

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15376t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4: PIC16(L)F15385/86 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RF5/ANF5	RF5	TTL/ST	CMOS/OD	General purpose I/O.
	ANF5	AN	_	ADC Channel D0 input.
RF6/ANF6	RF6	TTL/ST	CMOS/OD	General purpose I/O.
	ANF6	AN	—	ADC Channel D0 input.
RF7/ANF7	RF5	TTL/ST	CMOS/OD	General purpose I/O.
	ANF5	AN	_	ADC Channel D0 input.
VDD	Vdd	Power	_	Positive supply voltage input.
Vss	Vss	Power	_	Ground reference.
Legend: AN = Analog input or outp TTL = TTL compatible input			mpatible input or	

TTL = TTL compatible input

HV = High Voltage

XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-7.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for l^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the l^2C specific or SMBus input buffer thresholds. 4:

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 4-3)	C80h	Core Registers (Table 4-3)	D00h	Core Registers (Table 4-3)	D80h	Core Registers (Table 4-3)	E00h	Core Registers (Table 4-3)	E80h	Core Registers (Table 4-3)	F00h	Core Registers (Table 4-3)	F80h	Core Registers (Table 4-3)
C0Bh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
COCh	Unimplemented Read as '0'	C8Ch	Unimplemented Read as '0'	DOCh	Unimplemented Read as '0'		Unimplemented Read as '0'								
C1Fh		C9Fh													
C20h		CA0h													
	General Purpose Register 80 Bytes ⁽¹⁾		General Purpose Register 80 Bytes ⁽¹⁾												
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h	Accesses 70h – 7Fh	CF0h	Accesses 70h – 7Fh	D70h	Accesses 70h – 7Fh	DF0h	Accesses 70h – 7Fh	E70h	Accesses 70h – 7Fh	EF0h	Accesses 70h – 7Fh	F70h	Accesses 70h – 7Fh	FF0h	Accesses 70h – 7Fh

TABLE 4-7: PIC16(L)F15356/75/76/85/86 MEMORY MAP, BANK 24-31

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Present only in PIC16(L)F15356/76/86.

IADLE	ABLE 4-11. SPECIAL FUNCTION REGISTER SUMMART BANKS 0-05 (CONTINUED)										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	
Bank 61 (0	Continued)										
1EC5h	SSP1CLKPPS	—	—			SSP1CL	.KPPS<5:0>			01 0011	
1EC6h	SSP1DATPPS — — SSP1DATPPS<5:0>									01 0100	
1EC7h	SSP1SSPPS	_	—			SSP1S	SPPS<5:0>			00 0101	

SSP2CLKPPS<5:0>

SSP2DATPPS<5:0>

SSP2SSPPS<5:0>

RX1DTPPS<5:0>

TX1CKPPS<5:0>

RX2DTPPS<5:0>

TX2CKPPS<5:0>

Unimplemented

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

_

_

_

_

_

_

_

_

_

_

Legend:	x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.
---------	--

1EC8h

1EC9h

1ECAh

1ECBh

1ECCh

1ECDh

1ECEh

1ECFh

1EEFh

SSP2CLKPPS

SSP2DATPPS

SSP2SSPPS

RX1DTPPS

TX1CKPPS

RX2DTPPS

TX2CKPPS

V<u>alue o</u>n: MCLR

--uu uuuu

--00 1001

--00 1000

--00 1000

--01 0111

--01 0110

--00 1111

--00 1110

5.0 DEVICE CONFIGURATION

Device configuration consists of the Configuration Words, User ID, Device ID, Device Information Area (DIA), (see Section 6.0 "Device Information Area"), and the Device Configuration Information (DCI) regions, (see Section 7.0 "Device Configuration Information").

5.1 Configuration Words

The devices have several Configuration Words starting at address 8007h. The Configuration bits establish configuration values prior to the execution of any software; Configuration bits enable or disable device-specific features.

