

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15376t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLE 4	DLE 4-11. SPECIAL FUNCTION REGISTER SUMMART DANKS 0-03 (CONTINUED)												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR		
Bank 16	ink 16												
	CPU COPE RECISTERS: and Table 4.2 for appoint												
	CPU CORE REGISTERS; see Table 4-3 for specifics												
80Ch	WDTCON0	—	—			WDTPS<4:0>			SWDTEN	dd dddo	dd dddo		
80Dh	WDTCON1	—		WDTCS<2:0>		—		WINDOW<2:)>	-ddd -ddd	-वेवेवे -वेवेवे		
80Eh	WDTPSL				PSCNT	<7:0>				0000 0000	0000 0000		
80Fh	WDTPSH				PSCNT	<15:8>				0000 0000	0000 0000		
810h	WDTTMR	—		WDTTM	IR<3:0>		STATE	PSCNT17	PSCNT16	xxxx x000	xxxx x000		
811h	BORCON	SBOREN	—	—	—	—	—	_	BORRDY	1 q	uu		
812h	VREGCON	—	_	—	—	—	—	VREGPM ⁽¹⁾	—	0-	0-		
813h	PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011 110q	qqqq qquu		
814h	PCON1	—	—	-	—	—	—	MEMV	—	1-	u-		
815h	—				Unimpler	mented				—	—		
816h	—				Unimpler	mented				—	—		
817h	—				Unimpler	mented				—	—		
818h	—				Unimpler	mented				—	—		
819h	_				Unimpler	mented				—	—		
81Ah	NVMADRL				NVMADI	R<7:0>				xxxx xxxx	uuuu uuuu		
81Bh	NVMADRH	—				NVMADR<14:8	>			-xxx xxxx	-uuu uuuu		
81Ch	NVMDATL				NVMDA	T<7:0>				0000 0000	0000 0000		
81Dh	NVMDATH	_	_			NVMD	AT<13:8>			00 0000	00 0000		
81Eh	NVMCON1	_	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 q000		
81Fh	NVMCON2				NVMCON	12<7:0>				XXXX XXXX	uuuu uuuu		

x = unknown, u = unchanged, g = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

Note 1: Present only on PIC16F15356/75/76/85/86.

9.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL, ECM, ECH and Secondary Oscillator).

9.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 9-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

FIGURE 9-10: FSCM TIMING DIAGRAM

9.4.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to the HFINTOSC at 1 MHz clock frequency and sets the bit flag OSFIF of the PIR1 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

9.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator, or external oscillator and PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

9.4.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. Therefore, the device will always be executing code while the OST is operating.

