

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15375-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS

28-PIN PDIP, SOIC, SSOP		\bigcirc	28 RB7/ICSPDAT	
	RA0 2		27 RB6/ICSPCLK	
	RA1 3		26 RB5	
	RA2 4		25 RB4	
	RA3 5		24 П RB3	
	RA4 🗌 6	356	23 RB2	
	RA5 7	F15	22 RB1	
	Vss 🗌 8	6(L)	21 RB0	
	RA7 🗌 9	PIC16(L)F15356		
	RA6 🗌 10	<u>م</u>	19 Vss	
	RC0 🗌 11		18 RC7	
	RC1 🗌 12		17 RC6	
	RC2 🗌 13		16 RC5	
	RC3 🗌 14		15 RC4	
Note 1 See Table	e 2 for location of all peripheral fun	nctions		
	nd all Vss pins must be connected		ircuit board level	
40-PIN PDIP		\bigcirc		
40-PIN PDIP		\bigcirc		
40-PIN PDIP	RA0 2	\bigcirc	39 RB6/ICSPCLK	
40-PIN PDIP	RA0 2 RA1 3	\bigcirc	39 RB6/ICSPCLK 38 RB5	
40-PIN PDIP	RA0 [] 2 RA1 [] 3 RA2 [] 4		39 RB6/ICSPCLK 38 RB5 37 RB4	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5		39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6		39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7		39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8	75	39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7	15375	39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1 33 RB0	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8 RE1 9	(L)F15375 (L)F15376	39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1 33 RB0 32 VDD	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8 RE1 9 RE2 10	C16(L)F15375 C16(L)F15376	 39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1 33 RB0 32 VDD 31 VSS 	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8 RE1 9 RE2 10 VDD 11 VSS 12	PIC16(L)F15375 PIC16(L)F15376	 39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1 33 RB0 32 VDD 31 VSS 30 RD7 	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8 RE1 9 RE2 10 VDD 11 VSS 12	PIC16(L)F15375 PIC16(L)F15376	 39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1 33 RB0 32 VDD 31 VSS 30 RD7 29 RD6 	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8 RE1 9 RE2 10 VDD 11 VSS 12 RA7 13	PIC16(L)F15375 PIC16(L)F15376	 39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1 33 RB0 32 VDD 31 VSS 30 RD7 29 RD6 28 RD5 	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8 RE1 9 RE2 10 VDD 11 VSS 12 RA7 13 RA6 14	PIC16(L)F15375 PIC16(L)F15376	 39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1 33 RB0 32 VDD 31 VSS 30 RD7 29 RD6 28 RD5 27 RD4 	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8 RE1 9 RE2 10 VDD 11 VSS 12 RA7 13 RA6 14 RC0 15	PIC16(L)F15375 PIC16(L)F15376	 39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1 33 RB0 32 VDD 31 VSS 30 RD7 29 RD6 28 RD5 27 RD4 26 RC7 	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8 RE1 9 RE2 10 VDD 11 VSS 12 RA7 13 RA6 14 RC0 15 RC1 16 RC2 17 RC3 18	PIC16(L)F15375 PIC16(L)F15376	 39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1 33 RB0 32 VDD 31 VSS 30 RD7 29 RD6 28 RD5 27 RD4 26 RC7 25 RC6 	
40-PIN PDIP	RA0 2 RA1 3 RA2 4 RA3 5 RA4 6 RA5 7 RE0 8 RE1 9 RE2 10 VDD 11 VSS 12 RA7 13 RA6 14 RC0 15 RC1 16 RC2 17	PIC16(L)F15375 PIC16(L)F15376	 39 RB6/ICSPCLK 38 RB5 37 RB4 36 RB3 35 RB2 34 RB1 33 RB0 32 VDD 31 VSS 30 RD7 29 RD6 28 RD5 27 RD4 26 RC7 25 RC6 24 RC5 	

