



Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 32MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                       |
| Number of I/O              | 44                                                                          |
| Program Memory Size        | 14KB (8K x 14)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 224 x 8                                                                     |
| RAM Size                   | 1K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                 |
| Data Converters            | A/D 43x10b; D/A 1x5b                                                        |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 28-UFQFN Exposed Pad                                                        |
| Supplier Device Package    | 28-UQFN (4x4)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15385-e-mv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# PIC16(L)F15356/75/76/85/86

# \_ \_ \_ CLKOUT/ OSC1 CLKIN/ OSC2 \_ \_ \_ \_ \_ \_ ICSPCLK ICSPDAT

Interrupt

Pull-up

Y

Y

Y

Y

Y

Y

Υ

Y

Υ

Y

Y

Y

Y

Y

Y

\_

\_

Basic

\_

| 48-Pin UQFN/ | ADC                          | Referenc | Comparat         | NCO | DAC      | Timers                        | ССР                 | WMd | CWG                 | dssm                          | ZCD  | EUSART                    | CLC                   | ССКК | Interrupt                   |
|--------------|------------------------------|----------|------------------|-----|----------|-------------------------------|---------------------|-----|---------------------|-------------------------------|------|---------------------------|-----------------------|------|-----------------------------|
| 21           | ANA0                         | Ι        | C1IN0-<br>C2IN0- | —   | _        | -                             | _                   |     | _                   |                               |      |                           | CLCIN0 <sup>(1)</sup> | l    | IOCA0                       |
| 22           | ANA1                         | _        | C1IN1-<br>C2IN1- | —   | —        | —                             | —                   | _   | —                   | _                             | _    | _                         | CLCIN1 <sup>(1)</sup> | l    | IOCA1                       |
| 23           | ANA2                         | -        | C1IN0+<br>C2IN0+ | _   | DAC1OUT1 | —                             | —                   |     | _                   |                               |      |                           | _                     |      | IOCA2                       |
| 24           | ANA3                         | VREF+    | C1IN1+           | _   | DACREF+  | -                             | _                   | -   | _                   | -                             |      | -                         | _                     |      | IOCA3                       |
| 25           | ANA4                         | —        | C1IN1-           | —   | _        | T0CKI <sup>(1)</sup>          | _                   | _   | —                   | _                             | _    | _                         | _                     | _    | IOCA4                       |
| 26           | ANA5<br>ADACT                | -        | -                | _   | _        | T1G <sup>(1)</sup>            | —                   |     | —                   | SS1 <sup>(1)</sup>            | _    | -                         | —                     |      | IOCA5                       |
| 33           | ANA6                         |          | -                | -   | —        | —                             | —                   | -   | -                   | -                             | -    | _                         | -                     |      | IOCA6                       |
| 32           | ANA7                         |          | -                | —   | _        | —                             | —                   | -   | -                   | -                             |      | _                         | -                     |      | IOCA7                       |
| 8            | ANB0                         | -        | C2IN1+           | -   | _        | —                             | -                   | _   | CWG1 <sup>(1)</sup> | SS2 <sup>(1)</sup>            | ZCD1 | _                         | —                     | _    | INT <sup>(1)</sup><br>IOCB0 |
| 9            | ANB1                         | -        | C1IN3-<br>C2IN3- | —   | _        | —                             | —                   |     | _                   | SCL1<br>SCK1 <sup>(1,4)</sup> |      |                           | —                     |      | IOCB1                       |
| 10           | ANB2                         | -        |                  | _   | _        | —                             | —                   |     | _                   | SDA1<br>SDI1 <sup>(1,4)</sup> |      |                           | _                     |      | IOCB2                       |
| 11           | ANB3                         | -        | C1IN2-<br>C2IN2- | —   | _        | —                             | —                   |     | _                   |                               |      |                           | _                     |      | IOCB3                       |
| 16           | ANB4<br>ADACT <sup>(1)</sup> | -        | —                | —   | —        | —                             | —                   | _   | —                   | —                             | —    | —                         | —                     |      | IOCB4                       |
| 17           | ANB5                         | —        | -                | —   | —        | —                             | —                   | -   | —                   | _                             |      | _                         | —                     | ١    | IOCB5                       |
| 18           | ANB6                         | -        |                  | _   | _        | —                             | —                   |     | _                   |                               |      | TX2<br>CK2 <sup>(1)</sup> | CLCIN2 <sup>(1)</sup> |      | IOCB6                       |
| 19           | ANB7                         | —        | —                | —   | DAC1OUT2 | _                             | —                   | _   | —                   | —                             | —    | RX2<br>DT2 <sup>(1)</sup> | CLCIN3 <sup>(1)</sup> | 1    | IOCB7                       |
| 34           | ANC0                         | -        | -                | -   | -        | SOSCO<br>T1CKI <sup>(1)</sup> | -                   | -   | -                   | -                             | -    | -                         | -                     | _    | IOCC0                       |
| 35           | ANC1                         | _        | —                | _   | _        | SOSCI                         | CCP2 <sup>(1)</sup> | _   | —                   | —                             | _    | _                         | _                     | —    | IOCC1                       |