	-R IU-13: PIK3:				I REGISTER		
R/W/HS-	-0/0 R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
RC2IF	F TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF
bit 7							bit (
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is	unchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is	set	'0' = Bit is clea	ared	HS = Hardwa	are clearable		
L:1 7					(1)		
DIT /	1 - The EUSA	ARIZ Receive I	nterrupt Flag	(Read-Only) b moty (contains	iti'''	to)	
	1 = The EUS 0 = The EUS	ART2 receive	buffer is empty	v (Contains	at least one by	le)	
bit 6	TX2IF: EUSA	RT2 Transmit	nterrupt Flag	, (Read-Only) b	it(2)		
	1 = The EUS	ART2 transmit	buffer contain	is at least one	unoccupied spa	ice	
	0 = The EUS	SART2 transmi	t buffer is cu	rrently full. Th	ne application fi	rmware shoul	d not write to
	TXxREG				(1)		
bit 5	RC1IF: EUSA	ART1 Receive I	nterrupt Flag	(read-only) bit	(') 	4- \	
	1 = The EUS 0 = The FUS	ART1 receive	buffer is not ei buffer is empty	mpty (contains v	at least one by	(e)	
bit 4	TX1IF: EUSA	RT1 Transmit	nterrupt Flag	, (read-onlv) bit	(2)		
	1 = The EUS	SART1 transmi	t buffer contai	ns at least one	unoccupied spa	ace	
	0 = The EU	SART1 transm	it buffer is cu	irrently full. Th	ne application f	irmware shoul	d not write to
	TXxREG	again, until m	ore room becc	omes available	in the transmit	buffer.	
bit 3	BCL2IF: MSS	SP2 Bus Collisi	on Interrupt Fl	lag bit			
	1 = A bus coll $0 = No bus coll$	lision was dete	cted (must be ected	cleared in som	(ware)		
bit 2	SSP2IF: Svn	chronous Seria	l Port (MSSP2	2) Interrupt Fla	a bit		
~~ _	1 = The Tran	smission/Rece	ption/Bus Cor	dition is comp	lete (must be cl	eared in softwa	are)
	0 = Waiting f	or the Transmis	ssion/Reception	on/Bus Conditi	on in progress		,
bit 1	BCL1IF: MSS	SP1 Bus Collisi	on Interrupt Fl	lag bit			
	1 = A bus co	llision was dete	cted (must be	e cleared in sof	ftware)		
		ollision was de	tected				
bit 0	SSP1IF: Synd	chronous Seria	I Port (MSSP1	I) Interrupt Fla	g bit lata (muat ha al	oarad in aaffuu	
	1 = The tran 0 = Waiting f	or the Transmis	sion/Receptic	on/Bus Conditi	on in progress	eared in sollwa	are)
Note 1.		a road only hit			firmuoro muot	road from DCv	
Note 1:	times to remove al	l bytes from the	e receive buffe	er.	inniware must	read from RCX	REG enough
2:	The TXxIF flag is a	a read-only bit,	indicating if th	ere is room in	the transmit but	fer. To clear th	e TX1IF flag,
	the firmware must	write enough d	ata to TXxRE	G to complete	ly fill all available	e bytes in the b	ouffer. The
	TXxIF flag does no	ot indicate trans	smit completio	n (use TRMT	for this purpose	instead).	
Note:	Interrupt flag bits a	re set when an	interrupt				
	condition occurs, r	egardless of the	e state of				
	its corresponding	enable bit or th	e Global				
	Enable bit, GIE, c	should encu	register.				
	appropriate interri	upt flag bits a	are clear				

prior to enabling an interrupt.

© 2016 Microchip Technology Inc.

14.12 PORTF Registers

Note: Present only on PIC16(L)F15385/86.

14.12.1 DATA REGISTER

PORTF is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISF (Register 14-42). Setting a TRISF bit (= 1) will make the corresponding PORTF pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISF bit (= 0) will make the corresponding PORTF pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize an I/O port.

Reading the PORTF register (Register 14-41) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATF).

The PORT data latch LATF (Register 14-43) holds the output port data, and contains the latest value of a LATF or PORTF write.

14.12.2 DIRECTION CONTROL

The TRISF register (Register 14-42) controls the PORTF pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISF register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.12.3 INPUT THRESHOLD CONTROL

The INLVLF register (Register 14-48) controls the input voltage threshold for each of the available PORTF input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTF register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

14.12.4 OPEN-DRAIN CONTROL

The ODCONF register (Register 14-46) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONF bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONF bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note: It is not necessary to set open-drain control when using the pin for I²C; the I²C module controls the pin and makes the pin open-drain.

14.12.5 SLEW RATE CONTROL

The SLRCONF register (Register 14-47) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONF bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONF bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.12.6 ANALOG CONTROL

The ANSELF register (Register 14-44) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELF bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELF bits has no effect on digital output functions. A pin with TRIS clear and ANSELF set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELF bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

14.12.7 WEAK PULL-UP CONTROL

The WPUF register (Register 14-45) controls the individual weak pull-ups for each port pin.

