				_	_
71Fh	_				Unimple	mented				_	_

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

					Rev. 10-0000438 7/30/2013
			0x0F		1
			0x0E		-
			0x0D		-
			0x0C		
			0x0B		
			0x0A		
			0x09		This figure shows the stack configuration
			0x08		If a RETURN instruction is executed, the
			0x07		return address will be placed in the
			0x06		decremented to the empty state (0x1F).
			0x05		_
			0x04		-
			0x03		-
			0x02		-
TOCUL		Λ			
RE 4-7:	ACCE	ESSING	THE STA	CK EXAMPLE :	3
RE 4-7:	ACCE	ESSING		CK EXAMPLE	3 8er: 10-00043C 7902013
RE 4-7:	ACCE	ESSING		CK EXAMPLE	3 Rev: 10-000410C 77602013
RE 4-7:	ACCE	ESSING T	0x0F	CK EXAMPLE	3
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D		3 Rev. 10-00043C 7/902013
RE 4-7:	ACCE	ESSING T	0x0F 0x0E 0x0D 0x0C	CK EXAMPLE	3 Rev: 10.00004C 7/592013
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D 0x0C 0x0D 0x0C 0x0B		3 Rev. 10.000044C 7702013 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will research use a the return endereeses inte
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09 0x08		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-7:	ACCE	ESSING	0x0F 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-7:	ACCE		0x0F 0x0E 0x0D 0x0C 0x0A 0x0A 0x09 0x08 0x07	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-7:	ACCE		THE STA 0x0F 0x0E 0x0D 0x0C 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
RE 4-7:	ACCE		THE STA 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
RE 4-7:	ACCE		THE STA 0x0F 0x0E 0x0D 0x0C 0x0D 0x0C 0x0A 0x09 0x08 0x07 0x06 0x05 0x04	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
RE 4-7: TOSH	ACCE		THE STA 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
RE 4-7:	ACCE		0x0F 0x0E 0x0D 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x02 0x01	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	_	—	_	INTEDG	146
PIE0	_		TMR0IE	IOCIE		—		INTE	147
PIE1	OSFIE	CSWIE	_	_	_	—		ADIE	148
PIE2	_	ZCDIE		_	_	_	C2IE	C1IE	149
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIE4	_	_	_	_	_	—	TMR2IE	TMR1IE	151
PIR0	_		TMR0IF	IOCIF	_	—		INTF	155
PIR1	OSFIF	CSWIF	_	_	_	_	_	ADIF	156
PIR2	_	ZCDIF	_	-	_	_	C2IF	C1IF	157
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
PIR4			_	_	_	_	TMR2IF	TMR1IF	159
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	255
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	255
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	256
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	257
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	257
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	258
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	259
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	259
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	259
IOCEP	_	_		_	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾	260
IOCEN	_	_	_	_	IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾	260
IOCEF	_	_	_	_	IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾	261
STATUS	_		_	TO	PD	Z	DC	С	54
VREGCON			—	_			VREGPM	—	168
CPUDOZE	IDLEN	DOZEN	ROI	DOE	—		DOZE<2:0>		169
WDTCON0				N	WDTPS<4:0	>		SWDTEN	175

TABLE 11-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: Present only in PIC16(L)F15375/76/85/86.

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0		
			NVMC	ON2<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	= Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'					
S = Bit can onl	y be set	t x = Bit is unknown		-n/n = Value at POR and BOR/Value at all othe					
'1' = Bit is set		'0' = Bit is clear	red						

REGISTER 13-6: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

bit 7-0 **NVMCON2<7:0>:** Flash Memory Unlock Pattern bits To unlock writes, a 55h must be written first followed by an AAh before setting the WR bit of the NVMCON1 register. The value written to this register is used to unlock the writes.