	Bank 60		Bank 61		Bank 62		Bank 63
1E3Fh	RE7PPS ⁽²⁾	1EBFh	_	1F3Fh	IOCAF	1FBFh	_
1E40h	_	1EC0h	_	1F40h	_	1FC0h	_
1E41h	_	1EC1h	_	1F41h	_	1FC1h	_
1E42h		1EC2h	_	1F42h	_	1FC2h	_
1E43h		1EC3h	ADACTPPS	1F43h	ANSELB	1FC3h	_
1E44h	_	1EC4h	_	1F44h	WPUB	1FC4h	_
1E45h	—	1EC5h	SSP1CLKPPS	1F45h	ODCONB	1FC5h	_
1E46h	—	1EC6h	SSP1DATPPS	1F46h	SLRCONB	1FC6h	—
1E47h		1EC7h	SSP1SSPPS	1F47h	INLVLB	1FC7h	—
1E48h	—	1EC8h	SSP2CLKPPS	1F48h	IOCBP	1FC8h	—
1E49h	—	1EC9h	SSP2DATPPS	1F49h	IOCBN	1FC9h	—
1E4Ah	_	1ECAh	SSP2SSPPS	1F4Ah	IOCBF	1FCAh	—
1E4Bh	—	1ECBh	RXDT1PPS	1F4Bh	_	1FCBh	—
1E4Ch	—	1ECCh	TXCK1PPS	1F4Ch	_	1FCCh	—
1E4Dh	—	1ECDh	RXD2TPPS	1F4Dh	_	1FCDh	—
1E4Eh	—	1ECEh	TXCK2PPS	1F4Eh	ANSELC	1FCEh	—
1E4Fh	—	1ECFh	_	1F4Fh	WPUC	1FCFh	_
1E50h	ANSELF ⁽²⁾	1ED0h	—	1F50h	ODCONC	1FD0h	—
1E51h	WPUF ⁽²⁾	1ED1h	_	1F51h	SLRCONC	1FD1h	_
1E52h	ODCONF ⁽²⁾	1ED2h	_	1F52h	INLVLC	1FD2h	_
1E53h	SLRCONF ⁽²⁾	1ED3h	_	1F53h	IOCCP	1FD3h	_
1E54h	INLVLF ⁽²⁾	1ED4h	_	1F54h	IOCCN	1FD4h	_
1E55h		1ED5h	_	1F55h	IOCCF	1FD5h	_
1E56h		1ED6h	_	1F56h	_	1FD6h	_
1E57h	_	1ED7h	_	1F57h	_	1FD7h	_
1E58h	_	1ED8h	_	1F58h	_	1FD8h	_
1E59h	—	1ED9h	_	1F59h	ANSELD ⁽¹⁾	1FD9h	_
1E5Ah	_	1EDAh	_	1F5Ah	WPUD ⁽¹⁾	1FDAh	_
1E5Bh	_	1EDBh	_	1F5Bh	ODCOND ⁽¹⁾	1FDBh	_
1E5Ch	_	1EDCh	_	1F5Ch	SLRCOND ⁽¹⁾	1FDCh	_
1E5Dh	_	1EDDh	_	1F5Dh	INLVLD ⁽¹⁾	1FDDh	_
1E5Eh	_	1EDEh	_	1F5Eh	_	1FDEh	_
1E5Fh		1EDFh	_	1F5Fh		1FDFh	_
1E60h	_	1EE0h	_	1F60h		1FE0h	_
1E61h	_	1EE1h	_	1F61h		1FE1h	_
1E62h	_	1EE2h	_	1F62h	_	1FE2h	_
1E63h	_	1EE3h	_	1F63h	_	1FE3h	BSR ICDSHAD
1E64h	_	1EE4h	_	1F64h	ANSELE ⁽¹⁾	1FE4h	STATUS SHAD
1E65h	_	1EE5h	_	1F65h	WPUE	1FE5h	WREG_SHAD
1E66h	_	1EE6h	_	1F66h	ODCONE ⁽¹⁾	1FE6h	BSR_SHAD
1E67h	_	1EE7h	_	1F67h	SLRCONE ⁽¹⁾	1FE7h	PCLATH SHAD
1E68h	_	1EE8h	_	1F68h	INLVLE	1FE8h	FSR0L SHAD
1E69h	_	1EE9h	_	1F69h	IOCEP	1FE9h	FSR0H SHAD
1E6Ah		1EEAh	_	1F6Ah	IOCEN	1FEAh	FSR1L SHAD
1E6Bh	_	1EEBh	_	1F6Bh	IOCEF	1FEBh	FSR1H_SHAD
1E6Ch		1EECh	_	1F6Ch		1FECh	
1E6Dh		1EEDh	_	1F6Dh	_	1FEDh	STKPTR
1E6Eh		1EEEh	_	1F6Eh	_	1FEEh	TOSL
1E6Fh		1EEFh	_	1F6Fh	_	1FEFh	TOSH