In terms of programming, these important Configuration bits should be considered:

1. LVP: Low-Voltage Programming Enable bit

- <u>1</u> = ON Low-Voltage Programming is enabled. MCLR/VPP pin function is MCLR. MCLRE Configuration bit is ignored.
- 0 = OFF HV on MCLR/VPP must be used for programming.
- 2. CP: User Nonvolatile Memory (NVM) Program Memory Code Protection bit
- 1 = OFF User NVM code protection disabled
- 0 = ON User NVM code protection enabled

				INEQUEU			
R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0
CLC4IF	CLC3IF	CLC2IF	CLC1IF	—		—	TMR1GIF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BOI	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7	CLC4IF: CLC	4 Interrupt Flag	g bit				
				curred (must l	be cleared in so	ftware)	
	0 = No CLC4	interrupt event	has occurred				
bit 6	CLC3IF: CLC	3 Interrupt Flag	g bit				
				curred (must b	be cleared in so	ftware)	
	0 = No CLC3	interrupt event	has occurred				
bit 5	CLC2IF: CLC	2 Interrupt Flag	g bit				
		UT interrupt co interrupt event		curred (must b	be cleared in so	ftware)	
bit 4		1 Interrupt Flag					
			5	curred (must l	be cleared in so	ftware)	
	0 = No CLC1	interrupt event	has occurred			,	
bit 3-1	Unimplemen	ted: Read as '	כ'				
bit 0	TMR1GIF: Tir	mer1 Gate Inte	rrupt Flag bit				
		r1 Gate has go			s complete)		
	0 = The Time	r1 Gate has no	t gone inactive	9			
Note: Inte	errupt flag bits a	re set when an	interrupt				
	aprillag bito u		apt				

REGISTER 10-15: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5

Note:	Interrupt flag bits are set when an interrupt										
	condition occurs, regardless of the state of										
	its corresponding enable bit or the Global										
	Enable bit, GIE, of the INTCON register.										
	User software should ensure the										
	appropriate interrupt flag bits are clear										
	prior to enabling an interrupt.										