### 48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) TABLE 5:

This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note 1:

All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options. 2:

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I<sup>2</sup>C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I<sup>2</sup>C specific or SMBUS input buffer thresholds.

TQFP

I/O<sup>(2)</sup>

RA0 RA1

RA2

RA3

RA4

RA5

RA6

RA7

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RC0

RC1

### **TABLE 1-2:** PIC16(L)F15356 PINOUT DESCRIPTION (CONTINUED)

| Name                              | Function  | Input<br>Type | Output Type          | Description                                                                                      |  |  |
|-----------------------------------|-----------|---------------|----------------------|--------------------------------------------------------------------------------------------------|--|--|
| RE3/IOCE3/MCLR/VPP                | RE3       | TTL/ST        | _                    | General purpose input only (when $\overline{\text{MCLR}}$ is disabled by the Configuration bit). |  |  |
|                                   | IOCE3     | TTL/ST        | —                    | Interrupt-on-change input.                                                                       |  |  |
|                                   | MCLR      | ST            | —                    | Master clear input with internal weak pull-up resistor.                                          |  |  |
|                                   | Vpp       | HV            | —                    | ICSP™ High-Voltage Programming mode entry input.                                                 |  |  |
| VDD                               | Vdd       | Power         | —                    | Positive supply voltage input.                                                                   |  |  |
| Vss                               | Vss       | Power         | —                    | Ground reference.                                                                                |  |  |
| Legend: AN = Analog input or outp | ut CMOS = | CMOS cor      | mpatible input or ou | utput OD = Open-Drain                                                                            |  |  |

AN = Analog input of output ST = Schmitt Trigger input of output  $I^2C$  = Schmitt Trigger input with  $I^2C$ TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels  $I^2C$  = Schmitt Trigger input with  $I^2C$ HV = High Voltage XTAL = Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal. All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin Note 1:

2: options as described in Table 15-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I<sup>2</sup>C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I<sup>2</sup>C specific or SMBus input buffer thresholds.

### 4.6.1 TRADITIONAL/BANKED DATA MEMORY

The traditional or banked data memory is a region from FSR address 0x000 to FSR address 0x1FFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.





### 13.3.4 NVMREG WRITE TO PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address of the row to be programmed into NVMADRH:NVMADRL.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 13-4 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper ten bits of NVMADRH:NVMADRL, (NVMADRH<6:0>:NVMADRL<7:5>) with the lower five bits of NVMADRL, (NVMADRL<4:0>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the NVMDATH:NVMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

- Note: The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated.
- 1. Set the WREN bit of the NVMCON1 register.
- 2. Clear the NVMREGS bit of the NVMCON1 register.
- Set the LWLO bit of the NVMCON1 register. When the LWLO bit of the NVMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the NVMADRH:NVMADRL register pair with the address of the location to be written.
- 5. Load the NVMDATH:NVMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 13.3.2 "NVM Unlock Sequence"). The write latch is now loaded.
- 7. Increment the NVMADRH:NVMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the NVMCON1 register. When the LWLO bit of the NVMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the NVMDATH:NVMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 13.3.2 "NVM Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.

An example of the complete write sequence is shown in Example 13-4. The initial address is loaded into the NVMADRH:NVMADRL register pair; the data is loaded using indirect addressing.

Note: The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

13.3.6 NVMREG ACCESS TO DEVICE INFORMATION AREA, DEVICE CONFIGURATION AREA, USER ID, DEVICE ID AND CONFIGURATION WORDS

NVMREGS can be used to access the following memory regions:

- Device Information Area (DIA)
- Device Configuration Information (DCI)
- User ID region
- Device ID and Revision ID
- Configuration Words

The value of NVMREGS is set to '1' in the NVMCON1 register to access these regions. The memory regions listed above would be pointed to by PC<15> = 1, but not all addresses reference valid data. Different access may exist for reads and writes. Refer to Table 13-3.