TABLE 4-9: PIC16(L)F15356/75/76/85/86 MEMORY MAP, BANKS 60, 61, 62, AND 63

Legend:

= Unimplemented data memory locations, read as '0'

Note 1: Present only on PIC16(L)F15375/76/85/86.

2: Present only on PIC16(L)F15385/86

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address											V <u>alue o</u> n: MCLR
Bank 13											
	CPU CORE REGISTERS; see Table 4-3 for specifics										
68Ch Unimplemented								_			
Legend:	egend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.										

		R/W-1	U-1	R/W-1	U-1	R/W-1	R/W-1			
		LVP	—	WRTSAF ⁽¹⁾	—	WRTC ⁽¹⁾	WRTB ⁽¹⁾			
		bit 13	12	11	10	9	bit 8			
R/W-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
WRTAPP ⁽¹⁾	0-1	0-1	SAFEN ⁽¹⁾	BBEN ⁽¹⁾	BBSIZE2	BBSIZE1				
						_	BBSIZE0			
bit 7	6	5	4	3	2	1	bit			
Legend:										
R = Readable	e bit	P = Programı	nable bit	x = Bit is unkn	own	U = Unimplem read as '1'	nented bit,			
'0' = Bit is cleared		'1' = Bit is set		W = Writable t	bit	n = Value whe after Bulk Era				
bit 13		oltage Programr	ning Enable bit							
				ICLR/VPP pin fu	nction is MCL	R. MCLRE Cont	iguration bit i			
	ignored		4 h a a a d fa a a							
		MCLR/VPP mus		rogramming. le operating fror	n tha LVD ara	aromming intorf	ann Tha			
				om dropping out						
				e from the config						
		litioned (erased)	•		garation state					
bit 12	-	nted: Read as '								
bit 11	WRTSAF: Storage Area Flash Write Protection bit									
		DT write-protect								
		ite-protected	cu							
			ot supported in	the device famil	ly and only ap	plicable if SAFE	N = 0.			
bit 10		nted: Read as '								
bit 9		figuration Regis		ction bit						
		uration Register								
		uration Register								
bit 8	Ŭ	t Block Write Pr	•							
		lock NOT write-								
		lock write-prote								
		ble if $\overline{BBEN} = 0$								
bit 7		pplication Block		on bit						
		ation Block NOT								
		ation Block write								
bit 6-5	Unimpleme	nted: Read as '	1'							
bit 4	SAFEN: SAF	Enable bit								
	1 = SAF dis	sabled								
	0 = SAF en	abled								
bit 3	BBEN: Boot	Block Enable b	it							
	1 = Boot Bl									
	0 = Boot Bl	ock enabled								
bit 2-0	BBSIZE[2:0]	· Boot Block Size	Soloction hite							
DIL 2-0										
DIL 2-0	BBSIZE is us	sed only when E	BBEN = 0	= 1; after BBEN						

Note 1: Bits are implemented as sticky bits. Once protection is enabled, it can only be reset through a Bulk Erase.