TABLE 13-5: SUMMARY OF REGISTERS ASSOCIATED WITH NONVOLATILE MEMORY (NVM)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	146
PIE7	—	—	NVMIE	NCO1IE	_	-	—	CWG1IE	154
PIR7	_	_	NVMIF	NCO1IF	_	_	_	CWG1IF	162
NVMCON1	—	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	195
NVMCON2				NVMCO	N2<7:0>				196
NVMADRL				NVMAE	DR<7:0>				194
NVMADRH	_(1)	(1) NVMADR<14:8>							
NVMDATL	NVMDAT<7:0>								
NVMDATH	_	_			NVMDA	T<13:8>			194

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by NVM.

Note 1: Unimplemented, read as '1'.

REGISTER 14-20: AN	NSELC: PORTC ANALOG	SELECT REGISTER
--------------------	---------------------	-----------------

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSC7 | ANSC6 | ANSC5 | ANSC4 | ANSC3 | ANSC2 | ANSC1 | ANSC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ANSC<7:0>: Analog Select between Analog or Digital Function on Pins RC<7:0>, respectively⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

REGISTER 14-21: WPUC: WEAK PULL-UP PORTC REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUC7 | WPUC6 | WPUC5 | WPUC4 | WPUC3 | WPUC2 | WPUC1 | WPUC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

TABLE 14-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTE	—	—			RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	222
TRISE	—	—	-	-	_(2)	TRISE2 ⁽¹⁾	TRISE2 ⁽¹⁾	TRISE2 ⁽¹⁾	222
LATE ⁽¹⁾	—	—	_	_	_	LATE2	LATE2	LATE2	223
ANSELE ⁽¹⁾	—	—	_			ANSE2	ANSE1	ANSE0	217
WPUE	—	—	_	_	WPUE3	WPUE2 ⁽¹⁾	WPUE1 ⁽¹⁾	WPUE0 ⁽¹⁾	224
ODCONE ⁽¹⁾	—	—	_	_	_	ODCE2	ODCE1	ODCE0	224
SLRCONE	—	—			SLRE3	SLRE2 ⁽¹⁾	SLRE1 ⁽¹⁾	SLRE0 ⁽¹⁾	225
INLVLE	—	—	_	_	INLVLE3	INLVLE2 ⁽¹⁾	INLVLE1 ⁽¹⁾	INLVLE0 ⁽¹⁾	225

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: Present only in PIC16(L)F15375/76/85/86.

2: Unimplemented, read as '1'

TABLE 14-7: SUMMARY OF CONFIGURATION WORD WITH PORTE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		_	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV		102
CONFIGZ	7:0	BOREN	l <1:0>	LPBOREN	_	_	_	PWRTE	MCLRE	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTE.

REGISTER 15-2:	RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER
----------------	---

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			RxyPPS<4:0>	>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 4-0 **RxyPPS<4:0>:** Pin Rxy Output Source Selection bits See Table 15-5 through Table 15-7.

Note 1: TRIS control is overridden by the peripheral as required.

REGISTER 15-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	PPSLOCKED
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit

1= PPS is locked. PPS selections can not be changed.

0= PPS is not locked. PPS selections can be changed.

© 2016 Microchip Technology Inc.

21.4 Operation During Sleep

The DAC continues to function during Sleep. When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected.

21.5 Effects of a Reset

A device Reset affects the following:

- DAC is disabled.
- DAC output voltage is removed from the DAC10UT1/2 pins.
- The DAC1R<4:0> range select bits are cleared.

GURE 27-4:	SOFTWARE GATE MODE TIMING DIAGRAM (MODE = 00000)
	Rev. 10-0001658 5350/2014
MODE	0600000
TMRx_clk	
Instruction ⁽¹⁾ -	BSF BSF
ON	
PRx	5
TMRx	0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2
TMRx_postscaled	
PWM Duty Cycle	3
PWM Output	
Note 1: set	BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