EXAMPLE 13-1: PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
    PROG_ADDR_HI : PROG_ADDR_LO
    data will be returned in the variables;
*
    PROG_DATA_HI, PROG_DATA_LO
    BANKSELNVMADRL; Select Bank for NVMCON registersMOVLWPROG_ADDR_LO;MOVWFNVMADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWFNVMADRH; Store MSB of address
    BCF
              NVMCON1,NVMREGS ; Do not select Configuration Space
    BSF
                NVMCON1, RD
                                      ; Initiate read
    MOVF
                 NVMDATL,W
                                        ; Get LSB of word
                NVMDATL,W; Get LSB of wordPROG_DATA_LO; Store in user locationNVMDATH,W; Get MSB of wordPROG_DATA_HI; Store in user location
    MOVWF
    MOVF
    MOVWF
```

19.2.1 CALIBRATION

19.2.1.1 Single-Point Calibration

Single-point calibration is performed by application software using Equation 19-1 and the assumed Mt. A reading of VTSENSE at a known temperature is taken, and the theoretical temperature is calculated by temporarily setting TOFFSET = 0. Then TOFFSET is computed as the difference of the actual and calculated temperatures. Finally, TOFFSET is stored in nonvolatile memory within the device, and is applied to future readings to gain a more accurate measurement.

19.2.1.2 Higher-Order Calibration

If the application requires more precise temperature measurement, additional calibrations steps will be necessary. For these applications, two-point or three-point calibration is recommended.

Note 1:	The TOFFSET value may be determined
	by the user with a temperature test.

- 2: Although the measurement range is -40°C to +125 °C due to the variations in offset error, the single-point uncalibrated calculated TSENSE value may indicate a temperature from -140°C to +225°C before the calibration offset is applied.
- The user must take into consideration self-heating of the device at different clock frequencies and output pin loading. For package related thermal characteristics information, refer to Section TABLE 37-6: "Thermal Characteristics".

19.2.2 TEMPERATURE RESOLUTION

The resolution of the ADC reading, Ma (°C/count), depends on both the ADC resolution N and the reference voltage used for conversion, as shown in Equation 19-2. It is recommended to use the smallest VREF value, such as 2.048 FVR reference voltage, instead of VDD.

Note:	Refer	to	Sec	tion :	37.0	"Electrical		
	Specif	icatio	ons"	for	FVR	reference		
	voltage	e accu	uracy.					

EQUATION 19-2: TEMPERATURE RESOLUTION (°C/LSb)

$$Ma = \frac{V_{REF}}{2^N} \times Mt$$

$$Ma = \frac{\frac{V_{REF}}{2^N}}{Mv}$$

Where:

Mv = sensor voltage sensitivity (V/°C)

VREF = Reference voltage of the ADC module (in Volts)

N = Resolution of the ADC

The typical Mv value for a single diode is approximately -1.267 to -1.32 mV/C. The typical Mv value for a stack of two diodes (low range setting) is approximately -2.533 mV/C. The typical Mv value for a stack of three diodes (high range setting) is approximately -3.8 mV/C.

EXAMPLE 19-1: TEMPERATURE RESOLUTION

Using VREF = 2.048V and a 10-bit ADC provides 2 mV/LSb measurements.

Because Mv can vary from -2.40 to -2.65 mV/°C, the range of Ma = 0.75 to 0.83 °C/LSb.

19.3 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait a minimum of 25 us for the ADC value to settle, after the ADC input multiplexer is connected to the temperature indicator output, before the conversion is performed.

ADC Clock P	eriod (TAD)		Device Frequency (Fosc)						
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs		
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾		
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾		
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽²⁾		
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽²⁾	64.0 μs ⁽²⁾		
ADCRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)						

TABLE 20-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.


Note 1: See TAD parameter for ADCRC source typical TAD value.

2: These values violate the required TAD time.

3: Outside the recommended TAD time.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the ADCRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 20-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