8.15 Register Definitions: Power Control

REGISTER 8-2: PCON0: POWER CONTROL REGISTER 0

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:								
HC = Bit is clo	eared by hardv	vare	HS = Bit is set by hardware					
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read as '0'					
u = Bit is uncl	hanged	x = Bit is unknown	-m/n = Value at POR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition					
bit 7	1 = A Stack	tack Overflow Flag bit Overflow occurred Overflow has not occurre	ed or cleared by firmware					
bit 6	1 = A Stack	tack Underflow Flag bit Underflow occurred Underflow has not occurr	red or cleared by firmware					
bit 5	 WDTWV: WDT Window Violation Flag bit 1 = A WDT Window Violation Reset has not occurred or set to '1' by firmware 0 = A WDT Window Violation Reset has occurred (a CLRWDT instruction was executed either without arming the window or outside the window (cleared by hardware) 							
bit 4	1 = A Watch		it occurred or set to '1' by firmware urred (cleared by hardware)					
bit 3	1 = A MCLR	CLR Reset Flag bit Reset has not occurred of Reset has occurred (clea						
bit 2	1 = A RESET		executed or set to '1' by firmware ecuted (cleared by hardware)					
bit 1	1 = No Pow	r-on Reset Status bit er-on Reset occurred r-on Reset occurred (must	t be set in software after a Power-on Reset occurs)					
bit 0	1 = No Brow	•	t be set in software after a Power-on Reset or Brown-out Reset					

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	_	—	_	INTEDG	146
PIE0	—		TMR0IE	IOCIE	—	_		INTE	147
PIE1	OSFIE	CSWIE	_		—	—		ADIE	148
PIE2	_	ZCDIE	_	_	_	_	C2IE	C1IE	149
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIE4	—	_	_	—	—	—	TMR2IE	TMR1IE	151
PIR0	—	_	TMR0IF	IOCIF	—	—		INTF	155
PIR1	OSFIF	CSWIF	_		_	_	_	ADIF	156
PIR2	—	ZCDIF		_	—	—	C2IF	C1IF	157
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
PIR4	_		_	_	—	_	TMR2IF	TMR1IF	159
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	255
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	255
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	256
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	257
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	257
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	258
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	259
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	259
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	259
IOCEP	—			_	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾	260
IOCEN	—	_	_	—	IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾	260
IOCEF	—			_	IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾	261
STATUS	_	_	_	TO	PD	Z	DC	С	54
VREGCON	_	_	_	_	_	—	VREGPM	_	168
CPUDOZE	IDLEN	DOZEN	ROI	DOE	_		DOZE<2:0>		169
WDTCON0	—	—		١	NDTPS<4:0	>		SWDTEN	175

TABLE 11-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: Present only in PIC16(L)F15375/76/85/86.

14.12 PORTF Registers

Note: Present only on PIC16(L)F15385/86.

14.12.1 DATA REGISTER

PORTF is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISF (Register 14-42). Setting a TRISF bit (= 1) will make the corresponding PORTF pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISF bit (= 0) will make the corresponding PORTF pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize an I/O port.

Reading the PORTF register (Register 14-41) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATF).

The PORT data latch LATF (Register 14-43) holds the output port data, and contains the latest value of a LATF or PORTF write.

14.12.2 DIRECTION CONTROL

The TRISF register (Register 14-42) controls the PORTF pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISF register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.12.3 INPUT THRESHOLD CONTROL

The INLVLF register (Register 14-48) controls the input voltage threshold for each of the available PORTF input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTF register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

14.12.4 OPEN-DRAIN CONTROL

The ODCONF register (Register 14-46) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONF bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONF bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note: It is not necessary to set open-drain control when using the pin for I²C; the I²C module controls the pin and makes the pin open-drain.