R/W/HS-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0		
SHUTDOWN ^(1, 2)	REN	LSBE)<1:0>	LSAC	<1:0>	—	—		
bit 7							bit 0		
Legend:									
HC = Bit is cleare	d by hardware			HS = Bit is se	et by hardware	•			
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'			
u = Bit is unchang	ged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	OR/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is cle	eared	q = Value dep	pends on conc	lition			
				(4 - 2)					
bit 7	SHUTDOWN	I: Auto-Shutdo	wn Event Sta	tus bit ^(1, 2)					
	1 = An Auto	-Shutdown sta	te is in effect	a d					
	0 = No Auto	-snutdown eve	ent nas occurr	ea					
bit 6	REN: Auto-F	Restart Enable	bit						
	1 = Auto-res 0 = Auto-res	start enabled							
bit 5-4	LSBD<1:0>:	CWG1B and	CWG1D Auto	-Shutdown Sta	te Control bits				
	11 =A logic '	1' is placed on	CWG1B/D w	hen an auto-sh	utdown event	is present			
	10 =A logic '	I =A logic '0' is placed on CWG1B/D when an auto-shutdown event is present							
	01 =Pin is tri	'in is tri-stated on CWG1B/D when an auto-shutdown event is present							
	band in	iterval	e pin, includin	g polarity, is pla	ced on CWG I	B/D after the re	equired dead-		
bit 3-2	LSAC<1:0>:	CWG1A and	CWG1C Auto	-Shutdown Sta	te Control bits				
	11 =A logic '	1' is placed on	CWG1A/C w	hen an auto-sh	utdown event	is present			
	10 =A logic '	0 =A logic '0' is placed on CWG1A/C when an auto-shutdown event is present							
	01 =Pin is tri	1 =Pin is tri-stated on CWG1A/C when an auto-shutdown event is present							
band interval						equirea aeaa-			
bit 1-0	Unimpleme	nted: Read as	'0'						
Note 1: This I	bit may be wri	tten while EN	= 0 (CWG10	CON0 register)	to place the	outputs into t	the shutdown		
config	configuration.								

REGISTER 30-5: CWG1AS0: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 0

2: The outputs will remain in auto-shutdown state until the next rising edge of the input signal after this bit is cleared.

32.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 32-1:	I ² C BUS TERMS
-------------	----------------------------

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

32.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an active state. Figure 32-12 shows wave forms for Start and Stop conditions.

32.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note:	At least one SCL low time must appear
	before a Stop is valid, therefore, if the SDA
	line goes low then high again while the SCL
	line stays high, only the Start condition is
	detected.

32.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 32-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data.

32.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

33.5 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

33.5.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCxSTA and TXxSTA Control registers must be configured for Synchronous Slave Reception (see Section 33.4.2.4 "Synchronous Slave Reception Set-up:").
- If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- The RXxIF interrupt flag must be cleared by reading RCxREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RXxIF interrupt flag bit of the PIR3 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

33.5.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RCxSTA and TXxSTA Control registers must be configured for synchronous slave transmission (see Section 33.4.2.2 "Synchronous Slave Transmission Set-up:").
- The TXxIF interrupt flag must be cleared by writing the output data to the TXxREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXxIE bit of the PIE3 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXxIE of the PIE3 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXxREG will transfer to the TSR and the TXxIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXxREG is available to accept another character for transmission, which will clear the TXxIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

36.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 36-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine entry takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

36.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 36-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Prepost increment-decrement mode selection

TABLE 36-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-Out bit
С	Carry bit
DC	Digit Carry bit
Z	Zero bit
PD	Power-Down bit

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch	BTFSS
Syntax:	[label]BRA label	Syntax:
	[<i>label</i>]BRA \$+k	Operands:
Operands:	-256 \leq label - PC + 1 \leq 255	
	$-256 \le k \le 255$	Operation:
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Affecte
Status Affected:	None	Description:
Description:	s Affected: None ription: Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range	

BRW Relative Branch with W

Syntax:	[label] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f	
Syntax:	[label]BSF f,b	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	
Operation:	$1 \rightarrow (f \le b >)$	
Status Affected:	None	
Description:	Bit 'b' in register 'f' is set.	

