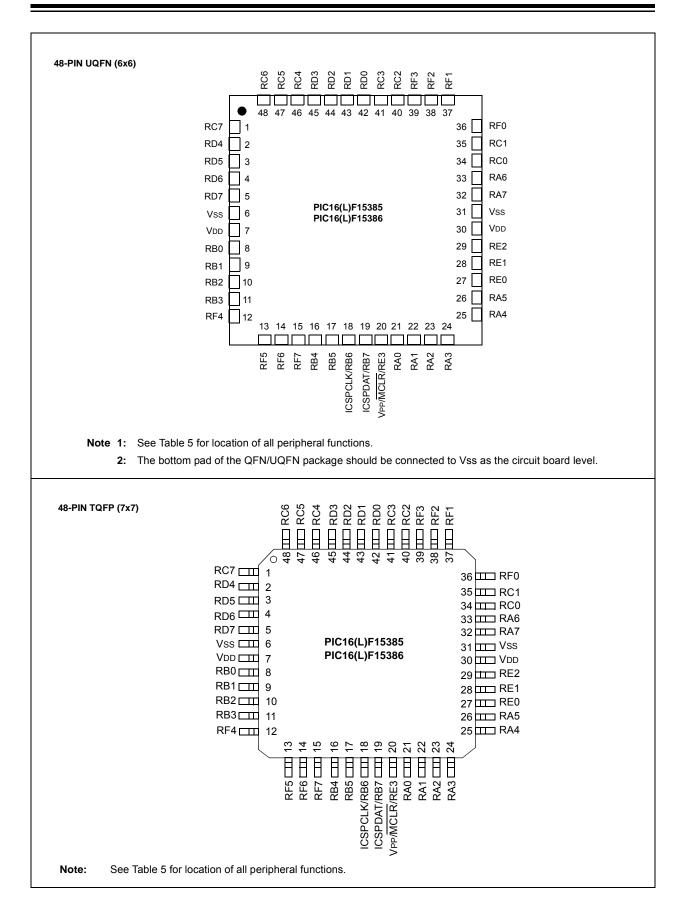


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15375-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

© 2016 Microchip Technology Inc.

		R/W-1	U-1	R/W-1	U-1	R/W-1	R/W-1		
		LVP	—	WRTSAF ⁽¹⁾	—	WRTC ⁽¹⁾	WRTB ⁽¹⁾		
		bit 13	12	11	10	9	bit 8		
R/W-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
WRTAPP ⁽¹⁾	0-1	0-1	SAFEN ⁽¹⁾	BBEN ⁽¹⁾	BBSIZE2	BBSIZE1			
						_	BBSIZE0		
bit 7	6	5	4	3	2	1	bit		
Legend:									
R = Readable	e bit	P = Programı	nable bit	x = Bit is unkn	own	U = Unimplem read as '1'	nented bit,		
'0' = Bit is clea	ared	'1' = Bit is set		W = Writable t	bit	n = Value whe after Bulk Era			
bit 13		oltage Programr	ning Enable bit						
				ICLR/VPP pin fu	nction is MCL	R. MCLRE Cont	iguration bit i		
	ignored		4 h a a a d fa a a						
		MCLR/VPP mus		rogramming. le operating fror	n tha LVD ara	aromming intorf	ann Tha		
				om dropping out					
				e from the config					
		litioned (erased)	•		garation state				
bit 12	-								
bit 11	Unimplemented: Read as '1' WRTSAF: Storage Area Flash Write Protection bit								
		DT write-protect							
		ite-protected	cu						
			ot supported in	the device famil	ly and only ap	plicable if SAFE	N = 0.		
bit 10		nted: Read as '							
bit 9		figuration Regis		ction bit					
		uration Register							
		uration Register							
bit 8	Ŭ	t Block Write Pr	•						
		lock NOT write-							
		lock write-prote							
		ble if $\overline{BBEN} = 0$							
bit 7				on bit					
		WRTAPP: Application Block Write Protection bit 1 = Application Block NOT write-protected							
		ation Block write							
bit 6-5	Unimpleme	nted: Read as '	1'						
bit 4	SAFEN: SAF Enable bit								
	1 = SAF dis	sabled							
	0 = SAF en	abled							
bit 3	BBEN: Boot	Block Enable b	it						
	1 = Boot Bl								
	0 = Boot Bl	ock enabled							
bit 2-0	BBSIZE[2:0]	· Boot Block Size	Soloction hite						
DIL 2-0	BBSIZE[2:0]: Boot Block Size Selection bits BBSIZE is used only when BBEN = 0								
DIL 2-0	BBSIZE is us	sed only when E	BBEN = 0	= 1; after BBEN					