14.12.5 SLEW RATE CONTROL

The SLRCONF register (Register 14-47) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONF bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONF bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.12.6 ANALOG CONTROL

The ANSELF register (Register 14-44) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELF bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

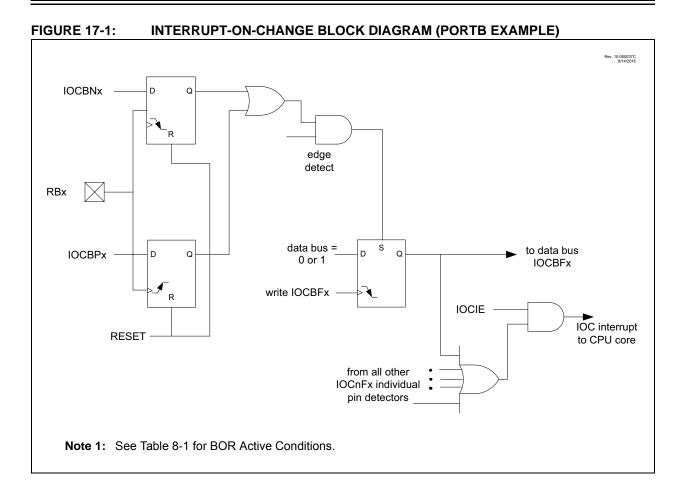
The state of the ANSELF bits has no effect on digital output functions. A pin with TRIS clear and ANSELF set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELF bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

14.12.7 WEAK PULL-UP CONTROL

The WPUF register (Register 14-45) controls the individual weak pull-ups for each port pin.

14.12.8 PORTF FUNCTIONS AND OUTPUT PRIORITIES


Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

		Default	5	Rem	nappable to	Pins of PC	RTx	
INPUT SIGNAL NAME	Input Register Name	Location at	Reset Value (xxxPPS<4:0>)	PIC16(L)F15375/76				
	ituito	POR		PORTA	PORTB	PORTC	PORTD	
INT	INTPPS	RB0	01000	٠	•			
TOCKI	T0CKIPPS	RA4	00100	٠	•			
T1CKI	T1CKIPSS	RC0	10000	٠		•		
T1G	T1GPPS	RB5	01101		•	•		
T2IN	T2INPPS	RC3	10011	٠		•		
CCP1	CCP1PPS	RC2	10010		•	•		
CCP2	CCP2PPS	RC1	10001		•	•		
CWG1IN	CWG1INPPS	RB0	01000		•		•	
CLCIN0	CLCIN0PPS	RA0	00000	٠		•		
CLCIN1	CLCIN1PPS	RA1	00001	٠		•		
CLCIN2	CLCIN2PPS	RB6	01110		•		•	
CLCIN3	CLCIN3PPS	RB7	01111		•		•	
ADACT	ADACTPPS	RB4	01100		•		•	
SCK1/SCL1	SSP1CLKPPS	RC3	10011		•	•		
SDI1/SDA1	SSP1DATPPS	RC4	10100		•	•		
SS1	SSP1SS1PPS	RA5	00101	٠			•	
SCK2/SCL2	SSP2CLKPPS	RB1	01001		•		•	
SDI2/SDA2	SSP2DATPPS	RB2	01010		•		•	
SS2	SSP2SSPPS	RB0	01000		•		•	
RX1/DT1	RX1PPS	RC7	10111		•	•		
CK1	TX1PPS	RC6	10110		•	•		
RX2/DT2	RX2PPS	RB7	01111		•		•	
CK2	TX2PPS	RB6	01110		•		•	

TABLE 15-2: PPS INPUT SIGNAL ROUTING OPTIONS (PIC16(L)F15375/76)

