

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15376-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Н	
	_
	O
	Ŧ
	35
	5
	UT I
	6
I	
I	85/
I	
I	8
I	ő
н	

Preliminary

I/O ⁽²⁾	48-Pin UQFN/TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	CCP	MWM	SWC	ASSM	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RC2	40	ANC2	—	—	—	_	—	CCP1 ⁽¹⁾	-	—	—		—	-	—	IOCC2	Y	—
RC3	41	ANC3	-	-	-	_	T2IN ⁽¹⁾	-	_	_	SCL1 SCL2 ^(1,4)	_	—	_	-	IOCC3	Y	-
RC4	46	ANC4	-	_	_	_	-	—	_	-	SDA1 SDI1 ^(1,4)	_	—	_	_	IOCC4	Y	_
RC5	47	ANC5	_	—	_	_	_	_	_	_	_	_	—	_	_	IOCC5	Υ	_
RC6	48	ANC6	-	—	—	_	_	—	_	—	—		TX1 CK1 ⁽¹⁾	_	-	IOCC6	Y	—
RC7	1	ANC7	-	—	—	_	—	—	_	—	_		RX1 DT1 ⁽¹⁾	_	-	IOCC7	Y	—
RD0	42	AND0	-	—	-	-	-	—	—	-	SCK2 SCL2 ^(1,4)	—	-	—	-	-	Y	—
RD1	43	AND1	—	—	—		—	—	_	—	SDA2 SDI2 ^(1,4)		_	_	-	—	Y	—
RD2	44	AND2	_	_	—	_	_	_	-	_	_	_	—	-	_	_	Y	_
RD3	45	AND3	_	_	_	_	_	_		_	_		_		—	_	Y	_
RD4	2	AND4	_	_	—	_	_	—	_	_	_	_	_	_	_	_	Υ	_
RD5	3	AND5	_	_	—	_	_	—	-	_	_	-	_	-	_	_	Υ	_
RD6	4	AND6	_	_	—	_	_	_	_	—	_	_	_	_	_	—	Υ	_
RD7	5	AND7	—	—	—	_	—	—	-	—	—	-	—	-	—	—	Υ	—
RE0	27	ANE0	-	—	—	_	—	—	-	—	—	-	—	-	—	—	Υ	—
RE1	28	ANE1	_	—	—	_	-	—		-	_	_	_		—	-	Υ	—
RE2	29	ANE2	_	—	—	—	—	—	—	—	—	_	—	—	—	—	Y	—
RE3	20	_	-	—	—		—	—	_	—	—	_	—	_	_	IOCE3	Y	MCLR VPP
RF0	36	ANF0	_	_	—	_	—	_	_	—	_		_	_	_	—	Y	_
RF1	37	ANF1	_	—	—	_	-	—	-	—	—	_	—	-	—	—	Υ	—
RF2	38	ANF2	_	—	—	_	-	_	_	—	—	_	—	_	—	—	Υ	_
RF3	39	ANF3	_	—	—	_	-	—	-	—	—	_	—	-	—	—	Υ	—
RF4	12	ANF4	—	—	—		—	—		_	_		_		—	—	Υ	—

TABLE 5: 48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) (CONTINUED)

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.
 All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