14.12.8 PORTF FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY TSEN TSRNG CDAFVR<1:0>					ADFVR<1:0>		264
ADCON0			CHS<	5:0>			GO/DONE	ADON	277
ADCON1	ADFM		ADCS<2:0>		_	_	ADPREI	=<1:0>	279
DAC1CON0	DAC1EN	-	DAC10E1	DAC10E2	DAC1PS	SS<1:0>		DAC1NSS	287

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: -= unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

20.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the ADCRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine (ISR).

20.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 20-3 shows the two output formats.

FIGURE 20-3: 10-BIT ADC CONVERSION RESULT FORMAT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	—	DAC1NSS	287
DAC1CON1	_	—	_			DAC1R<4:	0>		287
CM1PSEL	_	—	_	_	PCH<2:0>				
CM2PSEL	—	_	—	— — PCH<2:0>				307	

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

REGISTER 22-3: NCO1ACCL: NCO1 ACCUMULATOR REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCO1A	CC<7:0>			
bit 7							bit 0
l egend.							

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCO1ACC<7:0>: NCO1 Accumulator, Low Byte

REGISTER 22-4: NCO1ACCH: NCO1 ACCUMULATOR REGISTER – HIGH BYTE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | NCO1ACC | 2<15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NOC1ACC<15:8>: NCO1 Accumulator, High Byte

REGISTER 22-5: NCO1ACCU: NCO1 ACCUMULATOR REGISTER – UPPER BYTE⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	_	—		NCO1AC	C<19:16>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCO1ACC<19:16>: NCO1 Accumulator, Upper Byte

Note 1: The accumulator spans registers NCO1ACCU:NCO1ACCH: NCO1ACCL. The 24 bits are reserved but not all are used. This register updates in real-time, asynchronously to the CPU; there is no provision to guarantee atomic access to this 24-bit space using an 8-bit bus. Writing to this register while the module is operating will produce undefined results.

24.9 Register Definitions: ZCD Control

REGISTER 24-1: ZCDCON: ZERO-CROSS DETECTION CONTROL REGISTER

R/W-q/q	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
SEN		OUT	POL			INTP	INTN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value de	pends on Config	guration bits	
bit 7	SEN: Zero-Cros 1 = Zero-cros 0 = Zero-cros	oss Detection s detect is ena s detect is dis	Enable bit abled. ZCD pir abled. ZCD pi	n is forced to c n operates acc	utput to source cording to PPS	and sink currer and TRIS contro	nt. ols.
bit 6	Unimplement	ted: Read as '	0'				
bit 5	OUT : Zero-Cri <u>POL bit = 1</u> : 1 = ZCD pin i 0 = ZCD pin i <u>POL bit = 0</u> : 1 = ZCD pin i 0 = ZCD pin i	oss Detection s sourcing cur s sinking curre s sinking curre s sourcing cur	Logic Level bi rent ent rent	t			
bit 4	POL: Zero-Cr 1 = ZCD logic 0 = ZCD logic	oss Detection c output is inve c output is not	Logic Output l rted inverted	Polarity bit			
bit 3-2	Unimplement	ted: Read as '	0'				
bit 1	INTP: Zero-Cross Positive Edge Interrupt Enable bit 1 = ZCDIF bit is set on low-to-high ZCDx_output transition 0 = ZCDIF bit is unaffected by low-to-high ZCDx output transition						
bit 0	INTN: Zero-C 1 = ZCDIF bit 0 = ZCDIF bit	ross Negative t is set on high t is unaffected	Edge Interrup -to-low ZCDx <u>-</u> by high-to-low	t Enable bit _output transiti / ZCDx_output	on transition		

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
ZCDxCON	EN	_	OUT	POL	_	_	INTP	INTN	314

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 24-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	—	100
CONFIG2	7:0	BOREN	N <1:0>	LPBOREN		_		PWRTE	MCLRE	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