REGISTER	16-2: PMD	1: PMD CON	TROL REGI	STER 1			
R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
NCO1MD			_	—	TMR2MD	TMR1MD	TMR0MD
bit 7							bit 0
r							
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7 bit 6-3	1 = NCO1 m 0 = NCO1 m	isable Numerica iodule disabled iodule enabled inted: Read as '		scillator bit			
bit 2	1 = Timer2 n	sable Timer TM nodule disablec nodule enabled	1				
bit 1	TMR1MD: Disable Timer TMR1 bit 1 = Timer1 module disabled 0 = Timer1 module enabled						
bit 0	1 = Timer0 n	sable Timer TM nodule disableo nodule enabled	1				

REGISTER 17-12: IOCEF: INTERRUPT-ON-CHANGE PORTE FLAG REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0		
—	_	—	_	IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾		
bit 7 bit 0									
Legend:									
R = Readable bit W = Writable bit U = U				U = Unimplen	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets					

'1' = Bit is set

bit 3

IOCEF<3:0>: Interrupt-on-Change PORTE Flag bit

'0' = Bit is cleared

1 = An enabled change was detected on the associated pin

Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.

HS - Bit is set in hardware

0 = No change was detected, or the user cleared the detected change

Note 1: Present only on PIC16(L)F15375/76/85/86.

© 2016 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	_	DAC1NSS	287
DAC1CON1	—	_	—		287				
CM1PSEL	_	_	_	_	_	307			
CM2PSEL	_	_	_			307			

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

27.5.10 LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

The Level-Triggered Hardware Limit One-Shot modes hold the timer in Reset on an external Reset level and start counting when both the ON bit is set and the external signal is not at the Reset level. If one of either the external signal is not in Reset or the ON bit is set then the other signal being set/made active will start the timer. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 10110)
- High Reset level (MODE<4:0> = 10111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control the timer will stay in Reset until both the ON bit is set and the external signal is not at the Reset level.

When Level-Triggered Hardware Limit One-Shot modes are used in conjunction with the CCP PWM operation the PWM drive goes active with either the external signal edge or the setting of the ON bit, whichever of the two starts the timer.

28.3.4 TIMER2 TIMER RESOURCE

This device has a newer version of the Timer2 module that has many new modes, which allow for greater customization and control of the PWM signals than on older parts. Refer to **Section 27.5** "**Operation Examples**" for examples of PWM signal generation using the different modes of Timer2. The CCP operation requires that the timer used as the PWM time base has the FOSC/4 clock source selected

28.3.5 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 28-1.

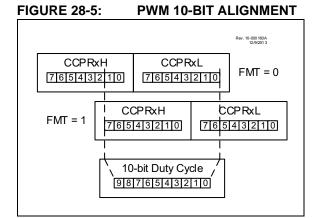
EQUATION 28-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note 1: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is transferred from the CCPRxL/H register pair into a 10-bit buffer.


Note:	The Timer postscaler (see Section 27.4
	"Timer2 Interrupt") is not used in the
	determination of the PWM frequency.

28.3.6 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the CCPRxH:CCPRxL register pair. The alignment of the 10-bit value is determined by the CCPRxFMT bit of the CCPxCON register (see Figure 28-5). The CCPRxH:CCPRxL register pair can be written to at any time; however the duty cycle value is not latched into the 10-bit buffer until after a match between PR2 and TMR2.

Equation 28-2 is used to calculate the PWM pulse width.

Equation 28-3 is used to calculate the PWM duty cycle ratio.

EQUATION 28-2: PULSE WIDTH

Pulse Width = (CCPRxH:CCPRxL register pair) •

TOSC • (TMR2 Prescale Value)

EQUATION 28-3: DUTY CYCLE RATIO

Duty Cycle Ratio =
$$\frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$$

CCPRxH:CCPRxL register pair are used to double buffer the PWM duty cycle. This double buffering provides for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 28-4).

28.3.7 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 28-4.