	Bank 60		Bank 61		Bank 62		Bank 63
1E3Fh	RE7PPS ⁽²⁾	1EBFh	_	1F3Fh	IOCAF	1FBFh	_
1E40h	_	1EC0h	_	1F40h	_	1FC0h	_
1E41h	_	1EC1h	_	1F41h	_	1FC1h	_
1E42h		1EC2h	_	1F42h	_	1FC2h	_
1E43h		1EC3h	ADACTPPS	1F43h	ANSELB	1FC3h	_
1E44h	_	1EC4h	_	1F44h	WPUB	1FC4h	_
1E45h	—	1EC5h	SSP1CLKPPS	1F45h	ODCONB	1FC5h	_
1E46h	—	1EC6h	SSP1DATPPS	1F46h	SLRCONB	1FC6h	—
1E47h		1EC7h	SSP1SSPPS	1F47h	INLVLB	1FC7h	—
1E48h	—	1EC8h	SSP2CLKPPS	1F48h	IOCBP	1FC8h	—
1E49h	—	1EC9h	SSP2DATPPS	1F49h	IOCBN	1FC9h	—
1E4Ah	_	1ECAh	SSP2SSPPS	1F4Ah	IOCBF	1FCAh	—
1E4Bh	—	1ECBh	RXDT1PPS	1F4Bh	_	1FCBh	—
1E4Ch	—	1ECCh	TXCK1PPS	1F4Ch	_	1FCCh	—
1E4Dh	—	1ECDh	RXD2TPPS	1F4Dh	_	1FCDh	—
1E4Eh	—	1ECEh	TXCK2PPS	1F4Eh	ANSELC	1FCEh	—
1E4Fh	—	1ECFh	_	1F4Fh	WPUC	1FCFh	_
1E50h	ANSELF ⁽²⁾	1ED0h	—	1F50h	ODCONC	1FD0h	—
1E51h	WPUF ⁽²⁾	1ED1h	_	1F51h	SLRCONC	1FD1h	_
1E52h	ODCONF ⁽²⁾	1ED2h	_	1F52h	INLVLC	1FD2h	_
1E53h	SLRCONF ⁽²⁾	1ED3h	_	1F53h	IOCCP	1FD3h	_
1E54h	INLVLF ⁽²⁾	1ED4h	_	1F54h	IOCCN	1FD4h	_
1E55h		1ED5h	_	1F55h	IOCCF	1FD5h	_
1E56h		1ED6h	_	1F56h	_	1FD6h	_
1E57h	_	1ED7h	_	1F57h	_	1FD7h	_
1E58h	_	1ED8h	_	1F58h	_	1FD8h	_
1E59h	—	1ED9h	_	1F59h	ANSELD ⁽¹⁾	1FD9h	_
1E5Ah	_	1EDAh	_	1F5Ah	WPUD ⁽¹⁾	1FDAh	_
1E5Bh	_	1EDBh	_	1F5Bh	ODCOND ⁽¹⁾	1FDBh	_
1E5Ch	_	1EDCh	_	1F5Ch	SLRCOND ⁽¹⁾	1FDCh	_
1E5Dh	_	1EDDh	_	1F5Dh	INLVLD ⁽¹⁾	1FDDh	_
1E5Eh		1EDEh	_	1F5Eh	_	1FDEh	_
1E5Fh		1EDFh	_	1F5Fh		1FDFh	_
1E60h	_	1EE0h	_	1F60h		1FE0h	_
1E61h	_	1EE1h	_	1F61h		1FE1h	_
1E62h	_	1EE2h	_	1F62h	_	1FE2h	_
1E63h	_	1EE3h	_	1F63h	_	1FE3h	BSR ICDSHAD
1E64h	_	1EE4h	_	1F64h	ANSELE ⁽¹⁾	1FE4h	STATUS SHAD
1E65h	_	1EE5h	_	1F65h	WPUE	1FE5h	WREG_SHAD
1E66h	_	1EE6h	_	1F66h	ODCONE ⁽¹⁾	1FE6h	BSR_SHAD
1E67h	_	1EE7h	_	1F67h	SLRCONE ⁽¹⁾	1FE7h	PCLATH SHAD
1E68h	_	1EE8h	_	1F68h	INLVLE	1FE8h	FSR0L SHAD
1E69h	_	1EE9h	_	1F69h	IOCEP	1FE9h	FSR0H SHAD
1E6Ah		1EEAh	_	1F6Ah	IOCEN	1FEAh	FSR1L SHAD
1E6Bh	_	1EEBh	_	1F6Bh	IOCEF	1FEBh	FSR1H_SHAD
1E6Ch		1EECh	_	1F6Ch		1FECh	
1E6Dh		1EEDh	_	1F6Dh	_	1FEDh	STKPTR
1E6Eh		1EEEh	_	1F6Eh	_	1FEEh	TOSL
1E6Fh		1EEFh	_	1F6Fh	_	1FEFh	TOSH

TABLE 4-9: PIC16(L)F15356/75/76/85/86 MEMORY MAP, BANKS 60, 61, 62, AND 63

Legend:

= Unimplemented data memory locations, read as '0'

Note 1: Present only on PIC16(L)F15375/76/85/86.