Note 1: Bits are implemented as sticky bits. Once protection is enabled, it can only be reset through a Bulk Erase.

9.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

9.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 9-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 determine the type of oscillator that will be used when the device reset, including when it is first powered up.

The internal clock modes, LFINTOSC, HFINTOSC (set at 1 MHz), or HFINTOSC (set at 32 MHz) can be set through the RSTOSC bits.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used to select the external clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode ECL<= 500 kHz
- 2. ECM External Clock Medium Power mode ECM <= 8 MHz
- 3. ECH External Clock High-Power mode ECH <= 32 MHz
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 4 MHz)
- HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 9-1). A wide selection of device clock frequencies may be derived from these clock sources.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
CLC4IE	CLC3IE	CLC2IE	CLC1IE	—	—	—	TMR1GIE
bit 7							bit 0
Legend:							
R = Readab		W = Writable		•	mented bit, read		
u = Bit is un	0	x = Bit is unkr			at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7	1 = CLC4 i	C4 Interrupt Ena nterrupt enabled nterrupt disable	t				
bit 6	1 = CLC3 i	C3 Interrupt Ena nterrupt enableo nterrupt disable	b				
bit 5	1 = CLC2 i	C2 Interrupt Ena nterrupt enabled nterrupt disable	t				
bit 4	1 = CLC1 i	CLC1IE: CLC1 Interrupt Enable bit 1 = CLC1 interrupt enabled					
bit 3-1	Unimpleme	nted: Read as '	0'				
bit 0 TMR1GIE: Timer1 Gate Interrupt Enable bit 1 = Enables the Timer1 gate acquisition interrupt 0 = Disables the Timer1 gate acquisition interrupt							
s	Bit PEIE of the IN set to enable a controlled by regis	any peripheral	interrupt				

REGISTER 10-7: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

REGISTER 10-16: PIR6: PERIPHERAL INTERRUPT REQUEST REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
—	—	-	-	-	—	CCP2IF	CCP1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set

bit 7-2 Unimplemented: Read as '0'

bit 1

CCP2IF: CCP2 Interrupt Flag bit

Value	CCPM Mode						
value	Capture	Compare	PWM				
1	Capture occurred (must be cleared in software)	Compare match occurred (must be cleared in software)	Output trailing edge occurred (must be cleared in software)				
0	Capture did not occur	Compare match did not occur	Output trailing edge did not occur				

bit 0 CCP1IF: CCP1 Interrupt Flag bit

Value		CCPM Mode	
value	Capture	Compare	PWM
1	Capture occurred (must be cleared in software)	Compare match occurred (must be cleared in software)	Output trailing edge occurred (must be cleared in software)
0	Capture did not occur	Compare match did not occur	Output trailing edge did not occur

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

© 2016 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	216
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	216
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	216
ANSELF	ANSF7	ANSF6	ANSF5	ANSF4	ANSF3	ANSF2	ANSF1	ANSF0	217
WPUF	WPUF7	WPUF6	WPUF5	WPUF4	WPUF3	WPUF2	WPUF1	WPUF0	217
ODCONF	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	218
SLRCONF	SLRF7	SLRF6	SLRF5	SLRF4	SLRF3	SLRF2	SLRF1	SLRF0	218
INLVLF	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF2	INLVLF1	INLVLF0	218

TABLE 14-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Legend: - = unimplemented locations read as '0'. Shaded cells are not used by PORTF.