x:	[<i>label</i>]BTFSS f,b
ands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
ation:	skip if (f) = 1
Affected:	None
iption:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Set

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{FSR + 1 (preincrement)} \\ &\text{FSR - 1 (predecrement)} \\ &\text{FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be either:} \\ &\text{FSR + 1 (all increments)} \\ &\text{FSR - 1 (all decrements)} \\ &\text{Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

MOVLB Move literal to BSR

Syntax:	[<i>label</i>] MOVLB k
Operands:	$0 \leq k \leq$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 6-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH					
Syntax:	[<i>label</i>]MOVLP k					
Operands:	$0 \le k \le 127$					
Operation:	$k \rightarrow PCLATH$					
Status Affected:	None					
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.					
MOVLW	Move literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.					
Words:	1					
Cycles:	1					
Example:	MOVLW 0x5A					
	After Instruction W = 0x5A					
MOVWF	Move W to f					
Syntax:	[<i>label</i>] MOVWF f					
Operands:	$0 \leq f \leq 127$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Description:	Move data from W register to register 'f'.					
Words:	1					
Cycles:	1					
Example:	MOVWF LATA					
	Before Instruction LATA = 0xFF W = 0x4F After Instruction					
	LATA = 0x4F W = 0x4F					

37-4:	I/O PORTS				\bigwedge				
Standard Operating Conditions (unless otherwise stated)									
Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
VIL	Input Low Voltage								
	I/O PORT:								
	with TTL buffer	—	—	0.8	V Š	4.5V ≤ VDD <u>≤ 5.5V</u>			
		—	—	0.15 Vdd	V	1.8V< ≤ VDQ ≤ 4.5V			
	with Schmitt Trigger buffer	—	—	0.2 VDD	V	2.0V ≤ VpD ≥ 5.5V			
	with I ² C levels	_	_	0.3 VDQ	V				
	with SMBus levels	_	_	0.8	V	$2.7V \le VDD \le 5.5V$			
	MCLR	_	—	0.2 VDD	\setminus \checkmark				
VIH	Input High Voltage								
with TTL buffer		2.0	-		$\setminus \vee^{\vee}$	$4.5V \leq V\text{DD} \leq 5.5V$			
		0.25 VDD + 0.8	, _ ,		\searrow	$1.8V \leq V\text{DD} \leq 4.5V$			
	with Schmitt Trigger buffer	0.8 VDD <	$\langle \mathcal{F} \rangle$	$\langle \mathcal{F} \rangle$	V	$2.0V \le VDD \le 5.5V$			
	with I ² C levels	0.7 Yap	/_/	\searrow	V				
	with SMBus levels	(2.1		<u> </u>	V	$2.7V \le VDD \le 5.5V$			
	MCLR	0.7 VDD	<u> </u>	/ _	V				
IIL Input Leakage Current ⁽¹⁾									
	I/O Ports	N - C	±5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C			
		$\langle \rangle$	± 5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 125°C			
	MCLR ⁽²⁾	$\overline{\mathbf{a}}$	± 50	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C			
IPUR	JR Weak Pull-up Current								
		25	120	200	μA	VDD = 3.0V, VPIN = VSS			
Vol	Output Løw Voltage								
	I/O ports			0.6	V	IOL = 10.0mA, VDD = 3.0V			
Voн	Øutput High Voltage								
	I/O ports	Vdd - 0.7	—	—	V	ЮН = 6.0 mA, VDD = 3.0V			
Сю	All I/O pins	—	5	50	pF				