2: Present only on PIC16(L)F15385/86

IABLE 4	ABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)													
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR			
Bank 12	ank 12													
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics							
60Ch	CWG1CLKCON	—	_	—	_	—	—	_	CS	0	0			
60Dh	CWG1DAT	_	_	_	_		DA	T<3:0>		0000	0000			
60Eh	CWG1DBR	_	—			00 0000	00 0000							
60Fh	CWG1DBF	_	—				00 0000	00 0000						
610h	CWG1CON0	EN	LD	—	—	—		MODE<2:0>	•	00000	00000			
611h	CWG1CON1	_	—	IN	—	POLD	POLC	POLB	POLA	x- 0000	u- 0000			
612h	CWG1AS0	SHUTDOWN	REN	LSBD	<2:0>	LSAC	<2:0>	—	_	0001 01	0001 01			
613h	CWG1AS1	_	—	_	AS4E	AS3E	AS2E	AS1E	AS0E	0 0000	u 0000			
614h	CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	0000 0000	0000 0000			
615h					Linimalor	mantad								
 61Fh	_	Unimplemented								_				

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

PIC16(L)F15356/75/76/85/86

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: RB<7:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register returns actual I/O pin values.

REGISTER 14-12: ANSELB: PORTB ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSB7 | ANSB6 | ANSB5 | ANSB4 | ANSB3 | ANSB2 | ANSB1 | ANSB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ANSB<7:0>: Analog Select between Analog or Digital Function on pins RB<7:0>, respectively

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSD7 | ANSD6 | ANSD5 | ANSD4 | ANSD3 | ANSD2 | ANSD1 | ANSD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSD<7:0>**: Analog Select between Analog or Digital Function on Pins RD<7:0>, respectively⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

REGISTER 14-29: WPUD: WEAK PULL-UP PORTD REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUD7 | WPUD6 | WPUD5 | WPUD4 | WPUD3 | WPUD2 | WPUD1 | WPUD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUD<7:0>: Weak Pull-up Register bits⁽¹⁾

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

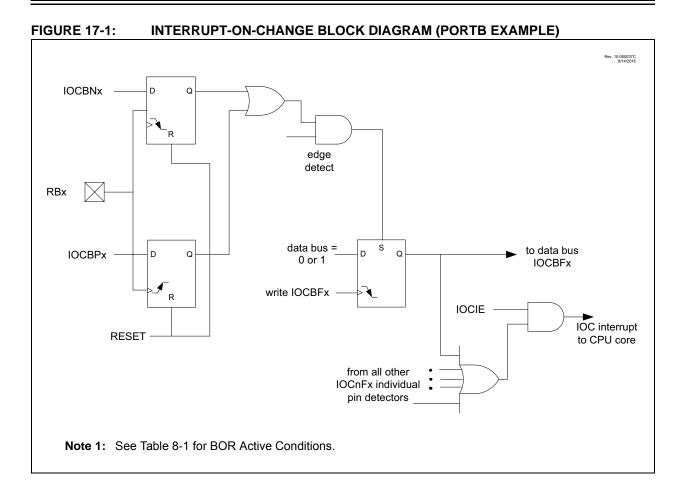
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	216
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	216
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	216
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	217
WPUD	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	217
ODCOND	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	218
SLRCOND	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	218
INLVLD	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	218