15.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- The I²C SCLx and SDAx functions can be Note: remapped through PPS. However, only the RB1, RB2, RC3 and RC4 pins have the I²C and SMBus specific input buffers implemented (I²C mode disables INLVL and sets thresholds that are specific for I^2C). If the SCLx or SDAx functions are mapped to some other pin (other than RB1, RB2, RC3 or RC4), the general purpose TTL or ST input buffers (as configured based on INLVL register setting) will be used instead. In most applications, it is therefore recommended only to map the SCLx and SDAx pin functions to the RB1, RB2, RC3 or RC4 pins.

15.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 15-1.

EXAMPLE 15-1: PPS LOCK/UNLOCK SEQUENCE

;	suspend interrupts
	BCF INTCON, GIE
;	BANKSEL PPSLOCK ; set bank
;	required sequence, next 5 instructions
	MOVLW 0x55
	MOVWF PPSLOCK
	MOVLW 0xAA
	MOVWF PPSLOCK
;	Set PPSLOCKED bit to disable writes or
;	Clear PPSLOCKED bit to enable writes
	BSF PPSLOCK, PPSLOCKED
;	restore interrupts
	BSF INTCON, GIE

15.5 PPS Permanent Lock

The PPS can be permanently locked by setting the PPS1WAY Configuration bit. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

15.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

15.7 Effects of a Reset

A device Power-on-Reset (POR) clears all PPS input and output selections to their default values (Permanent Lock Removed). All other Resets leave the selections unchanged. Default input selections are shown in Table 15-1 through Table 15-3.

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1 ⁽¹⁾	IOCAF0 ⁽¹⁾
bit 7	ib					bit 0	
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is unch	Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				

REGISTER 17-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

bit 7-6 Unimplemented: read as '0'

'1' = Bit is set

bit 5-0

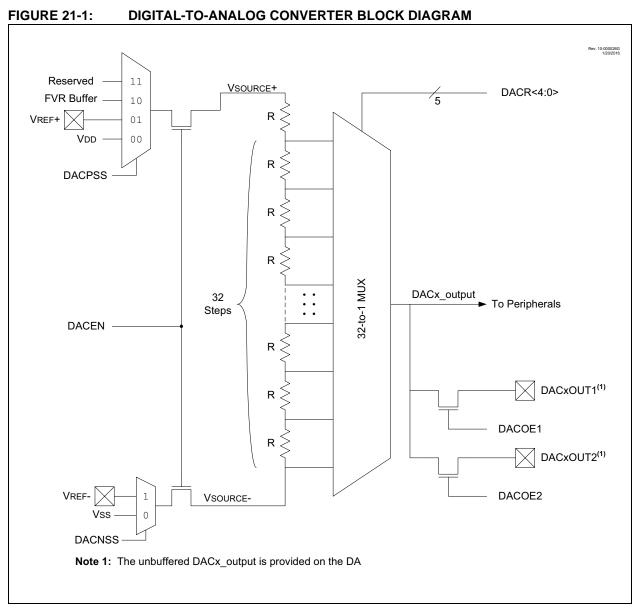
IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits

'0' = Bit is cleared

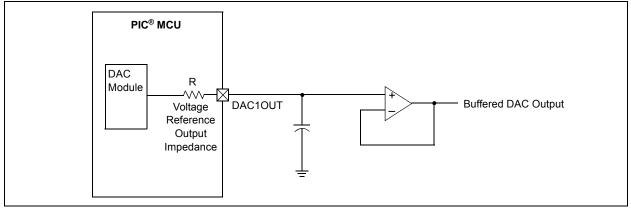
- 1 = An enabled change was detected on the associated pin.
 - Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

HS - Bit is set in hardware

0 = No change was detected, or the user cleared the detected change.


Note 1: If the debugger is enabled, these bits are not available for use.