EQUATION 28-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 28-2:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

TABLE 28-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

28.3.8 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

28.3.9 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

28.3.10 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

30.9 CWG Steering Mode

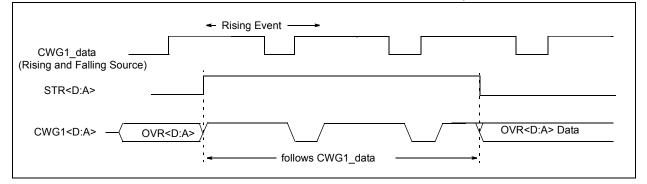
In Steering mode (MODE = 00x), the CWG allows any combination of the CWG1x pins to be the modulated signal. The same signal can be simultaneously available on multiple pins, or a fixed-value output can be presented.

When the respective STRx bit of CWG1OCON0 is '0', the corresponding pin is held at the level defined. When the respective STRx bit of CWG1OCON0 is '1', the pin is driven by the input data signal. The user can assign the input data signal to one, two, three, or all four output pins.

The POLx bits of the CWG1CON1 register control the signal polarity only when STRx = 1.

The CWG auto-shutdown operation also applies in Steering modes as described in **Section 30.10** "**Auto-Shutdown**". An auto-shutdown event will only affect pins that have STRx = 1.

30.9.1 STEERING SYNCHRONIZATION


Changing the MODE bits allows for two modes of steering, synchronous and asynchronous.

When MODE = 000, the steering event is asynchronous and will happen at the end of the instruction that writes to STRx (that is, immediately). In this case, the output signal at the output pin may be an incomplete waveform. This can be useful for immediately removing a signal from the pin.

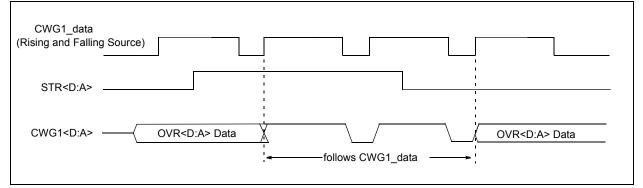
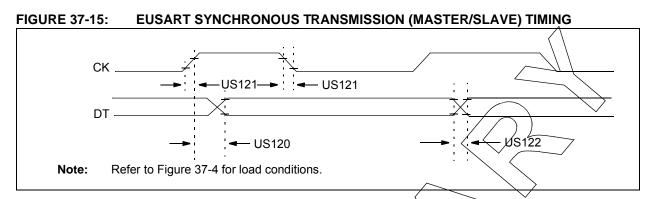

When MODE = 001, the steering update is synchronous and occurs at the beginning of the next rising edge of the input data signal. In this case, steering the output on/off will always produce a complete waveform.

Figure 30-10 and Figure 30-11 illustrate the timing of asynchronous and synchronous steering, respectively.

FIGURE 30-11: EXAMPLE OF STEERING EVENT (MODE<2:0> = 001)