R/W-0/0	R/W-0/0	R/W-0/0		R/VV-0/0	R/W-0/0	R/W-U/U	R/W-0/0
	1003<2:0>		TUASTING		TUCKP	/5<3:0>	
Dit 7							DIT
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	1 as '0'	
u = Bit is uncł	nanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-5	TOCS<2:0>: 111 = LC1_0 110 = SOSC 101 = MFINT 100 = LFINT 011 = HFINT 010 = Fosc/2 001 = TOCKI 000 = TOCKI	Timer0 Clock S ut OSC (500 kHz OSC OSC 4 PPS (Inverted) PPS (True)	Source select b	its			
bit 4	T0ASYNC: T 1 = The input 0 = The input	MR0 Input Asy it to the TMR0 of to the TMR0 of	nchronization counter is not s ounter is sync	Enable bit synchronized hronized to Fo	to system clock osc/4	s	
bit 3-0	TOCKPS<3:0 1111 = 1:327 1110 = 1:163 1101 = 1:819 1100 = 1:409 1011 = 1:204 1010 = 1:102 1001 = 1:512 1000 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:4 0011 = 1:2 0000 = 1:1	>: Prescaler R /68 /84 /2 /6 /8 /4 /2 /3	ate Select bit				

U-0	U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—	_		CS<	<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	vare	
bit 7-4	Unimplemen	ted: Read as '	0'				
bit 3-0	CS<3:0>: Tim	ner1 Clock Sele	ect bits				
	1111 = Reser	rved					
	1110 = Reser	rved					
	1101 = LC4_	out					
	1100 = LC3_	out					
	$1011 = LC2_0$	out					
	$1010 = LC1_0$	out					
	1001 = Timer		put				
	1000 = CLKR						
	0111 - 3030	י דטפט (גא גאי)				
	0101 = MFIN	TOSC (52 KHZ TOSC (500 kH	7				
	0100 = 1 FINT	TOSC	_)				
	0011 = HFIN	TOSC					
	0010 = Fosc						
	0001 = Fosc/	/4					
	0000 = T1CK	IPPS					

REGISTER 26-3: T1CLK TIMER1 CLOCK SELECT REGISTER

MO		E<4:0>	Output	Operation		Timer Control			
wode	Iode Operation <4:3> <2:0> Operation	Start	Reset	Stop					
		000		Software gate (Figure 27-4)	ON = 1	—	ON = 0		
		001	Period Pulse	Hardware gate, active-high (Figure 27-5)	ON = 1 and TMRx_ers = 1	—	ON = 0 or TMRx_ers = 0		
		010		Hardware gate, active-low	ON = 1 and TMRx_ers = 0	—	ON = 0 or TMRx_ers = 1		
Free	0.0	011		Rising or falling edge Reset		TMRx_ers			
Period	00	100	Period	Rising edge Reset (Figure 27-6)	-	TMRx_ers ↑	ON = 0		
		101	Pulse	Falling edge Reset		TMRx_ers ↓			
		110	with Hardware Reset	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0		
		111	Reset	High level Reset (Figure 27-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1		
		000	One-shot	Software start (Figure 27-8)	ON = 1	—			
		001	Edge	Rising edge start (Figure 27-9)	ON = 1 and TMRx_ers ↑	—			
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	—			
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	—	ON = 0 or Next clock		
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 27-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	after TMRx = PRx		
		101	triggered start	Falling edge start and Falling edge ResetON = 1 and TMRx_ers ↓		TMRx_ers ↓	(Note 2)		
		110	hardware Reset	Rising edge start and Low level Reset (Figure 27-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0			
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1			
		000		Rese	rved	_			
		001	Edge	Rising edge start (Figure 27-12)	ON = 1 and TMRx_ers ↑	_	ON = 0 or		
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	—	TMRx = PRx (Note 3)		
Reserved	10	100		Rese	rved				
Reserved		101		Rese	rved				
		110	Level triggered	High level start and Low level Reset (Figure 27-13)	ON = 1 and TMRx_ers = 1	$TMRx_ers = 0$	ON = 0 or		
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)		
Reserved	11	xxx		Rese	rved				