20.4 Register Definitions: ADC Control


REGISTER 20-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		CHS<	5:0>			GO/DONE	ADON
bit 7							bit (
Legend:							
R = Readable bit	t	W = Writable bit		U = Unimplemer	nted bit, read as	0'	
u = Bit is unchan	ged	x = Bit is unknow	vn	-n/n = Value at F	OR and BOR/Va	alue at all other Re	sets
'1' = Bit is set		'0' = Bit is cleare	d				
bit 7-2		Analog Channel Selec					
	111111 =	FVR Buffer 2 referen	nce voltage ⁽²⁾				
	111110 =	FVR 1Buffer 1 refer	ence voltage				
	111101 =	DAC1 output voltage					
	111100 =	Temperature sensor					
	111011 =	AVss (Analog Grour	,				
	111010-10	0000 = Reserved. No	channel conne	cted			
	101111 =	RF7					
	101110 =	RF6					
	101101 =	RF5					
	101100 =	RF4					
	101011 =	RF3					
	101010 =	RF2					
	101001 =	RF1					
	101000 =	RF0					
	100010 =	RE2					
	100001 =	RE1					
	100000 =	RE0					
	011111 =	RD7					
	011111 =	RD6					
	011101 =	RD5					
	011100 =	RD4					
	011011 =	RD3					
	011010 =	RD2					
	011001 =	RD1					
	011000 =	RD0					
	010111 =	RC7 ⁽⁴⁾					
	010110 =	RC6 ⁽⁴⁾					
	010101 =	RC5					
	010100 =	RC4					
	010011 =	RC3					
	010010 =	RC2					
	010001 =	RC1					
	010000 =	RC0					
	001111 =	RB7 ⁽⁴⁾					
	001110 =	RB6 ⁽⁴⁾					
	001101 =	RB5 ⁽⁴⁾					
	001100 =	RB4 ⁽⁴⁾					
		0110 = Reserved					
	000101 =	RA5					
	000100 =	RA4					
	000011 =	RA3					
	000010 =	RA2					
	000001 =	RA1					
	000000 =	RA0					
bit 1	GO/DONE: /	ADC Conversion State	us bit				
		version cycle in prog		s bit starts an ADC	conversion cycle		
		s automatically cleare					
		version completed/no					

0 = ADC conversion completed/not in progress

FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

© 2016 Microchip Technology Inc.

26.7 Timer1 Interrupts

The timer register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When the timer rolls over, the respective timer interrupt flag bit of the PIR5 register is set. To enable the interrupt on rollover, you must set these bits:

- ON bit of the T1CON register
- TMR1IE bit of the PIE4 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note:	To avoid immediate interrupt vectoring,
	the TMR1H:TMR1L register pair should
	be preloaded with a value that is not immi-
	nently about to rollover, and the TMR1IF
	flag should be cleared prior to enabling
	the timer interrupts.

26.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- ON bit of the T1CON register must be set
- TMR1IE bit of the PIE4 register must be set
- PEIE bit of the INTCON register must be set
- SYNC bit of the T1CON register must be set
- CS bits of the T1CLK register must be configured
- The timer clock source must be enabled and continue operation during sleep. When the SOSC is used for this purpose, the SOSCEN bit of the OSCEN register must be set.

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Secondary oscillator will continue to operate in Sleep regardless of the SYNC bit setting.

26.9 CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPRxH:CCPRxL register pair on a configured event.

In Compare mode, an event is triggered when the value CCPRxH:CCPRxL register pair matches the value in the TMR1H:TMR1L register pair. This event can be an Auto-conversion Trigger.

For more information, see Section 28.0 "Capture/Compare/PWM Modules".

26.10 CCP Auto-Conversion Trigger

When any of the CCP's are configured to trigger an auto-conversion, the trigger will clear the TMR1H:TMR1L register pair. This auto-conversion does not cause a timer interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPRxH:CCPRxL register pair becomes the period register for Timer1.