TABLE 14-5: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

PIC16(L)F15356/75/76/85/86

	1	· · · • · · ·			· · · · · · · · ·	1			
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
RC1PPS	—	—	—			RC1PPS<	4:0>		242
RC2PPS	_	_	_			RC2PPS<	4:0>		242
RC3PPS	_	_	_			RC3PPS<	4:0>		242
RC4PPS	_	—	_			RC4PPS<	4:0>		242
RC5PPS	_	—	_			RC5PPS<	4:0>		242
RC6PPS	_	—	_			RC6PPS<	4:0>		242
RC7PPS	_	_	_			RC7PPS<	4:0>		242
RD0PPS ⁽¹⁾	_	_	_			RD0PPS<4	:0>		242
RD1PPS ⁽¹⁾	_	_	_			RD1PPS<4	:0>		242
RD2PPS ⁽¹⁾	_	_	_		RD2PPS<4:0>				
RD3PPS ⁽¹⁾	_	_	_		RD3PPS<4:0>				
RD4PPS ⁽¹⁾	—	—	—		RD4PPS<4:0>				242
RD5PPS ⁽¹⁾	—	_	_			RD5PPS<4	:0>		242
RD6PPS ⁽¹⁾	—		_			RD6PPS<4	:0>		242
RD7PPS ⁽¹⁾	_	_	_			RD7PPS<4	:0>		242
RE0PPS ⁽¹⁾	—	—	_			RD5PPS<4	:0>		242
RE1PPS ⁽¹⁾	—	—	—			RD6PPS<4	:0>		242
RE2PPS ⁽¹⁾	—	_	—			RD7PPS<4	:0>		242
RF0PPS ⁽²⁾	—	—	—			RF0PPS<4	:0>		242
RF1PPS ⁽²⁾	—	—	—	RF1PPS<4:0>					242
RF2PPS ⁽²⁾	—	—	—	RF2PPS<4:0>					242
RF3PPS ⁽²⁾	-	—	_	RF3PPS<4:0>					242
RF4PPS ⁽²⁾	—	_	_	RF4PPS<4:0>					242
RF5PPS ⁽²⁾	—	—	—	RF5PPS<4:0>					242
RF6PPS ⁽²⁾	—	—	—	RF6PPS<4:0>					242
RF7PPS ⁽²⁾	—	—	—			RF7PPS<4	:0>		242


TABLE 15-8: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

Note 1: Present only on PIC16(L)F15375/76/85/86.

2: Present only on PIC16(L)F15385/86.

PIC16(L)F15356/75/76/85/86

ADC Clock P	eriod (TAD)			Device Frequ			
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽²⁾
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽²⁾	64.0 μs ⁽²⁾
ADCRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)				

TABLE 20-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.


Note 1: See TAD parameter for ADCRC source typical TAD value.

2: These values violate the required TAD time.

3: Outside the recommended TAD time.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the ADCRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 20-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

REGISTER 22-6: NCO1INCL: NCO1 INCREMENT REGISTER – LOW BYTE^(1,2)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
			NCO1I	NC<7:0>			
bit 7							bit 0
l egend:							

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1INC<7:0>: NCO1 Increment, Low Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

2: DDSINC is double-buffered as INCBUF; INCBUF is updated on the next falling edge of NCOCLK after writing to NCO1INCL; NCO1INCU and NCO1INCH should be written prior to writing NCO1INCL.

REGISTER 22-7: NCO1INCH: NCO1 INCREMENT REGISTER – HIGH BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCO1IN	IC<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1INC<15:8>: NCO1 Increment, High Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

REGISTER 22-8: NCO1INCU: NCO1 INCREMENT REGISTER – UPPER BYTE⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		NCO1IN	C<19:16>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCO1INC<19:16>: NCO1 Increment, Upper Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