EXAMPLE 24-1:

VRMS = 120 VPEAK =VRMS* $\sqrt{2}$ = 169.7 f = 60 Hz C = 0.1 uF Z = VPEAK/3x10⁻⁴ = 169.7/(3x10⁻⁴) = 565.7 kOhms Xc = 1/(2 Π fC) = 1/(2 Π *60*1*10⁻⁷) = 26.53 kOhms R = $\sqrt{(Z^2 - Xc^2)}$ = 565.1 kOhms (computed) R = 560 kOhms (used) ZR = $\sqrt{(R^2 + Xc^2)}$ = 560.6 kOhms (using actual resistor) IPEAK = VPEAK/ZR = 302.7*10⁻⁶ VC = Xc* IPEAK = 8.0 V Φ = Tan⁻¹(Xc/R) = 0.047 radians T $_{\Phi}$ = $\Phi/(2\Pi f)$ = 125.6 us

24.5.2 CORRECTION BY OFFSET CURRENT

When the waveform is varying relative to VSS, then the zero cross is detected too early as the waveform falls and too late as the waveform rises. When the waveform is varying relative to VDD, then the zero cross is detected too late as the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal waveforms with the corresponding equations shown in Equation 24-3.

EQUATION 24-3: ZCD EVENT OFFSET

When External Voltage Source is relative to Vss:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{Vcpinv}{VPEAK}\right)}{2\pi \bullet Freq}$$

When External Voltage Source is relative to VDD:

$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VDD - Vcpinv}{VPEAK}\right)}{2\pi \bullet Freq}$$

This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up resistor is used when the external voltage source is varying relative to Vss. A pull-down resistor is used when the voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source must go to zero to pull the pin voltage to the VCPINV switching voltage. The pull-up or pull-down value can be determined with the equation shown in Equation 24-4.

EQUATION 24-4: ZCD PULL-UP/DOWN

When External Signal is relative to Vss:

$$R_{PULLUP} = \frac{R_{SERIES}(V_{PULLUP} - V_{cpinv})}{V_{cpinv}}$$

When External Signal is relative to VDD:

$$\left(RPULLDOWN = \frac{RSERIES \times (Vcpinv)}{(VDD - Vcpinv)}\right)$$

24.6 Handling VPEAK variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \ \mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \ \mu$ A and the minimum is at least $\pm 100 \ \mu$ A, compute the series resistance as shown in Equation 24-5. The compensating pull-up for this series resistance can be determined with Equation 24-4 because the pull-up value is not dependent from the peak voltage.

EQUATION 24-5: SERIES R FOR V RANGE

$$R_{SERIES} = \frac{V_{MAXPEAK} + V_{MINPEAK}}{7 \times 10^{-4}}$$

© 2016 Microchip Technology Inc.

R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
T0EN	_	TOOUT	T016BIT		TOOUTI	PS<3:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unc	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	t	'0' = Bit is cle	ared				
bit 7	TOEN: Time	r0 Enable bit					
		dule is enabled					
		dule is disabled		vest power mod	de		
bit 6	Unimpleme	nted: Read as	0'				
bit 5	T0OUT: Tim Timer0 outp	er0 Output bit (ı ut bit	read-only)				
bit 4	T016BIT: Tir	mer0 Operating	as 16-bit Time	er Select bit			
		is a 16-bit timer					
	0 = Timer0 i	s an 8-bit timer					
bit 3-0	T0OUTPS<	3:0>: Timer0 ou	tput postscale	r (divider) seled	ct bits		
	1111 = 1:16						
	1110 = 1:15 1101 = 1:14						
	1101 - 1.14 1100 = 1:13						
	1011 = 1:12						
	1010 = 1:11						
	1001 = 1:10	Postscaler					
	1000 = 1:9	Postscaler					
	0111 = 1:8						
	0110 = 1:7						
	0101 = 1:6						
	0100 = 1:5 0011 = 1:4						
	0011 = 1.41 0010 = 1:31						
	0001 = 1:2						
	0000 = 1:1						

,	bit 0
,	bit 0
,	
,	
,	
,	
ue at all	other Resets

REGISTER 26-3: T1CLK TIMER1 CLOCK SELECT REGISTER

27.4 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which are selected with the postscaler control bits, OUTPS<3:0> of the T2CON register. The interrupt is enabled by setting the TMR2IE interrupt enable bit of the PIE4 register. Interrupt timing is illustrated in Figure 27-3.

FIGURE 27-3: TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM

	Rev. 10-00 4	00205A /7/2016
CKPS	0b010	
PRx	1	
OUTPS	0b0001	
TMRx_clk		
TMRx		
TMRx_postscaled		
TMRxIF	(1) (2) (1)	
Note 1: 2:	Synchronization may take as many as 2 instruction cycles	

REGISTER 27-4: T2RST: TIMER2 EXTERNAL RESET SIGNAL SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	—	-		RSEL	<3:0>	
bit 7 bit 0							
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets			other Resets