	REGISTER 32-4:	SSPxCON3: SSPx CONTROL REGISTER 3
--	----------------	-----------------------------------

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ACKTIM	³⁾ PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7	<u>.</u>				•		bit
Legend:							
R = Readab	ole bit	W = Writable b	bit	U = Unimplem	ented bit, read as	ʻ0'	
u = Bit is ur	changed	x = Bit is unkn	own	-n/n = Value at	POR and BOR/V	alue at all other l	Resets
'1' = Bit is s	et	'0' = Bit is clea	red				
			0	(2)			
bit 7		nowledge Time S			oth curr		
		the I ² C bus is in a knowledge seque			on 8 th falling edge of SCL clock	of SCL clock	
bit 6		ondition Interrupt					
		errupt on detection					
		ction interrupts ar					
bit 5		ondition Interrupt	•	• ·			
		errupt on detection ction interrupts ar		start conditions			
oit 4		Overwrite Enabl					
511 4	In SPI Slave n						
					shifted in ignoring		
		•			egister already se	et, SSPOV bit of	the SSPxCON
	· · ·	ster is set, and the mode and SPI M	•	dated			
	In I ² C Slave m						
				nerated for a rec	eived address/da	ita byte, ignoring	the state of th
		OV bit only if the xBUF is only upda)V is clear			
oit 3		Hold Time Selec					
		of 300 ns hold tin	•	• ·	of SCL		
		of 100 ns hold tin					
oit 2	SBCDE: Slave	e Mode Bus Colli	sion Detect Ena	ble bit (I ² C Slave	e mode only)		
		g edge of SCL, SI is set, and bus go		w when the moo	lule is outputting a	a high state, the E	3CL1IF bit of th
		ave bus collision i collision i	•				
oit 1	AHEN: Addres	ss Hold Enable b	it (I ² C Slave mo	de only)			
		the eighth falling will be cleared an			eceived address	byte; CKP bit of	the SSPxCON
		olding is disabled					
bit 0		Hold Enable bit (I			4a budau alawa 1		
		N1 register and S		or a received da	ta byte; slave ha	rdware clears the	e CKP bit of tr
Note 1:	For daisy-chained S	SPI operation; allo	ws the user to ic	nore all but the	ast received byte	. SSPOV is still s	et when a new
	byte is received and						
2:	This bit has no effect	ct in Slave modes	s that Start and S	Stop condition de	tection is explicit	y listed as enable	ed.


- 2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.
- 3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	-	_	_	—	_	INTEDG	146	
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158	
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150	
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	491	
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	490	
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	492	
RCxREG	EUSART Rec	eive Data Regis	ter						493*	
TXxREG	EUSART Trar	nsmit Data Reg	lister						493*	
SPxBRGL				SPxBR	G<7:0>				493*	
SPxBRGH				SPxBR	G<15:8>				494*	
RXPPS	_	—		RXPPS<5:0>						
CKPPS	_	_		CXPPS<5:0>						
RxyPPS	_	—	_		F	RxyPPS<4:0>			242	
CLCxSELy	_				LCxDy	S<5:0>			412	

SUMMARY OF REGISTERS ASSOCIATED WITH EUSART TABLE 33-2:

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the EUSART module. *

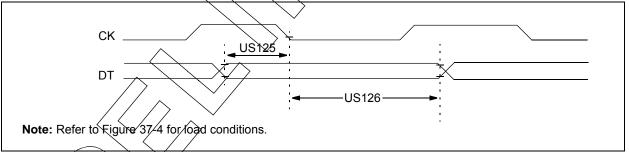
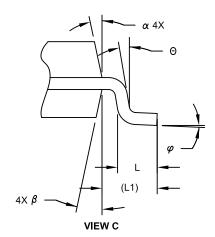
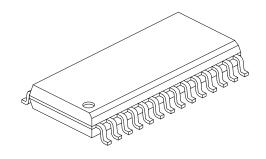

Page with register information.

TABLE 37-21: EUSART SYNCHRONOUS TRANSMISSION CHARACTERISTICS

Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
JS120	TCKH2DTV	SYNC XMIT (Master and Slave)		80	ns	$3.0V \le V\text{DD} \le 5.5V$
	Clock high to data-out valid		$\langle - \rangle$	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF	Clock out rise time and fall time	$\langle - \rangle$	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
(Master mode)	(Master mode)		50	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
US122	TDTRF	Data-out rise time and fall time	$\langle \rangle$	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
			$\overline{)}$	50	ns	$1.8V \le V\text{DD} \le 5.5V$

FIGURE 37-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING




TABLE 37-22: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No. Symbol	> Characteristic	Min.	Max.	Units	Conditions		
	SYNC RCV (Master and Slave) Data-setup before CK \downarrow (DT hold time)	10	_	ns			
US126 TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns			

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins N 28					
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	10.30 BSC				
Molded Package Width E1 7.50 BSC					
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2