24.9 Register Definitions: ZCD Control

REGISTER 24-1: ZCDCON: ZERO-CROSS DETECTION CONTROL REGISTER

R/W-q/q	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
SEN	—	OUT	POL	—	_	INTP	INTN		
bit 7		-	·				bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'			
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BC	OR/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared	q = value dep	ends on Confi	guration bits			
bit 7	1 = Zero-cro		abled. ZCD pi			and sink currer and TRIS contro			
bit 6	Unimplemer	Unimplemented: Read as '0'							
bit 5	$\frac{\text{POL bit} = 1}{1 = \text{ZCD pin}}$ $0 = \text{ZCD pin}$ $\frac{\text{POL bit} = 0}{1 = \text{ZCD pin}}$	ross Detection is sourcing cur is sinking curr is sinking curr is sourcing cu	rrent ent	it					
bit 4	1 = ZCD log	ross Detection ic output is inve ic output is not	erted	Polarity bit					
bit 3-2	Unimplemer	ted: Read as	ʻ0'						
bit 1	INTP: Zero-C	Cross Positive I	Edge Interrupt	Enable bit					
				_output transition ZCDx_output					
bit 0	INTN: Zero-C	Cross Negative	Edge Interrup	ot Enable bit					
				_output transiti v ZCDx_output					

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
ZCDxCON	EN	_	OUT	POL			INTP	INTN	314

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 24-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0.01/5/0.0	13:8	_	_	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV		100
CONFIG2	7:0	BOREN	N <1:0>	LPBOREN		—		PWRTE	MCLRE	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

31.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) module provides programmable logic that operates outside the speed limitations of software execution. The logic cell selects from 40 input signals and, through the use of configurable gates, reduces the inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- I/O pins
- Internal clocks
- · Peripherals
- · Register bits

The output can be directed internally to peripherals and to an output pin.

The CLC modules available are shown in Table 31-1.

TABLE 31-1: AVAILABLE CLC MODULES

Device	CLC1	CLC2	CLC3	CLC4
PIC16(L)F15356/75/76/85/8 6	•	•	•	٠

Note:	The CLC1, CLC2, CLC3 and CLC4 are
	four separate module instances of the
	same CLC module design. Throughout
	this section, the lower case 'x' in register
	and bit names is a generic reference to
	the CLC number (which should be substi-
	tuted with 1, 2, 3, or 4 during code devel-
	opment). For example, the control register
	is generically described in this chapter as
	CLCxCON, but the actual device registers
	are CLC1CON, CLC2CON, CLC3CON
	and CLC4CON. Similarly, the LCxEN bit
	represents the LC1EN, LC2EN, LC3EN
	and LC4EN bits.

Refer to Figure 31-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
 - Transparent D with Set and Reset
 - Clocked J-K with Reset

32.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of \overline{ACK} is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCL low and SDA unchanged (Figure 32-28).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCL low and allowing SDA to float.

32.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all eight bits are shifted out.

32.6.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

32.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

32.6.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPx-CON2 register. Interrupt is generated once the Stop/Restart condition is complete.

33.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXxSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

33.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 33.4.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode.

If two words are written to the TXxREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXxREG register.
- 3. The TXxIF bit will not be set.
- After the first character has been shifted out of TSR, the TXxREG register will transfer the second character to the TSR and the TXxIF bit will now be set.
- 5. If the PEIE and TXxIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 33.4.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- 4. If interrupts are desired, set the TXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXxREG register.

PIC16(L)F15356/75/76/85/86

REGISTER 33-4: RCxREG⁽¹⁾: RECEIVE DATA REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RCxRE	G<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **RCxREG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 33-2)

Note 1: RCxREG (including the 9th bit) is double buffered, and data is available while new data is being received.

REGISTER 33-5: TXxREG⁽¹⁾: TRANSMIT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			TXxRE	G<7:0>						
bit 7			bit 7							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TXxREG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 33-1)

Note 1: TXxREG (including the 9th bit) is double buffered, and can be written when previous data has started shifting.

REGISTER 33-6: SPxBRGL⁽¹⁾: BAUD RATE GENERATOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPxBRG<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SPxBRG<7:0>: Lower eight bits of the Baud Rate Generator

Note 1: Writing to SP1BRG resets the BRG counter.