TABLE 27-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC ^{(1, 2}	CKPOL ⁽³⁾	CKSYNC ^(4, 5)			MODE<4:0>(6, 7))	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is unc	hanged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/\	/alue at all other	Resets
'1' = Bit is set	t	'0' = Bit is cleare	ed				
bit 7	PSYNC: Timer	x Prescaler Syncl	nronization Ena	able bit ^(1, 2)			
	1 = TMRx Pre	escaler Output is s	synchronized to	Fosc/4			
	0 = IMRx Pre	escaler Output is r	not synchronize	ed to Fosc/4			
bit 6	CKPOL: Timer	rx Clock Polarity S	Selection bit(3)				
	1 = Failing ed 0 = Rising ed	ige of input clock (locks timer/pre	escaler			
bit 5	CKSYNC: Tim	erx Clock Synchro	nization Enabl	e bit(4, 5)			
bit o	1 = ON regist	er bit is synchroni	zed to TMR2	clk input			
	0 = ON regist	er bit is not synch	ronized to TMF	R2_clk input			
bit 4-0	MODE<4:0>: 1	Timerx Control Mo	de Selection b	its ^(6, 7)			
	See Table 27-1						
Note 1:	Setting this bit ensu	ures that reading	TMRx will retur	n a valid value.			
2:	When this bit is '1',	Timer2 cannot op	perate in Sleep	mode.			
3:	CKPOL should not	be changed while	e ON = 1.				
4:	Setting this bit ensu	ures glitch-free op	eration when th	ne ON is enabled	or disabled.		
5:	When this bit is set	then the timer op	eration will be	delayed by two Tl	MRx input clocks	after the ON bit	is set.
6:	Unless otherwise in of TMRx).	ndicated, all modes	s start upon ON	I = 1 and stop upo	on ON = 0 (stops	occur without aff	ecting the value

REGISTER 27-3: T2HLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

28.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral that allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

The Capture/Compare/PWM modules available are shown in Table 28-1.

TABLE 28-1:	AVAILABLE CCP MODULES
-------------	-----------------------

Device	CCP1	CCP2
PIC16(L)F15356/75/76/85/86	•	•

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion	
bit 7	OVRD: Steer	ng Data D bit					
bit 6	OVRC: Steer	ng Data C bit					
bit 5	OVRB: Steer	ng Data B bit					
bit 4	OVRA: Steer	ng Data A bit					
bit 3	STRD: Steeri	ng Enable D bi	t(2)				
	1 = CWG1D	output has the	CWG1_data	waveform with	polarity control	from POLD bit	
1.11.0	0 = CWG1D	output is assigi	ned the value	of OVRD bit			
bit 2	SIRC: Steeri	ng Enable C bi					
	1 = CWG1C 0 = CWG1C	output nas the	CWG1_data	of OVRC bit	polarity control	from POLC bit	
bit 1	STRB: Steeri	na Enable B bit	(2)				
Sit	1 = CWG1B	output has the	CWG1_data [,]	waveform with	polarity control	from POI B bit	
	0 = CWG1B	output is assig	ned the value	of OVRB bit			
bit 0	STRA: Steeri	ng Enable A bi	(2)				
	1 = CWG1A	output has the	CWG1_data	waveform with	polarity control	from POLA bit	
	0 = CWG1A	output is assigi	ned the value	of OVRA bit			
Note 1: Th	e bits in this re	gister apply onl	v when MOD	E<2:0> = 00x.			

REGISTER 30-7: CWG1STR: CWG1 STEERING CONTROL REGISTER⁽¹⁾

2: This bit is effectively double-buffered when MODE<2:0> = 001.

FIGURE 32-7: SPI DAISY-CHAIN CONNECTION

32.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 10-bit Addressing mode.

Figure 32-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data <u>byte</u> to the slave and clocks out the slaves ACK on the ninth SCL pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

32.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 32-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 32-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

33.4.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 33.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCxREG register. If the RXxIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 33.4.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RXxIF bit will be set when reception is complete. An interrupt will be generated if the RXxIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCxREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.