	37-4: d Operat Sym. VIL VIL VIH	37-4: I/O PORTS Joperating Conditions (unless otherwist) Sym. Characteristic VIL Input Low Voltage I/O PORT: with TTL buffer with Schmitt Trigger buffer with SChmitt Trigger buffer with Schmitt Trigger buffer with SMBus levels MCLR Input High Voltage VIH Input High Voltage I/O PORT: with Schmitt Trigger buffer with Schmitt Trigger buffer with SChmitt Trigger buffer with SChmitt Trigger buffer with SCHWER IIL Input Leakage Current ⁽¹⁾ I/O Ports MCLR IIL Input Leakage Current ⁽¹⁾ I/O Ports MCLR IPUR Weak Pull-up Current VOL Output Low Voltage I/O ports Voltage I/O ports Voltage I/O ports Voltage	37-4: I/O PORTS doperating Conditions (unless otherwise stated) Sym. Characteristic Min. VIL Input Low Voltage //O PORT: //O PORT: with TTL buffer with Schmitt Trigger buffer with SChmitt Trigger buffer with SMBus levels MCLR 0.25 VDD + VIH Input High Voltage 0.8 VDD VIH Input High Voltage 0.7 VBD with Schmitt Trigger buffer 0.7 VDD with SMBus levels 2.1 0.7 VDD MCLR 0.7 VDD 0.7 VDD IIL Input Leakage Current ⁽¹⁾ 0.7 VDD I/O Ports MCLR ⁽²⁾ IPUR Weak Pull-up Current 25 VOL Output Low Voltage VOL Output High Voltage VOH Øutput High Voltage VOH Output Low Voltage VOD - 0.7 OL	37-4: I/O PORTS d Operating Conditions (unless otherwise stated) Sym. Characteristic Min. Typ† VIL Input Low Voltage	37-4: VO PORTS Sym. Characteristic Min. Typ† Max. VIL Input Low Voltage I/O PORT: - - 0.8 With TTL buffer - - 0.15 VDD with Schmitt Trigger buffer - 0.3 Vbo With Input High Voltage I/O PORT: - - 0.3 Vbo With SMOLR - - 0.2 Vbo VIH Input High Voltage - - 0.2 Vbo VIH Input High Voltage - - - - - - - - - - - - - - - - - - - <th colspa="</td"><td>37-4: I/O PORTS doperating Conditions (unless otherwise stated) Sym. Characteristic Min. Typ† Max. Units VIL Input Low Voltage I/O PORT: - - 0.8 V with Schmitt Trigger buffer - - 0.2 VDD V With Schmitt Trigger buffer - - 0.3 VD6 V With SMBus levels - - 0.3 VD6 V With II Input High Voltage - - 0.3 VD6 V With TL buffer - - 0.3 VD6 V With Schmitt Trigger buffer - - V O With Schmitt Trigger buffer - V O MCLR - - -</td></th>	<td>37-4: I/O PORTS doperating Conditions (unless otherwise stated) Sym. Characteristic Min. Typ† Max. Units VIL Input Low Voltage I/O PORT: - - 0.8 V with Schmitt Trigger buffer - - 0.2 VDD V With Schmitt Trigger buffer - - 0.3 VD6 V With SMBus levels - - 0.3 VD6 V With II Input High Voltage - - 0.3 VD6 V With TL buffer - - 0.3 VD6 V With Schmitt Trigger buffer - - V O With Schmitt Trigger buffer - V O MCLR - - -</td>	37-4: I/O PORTS doperating Conditions (unless otherwise stated) Sym. Characteristic Min. Typ† Max. Units VIL Input Low Voltage I/O PORT: - - 0.8 V with Schmitt Trigger buffer - - 0.2 VDD V With Schmitt Trigger buffer - - 0.3 VD6 V With SMBus levels - - 0.3 VD6 V With II Input High Voltage - - 0.3 VD6 V With TL buffer - - 0.3 VD6 V With Schmitt Trigger buffer - - V O With Schmitt Trigger buffer - V O MCLR - - -		

† Data in "Typ) column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: Negative current is defined as current sourced by the pin.
 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent

normal operating conditions. Higher leakage current may be measured at different input voltages.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E		0.65 BSC			
Contact Pad Spacing	С		7.20			
Contact Pad Width (X28)	X1			0.45		
Contact Pad Length (X28)	Y1			1.75		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A