The timer should be synchronized and FOSC/4 should be selected as the clock source in order to utilize the Auto-conversion Trigger. Asynchronous operation of the timer can cause an Auto-conversion Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with an Auto-conversion Trigger from the CCP, the write will take precedence.

For more information, see Section 28.2.4 "Compare During Sleep".

30.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces half-bridge, full-bridge, and steering of PWM waveforms. It is backwards compatible with previous ECCP functions.

The CWG has the following features:

- · Six operating modes:
 - Synchronous Steering mode
 - Asynchronous Steering mode
 - Full-Bridge mode, Forward
 - Full-Bridge mode, Reverse
 - Half-Bridge mode
 - Push-Pull mode
- Output polarity control
- Output steering
 - Synchronized to rising event
 - Immediate effect
- Independent 6-bit rising and falling event deadband timers
 - Clocked dead band
 - Independent rising and falling dead-band enables
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

The CWG modules available are shown in Table 30-1.

TABLE 30-1: AVAILABLE CWG MODULES

Device	CWG1
PIC16(L)F15356/75/76/85/86	•

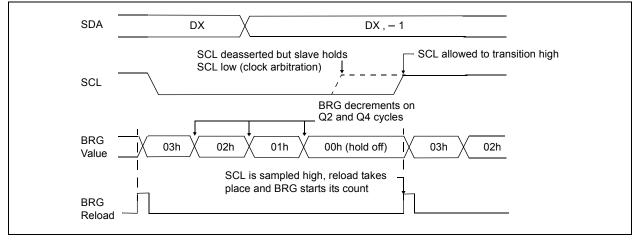
30.1 Fundamental Operation

The CWG module can operate in six different modes, as specified by MODE of the CWG1CON0 register:

- Half-Bridge mode (Figure 30-9)
- Push-Pull mode (Figure 30-2)
 - Full-Bridge mode, Forward (Figure 30-3)
 - Full-Bridge mode, Reverse (Figure 30-3)
- Steering mode (Figure 30-10)
- Synchronous Steering mode (Figure 30-11)

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. Thus, all output modes support auto-shutdown, which is covered in **30.10** "Auto-Shutdown".

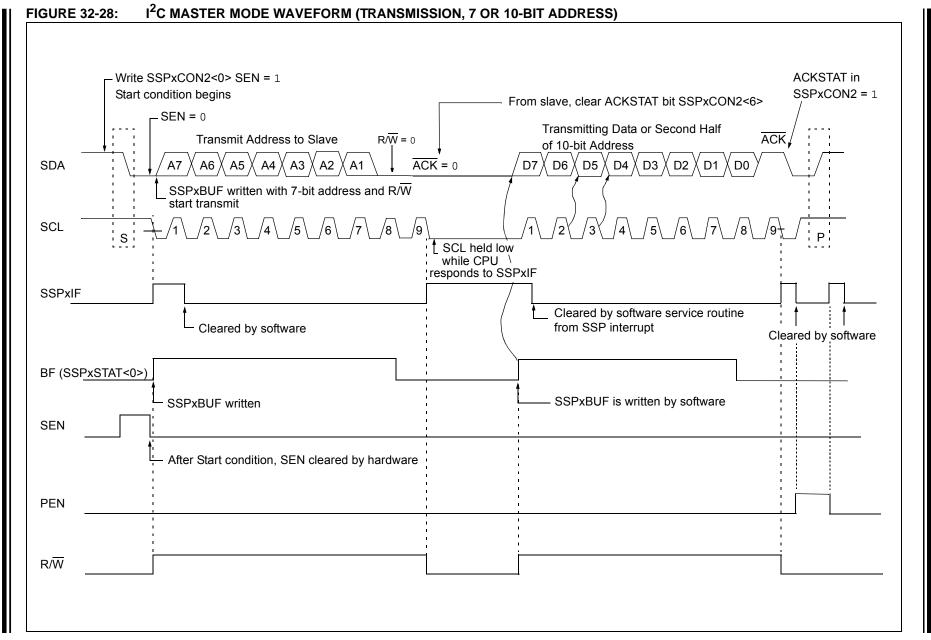
30.1.1 HALF-BRIDGE MODE


In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 30-9. A non-overlap (dead-band) time is inserted between the two outputs as described in **Section 30.5 "Dead-Band Control"**.