TABLE 37-18: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

	d Operating (nless otherwise ≤ +125°C	e stated)					
Param. No.	Sym.		Characteristic	Min.	Тур†	Max.	Units	Conditions	
40*	T⊤0H	T0CKI High F	OCKI High Pulse Width No Prescaler			—	_	ns-	$\langle \rangle$
			With Prescaler		10		—	/ ns	
41*	T⊤0L	T0CKI Low F	T0CKI Low Pulse Width No Prescaler				—/	/ns /	
			With Prescaler				_	NS	
42*	T⊤0P	T0CKI Period	1	Greater of: 20 or <u>Tcy + 40</u> N	-	/	ns	N = prescale value	
45*	T⊤1H	T1CKI High	Synchronous, N	lo Prescaler	0.5 Tcy + 20	_/	K	ns,	Ŷ
		Time	Synchronous, with Prescaler		15	-	$\overline{1}$	715	
			Asynchronous		30 🔨			ns	
46*	T⊤1L	T1CKI Low	Synchronous, N	lo Prescaler	0.5 Tcy + 20	<u> </u>	/_/	ns	
		Time	Synchronous, w	ith Prescaler	15	$\langle - \rangle$	\rightarrow	ns	
			Asynchronous		30	$\overline{\mathcal{A}}$	$\overline{)} -$	ns	
47*	T⊤1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N		/_	ns	N = prescale value
10	F _4		Asynchronous		60	— 32.768	—	ns	
48	F⊤1		scillator Input Frequency Range 32.4 ; abled by setting bit T1OSCEN)				33.1	kHz	
49*	TCKEZTMR1	Increment	xternal Clock Ed	$\overline{\overline{)}}$	2 Tosc	—	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C onless otherwise stated. These parameters are for design guidance only and are not tested.

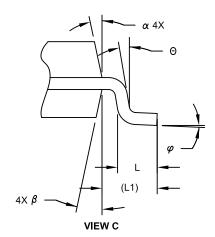
© 2016 Microchip Technology Inc.

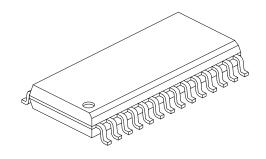
38.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Unless otherwise noted, all graphs apply to both the L and LF devices.


Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

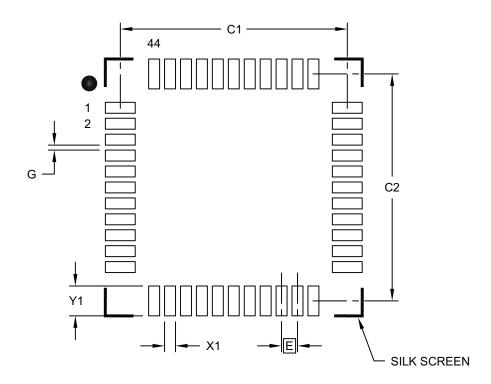

"Typical" represents the mean of the distribution at 25°C. "Maximum", "Max.", "Minimum" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

Charts and graphs are not available at this time.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	е	1.27 BSC			
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

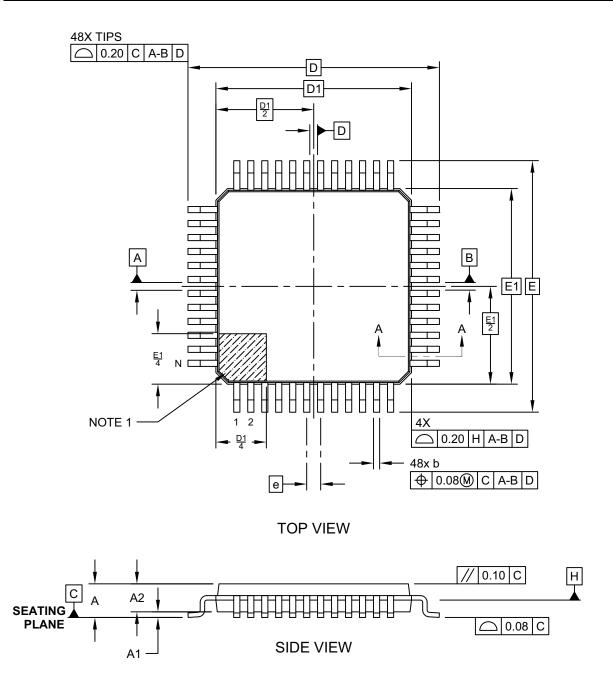
44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.80 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2