'1' = Bit is set '0' = Bit is cleared							

bit 7-4	Unimplemented: Read as '0'
bit 3-0	RSEL<3:0>: Timer2 External Reset Signal Source Selection bits
	1111 = Reserved
	1101 = LC4_out
	1100 = LC3_out
	1011 = LC2_out
	1010 = LC1_out
	1001 = ZCD1_output
	1000 = C2OUT_sync
	0111 = C1OUT_sync
	0110 = PWM6_out
	0101 = PWM5_out
	$0100 = PWM4_out$
	0011 = PWM3_out
	0010 = CCP2_out
	0001 = CCP1_out
	0000 = T2INPPS

30.5 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWG1DBR and CWG1DBF registers, respectively.

30.5.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 30-9.

30.5.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

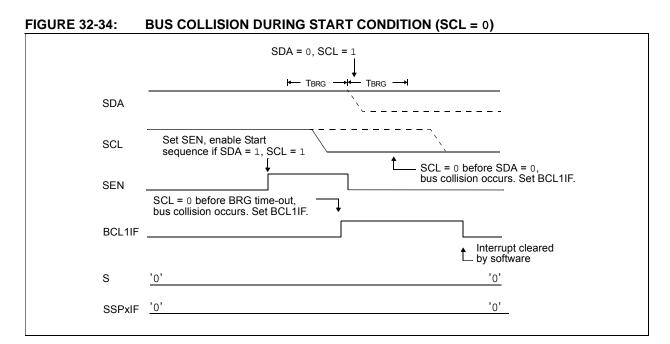
In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWG1CON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWG1A and CWG1C signals will change upon the first rising input edge following a direction change, but the modulated signals (CWG1B or CWG1D, depending on the direction of the change) will experience a delay dictated by the deadband counters. This is demonstrated in Figure 30-3.

30.6 Rising Edge and Reverse Dead Band

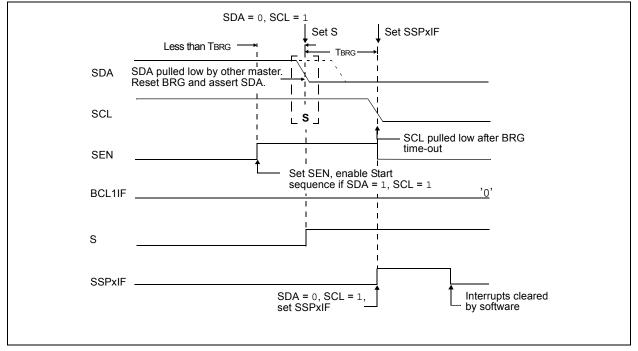
CWG1DBR controls the rising edge dead-band time at the leading edge of CWG1A (Half-Bridge mode) or the leading edge of CWG1B (Full-Bridge mode). The CWG1DBR value is double-buffered. When EN = 0, the CWG1DBR register is loaded immediately when CWG1DBR is written. When EN = 1, then software must set the LD bit of the CWG1CON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

30.7 Falling Edge and Forward Dead Band

CWG1DBF controls the dead-band time at the leading edge of CWG1B (Half-Bridge mode) or the leading edge of CWG1D (Full-Bridge mode). The CWG1DBF value is double-buffered. When EN = 0, the CWG1DBF register is loaded immediately when CWG1DBF is written. When EN = 1 then software must set the LD bit of the CWG1CON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.


Refer to Figure 30-6 and Figure 30-7 for examples.

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
	—	IN		POLD	POLC	POLB	POLA	
bit 7							bit C	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimpler	U = Unimplemented bit, read as '0'			
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value de	pends on condit	ion		
bit 7-6	Unimplem	ented: Read as '	0'					
bit 5	IN: CWG Ir	IN: CWG Input Value bit						
bit 4	Unimplem	Unimplemented: Read as '0'						
bit 3	bit 3 POLD: CWG1D Output Polarity bit							
	1 = Signal	1 = Signal output is inverted polarity						
	0 = Signal	output is normal	polarity					
bit 2	POLC: CW	POLC: CWG1C Output Polarity bit						
	0	output is inverted						
	0 = Signal	output is normal	polarity					
bit 1	t 1 POLB: CWG1B Output Polarity bit							
		output is inverted						
	0 = Signal	output is normal	polarity					
bit 0	POLA: CW	/G1A Output Pola	rity bit					
	1 = Signal	output is inverted	l polarity					


REGISTER 30-2: CWG1CON1: CWG1 CONTROL REGISTER 1

0 = Signal output is normal polarity

© 2016 Microchip Technology Inc.

Instruction Descriptions 36.3

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

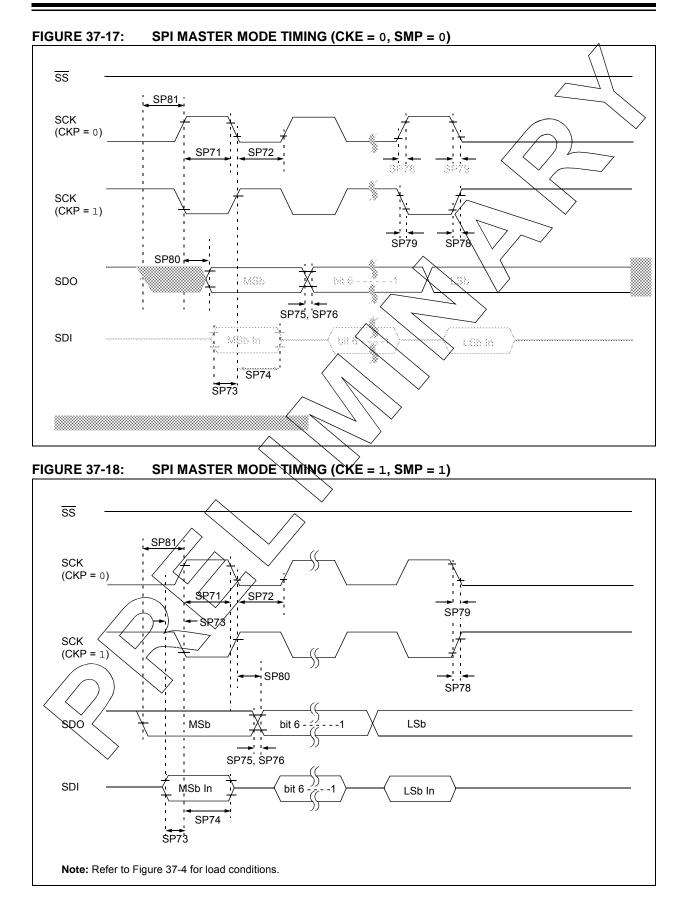
ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

wrap-around.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.


ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>]ASRF f{,d}
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in

register 'f'.

ADDWFC A	DD W and CARRY bit to f
----------	-------------------------

Syntax:	[label] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) + (C) \rightarrow dest
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

39.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

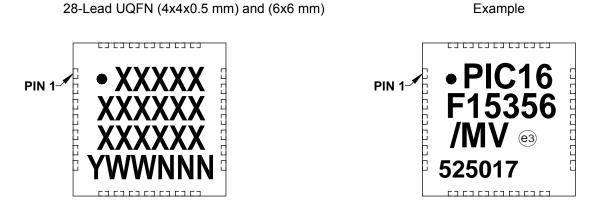
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.


Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

39.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

40.1 Package Marking Information (Continued)

Legend	: XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC [®] designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)
		can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available	
	characters for customer-specific information.	