The unused outputs CWG1C and CWG1D drive similar signals, with polarity independently controlled by the POLC and POLD bits of the CWG1CON1 register, respectively.

32.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 32-25).


FIGURE 32-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

32.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,							
	writing to the lower five bits of SSPxCON2							
	is disabled until the Start condition is							
	complete.							

	REGISTER 32-4:	SSPxCON3: SSPx CONTROL REGISTER 3
--	----------------	-----------------------------------

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ACKTIM	³⁾ PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7	<u>.</u>				•		bit
Legend:							
R = Readab	ole bit	W = Writable b	bit	U = Unimplem	ented bit, read as	ʻ0'	
u = Bit is ur	changed	x = Bit is unkn	own	-n/n = Value at	POR and BOR/V	alue at all other l	Resets
'1' = Bit is s	et	'0' = Bit is clea	red				
			0	(2)			
bit 7		nowledge Time S			oth curr		
		the I ² C bus is in a knowledge seque			on 8 th falling edge of SCL clock	of SCL clock	
bit 6		ondition Interrupt					
		errupt on detection					
		ction interrupts ar					
bit 5		ondition Interrupt	•	• ·			
		errupt on detection ction interrupts ar		start conditions			
oit 4		Overwrite Enabl					
511 4	In SPI Slave n						
					shifted in ignoring		
		•			egister already se	et, SSPOV bit of	the SSPxCON
	· · ·	ster is set, and the mode and SPI M	•	dated			
	In I ² C Slave m						
				nerated for a rec	eived address/da	ita byte, ignoring	the state of th
		OV bit only if the xBUF is only upda)V is clear			
oit 3		Hold Time Selec					
		of 300 ns hold tin	•	• ·	of SCL		
		of 100 ns hold tin					
oit 2	SBCDE: Slave	e Mode Bus Colli	sion Detect Ena	ble bit (I ² C Slave	e mode only)		
		g edge of SCL, SI is set, and bus go		w when the moo	lule is outputting a	a high state, the E	3CL1IF bit of th
		ave bus collision i collision i	•				
oit 1	AHEN: Addres	ss Hold Enable b	it (I ² C Slave mo	de only)			
		the eighth falling will be cleared an			eceived address	byte; CKP bit of	the SSPxCON
		olding is disabled					
bit 0		Hold Enable bit (I			4a budau alawa 1		
		N1 register and S		or a received da	ta byte; slave ha	rdware clears the	e CKP bit of tr
Note 1:	For daisy-chained S	SPI operation; allo	ws the user to ic	nore all but the	ast received byte	. SSPOV is still s	et when a new
	byte is received and						
2:	This bit has no effect	ct in Slave modes	s that Start and S	Stop condition de	tection is explicit	y listed as enable	ed.

- 2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.
- 3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

REGISTER 32-7: SSPxBUF: MSSPx BUFFER REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SSPxBl	JF<7:0>			
bit 7							bit 0
Legend:							

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SSPxBUF<7:0>: MSSP Buffer bits

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH MSSPx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	_	—	_	—		INTEDG	146	
PIR1	OSFIF	CSWIF	-	—	-	—	-	ADIF	156	
PIE1	OSFIE	CSWIE	_	—	_	—	-	ADIE	148	
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	465	
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		466	
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	467	
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	465	
SSP1MSK	SSPMSK<7:0>								469	
SSP1ADD	SSPADD<7:0>								469	
SSP1BUF				SSPBUF<7:0>						
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	465	
SSP2CON1	WCOL	SSPOV	SSPEN	CKP	SSPM<3:0>				466	
SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	467	
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	465	
SSP2MSK				SSPMS	K<7:0>				469	
SSP2ADD				SSPAD	D<7:0>				469	
SSP2BUF				SSPBU	F<7:0>				470	
SSP1CLKPPS	-	—		SSP1CLKPPS<5:0>						
SSP1DATPPS	_	_		SSP1DATPPS<5:0>						
SSP1SSPPS	_	— SSP1SSPPS<5:0>							241	
SSP2CLKPPS		SSP2CLKPPS<5:0>							241	
SSP2DATPPS		_			SSP2DATE	PPS<5:0>			241	
SSP2SSPPS	_	—		1	SSP2SSP	PS<5:0>			241	
RxyPPS	—	—	—	RxyPPS<4:0>						

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSPx module

Note 1: When using designated I²C pins, the associated pin values in INLVLx will be ignored.

33.1.2.3 Receive Interrupts

The RXxIF interrupt flag bit of the PIR3 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RXxIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RXxIF interrupts are enabled by setting all of the following bits:

- RXxIE, Interrupt Enable bit of the PIE3 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RXxIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

33.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCxSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCxREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCxSTA register which resets the EUSART. Clearing the CREN bit of the RCxSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

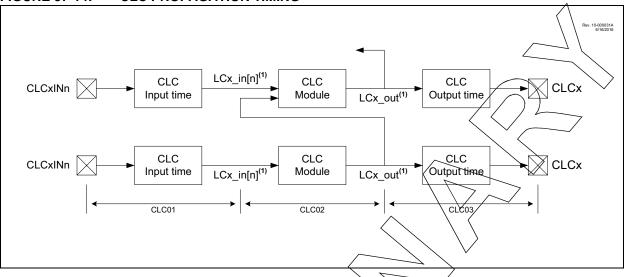
Note: If all receive characters in the receive FIFO have framing errors, repeated reads of the RCxREG will not clear the FERR bit.

33.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCxSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCxSTA register or by resetting the EUSART by clearing the SPEN bit of the RCxSTA register.

33.1.2.6 Receiving 9-Bit Characters

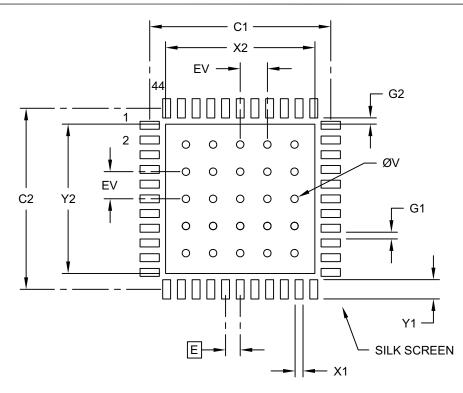
The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.


33.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCxSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RXxIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.


TABLE 37-20: CONFIGURABLE LOGIC CELL (CLC) CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +125°C								
Param. No.	Sym.	Characteristic	Min.	Typt	Max.	Units	Conditions	
CLC01*	TCLCIN	CLC input time	\searrow	7	105	ns	(Note 1)	
CLC02*	TCLC	CLC module input to output propagation time	\searrow	24 12	_	ns ns	VDD = 1.8V VDD > 3.6V	
CLC03*	TCLCOUT	CLC output time Rise Time	—	107	_	_	(Note 1)	
		Fall Time	—	IO8	_	—	(Note 1)	
CLC04*	FCLCMAX	CLC maximum switching frequency	—	32	Fosc	MHz		

- * These parameters are characterized but not/tested.
- † Data in "Typ" column is at 3.0%, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: See Table 37-10 for IØ5, IØ7 and IO8 rise and fall times.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	AILLIMETER:	S		
Dimension	Dimension Limits				
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	X2			6.60	
Optional Center Pad Length	Y2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Contact Pad to Contact Pad (X40)	G1	0.30			
Contact Pad to Center Pad (X44)	G2	0.28			
Thermal Via Diameter	V		0.33		
Thermal Via Pitch		1.20			

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820