When read access is initiated on an address outside the parameters listed in Table 13-3, the NVMDATH: NVMDATL register pair is cleared, reading back '0's.

# TABLE 13-3:NVMREGS ACCESS TO DEVICE INFORMATION AREA, DEVICE CONFIGURATION<br/>AREA, USER ID, DEVICE ID AND CONFIGURATION WORDS (NVMREGS = 1)

| Address     | Function                | Read Access | Write Access |
|-------------|-------------------------|-------------|--------------|
| 8000h-8003h | User IDs                | Yes         | Yes          |
| 8005h-8006h | Device ID/Revision ID   | Yes         | No           |
| 8007h-800Bh | Configuration Words 1-5 | Yes         | No           |
| 8100h-82FFh | DIA and DCI             | Yes         | No           |

### 14.10 PORTE Registers

### 14.10.1 DATA REGISTER

PORTE is a 4-bit wide port. The corresponding data direction register is TRISE (Register 14-33). Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., disable the output driver). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize PORTE.

Reading the PORTE register (Register 14-33) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATE).

### 14.10.2 DIRECTION CONTROL

The TRISE register (Register 14-34) controls the PORTE pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISE register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

| Note: | The TRISE3 bit is a read-only bit and it |
|-------|------------------------------------------|
|       | always reads a '1'.                      |

### 14.10.3 OPEN-DRAIN CONTROL

The ODCONE register (Register 14-38) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONE bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONE bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

| Note: | It is not necessary to set open-drain control when using the pin for I <sup>2</sup> C; the I <sup>2</sup> C |
|-------|-------------------------------------------------------------------------------------------------------------|
|       | module controls the pin and makes the pin open-drain.                                                       |

### 14.10.4 SLEW RATE CONTROL

The SLRCONE register (Register 14-39) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONE bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONE bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

### 14.10.5 INPUT THRESHOLD CONTROL

The INLVLE register (Register 14-40) controls the input voltage threshold for each of the available PORTE input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTE register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

**Note:** Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

### 14.10.6 ANALOG CONTROL

The ANSELE register (Register 14-36) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELE bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELE bits has no effect on digital output functions. A pin with TRIS clear and ANSELE set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELE bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

### 14.10.7 WEAK PULL-UP CONTROL

The WPUE register (Register 14-37) controls the individual weak pull-ups for each port pin.

| Name   | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2                 | Bit 1                 | Bit 0                 | Register<br>on Page |
|--------|--------|--------|--------|--------|--------|-----------------------|-----------------------|-----------------------|---------------------|
| INTCON | GIE    | PEIE   | —      | —      | -      | —                     | —                     | INTEDG                | 146                 |
| PIE0   | —      | —      | TMR0IE | IOCIE  | -      | —                     | —                     | INTE                  | 147                 |
| IOCAP  | IOCAP7 | IOCAP6 | IOCAP5 | IOCAP4 | IOCAP3 | IOCAP2                | IOCAP1                | IOCAP0                | 255                 |
| IOCAN  | IOCAN7 | IOCAN6 | IOCAN5 | IOCAN4 | IOCAN3 | IOCAN2                | IOCAN1                | IOCAN0                | 255                 |
| IOCAF  | IOCAF7 | IOCAF6 | IOCAF5 | IOCAF4 | IOCAF3 | IOCAF2                | IOCAF1                | IOCAF0                | 256                 |
| IOCBP  | IOCBP7 | IOCBP6 | IOCBP5 | IOCBP4 | IOCBP3 | IOCBP2                | IOCBP1                | IOCBP0                | 257                 |
| IOCBN  | IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2                | IOCBN1                | IOCBN0                | 257                 |
| IOCBF  | IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2                | IOCBF1                | IOCBF0                | 258                 |
| IOCCP  | IOCCP7 | IOCCP6 | IOCCP5 | IOCCP4 | IOCCP3 | IOCCP2                | IOCCP1                | IOCCP0                | 259                 |
| IOCCN  | IOCCN7 | IOCCN6 | IOCCN5 | IOCCN4 | IOCCN3 | IOCCN2                | IOCCN1                | IOCCN0                | 259                 |
| IOCCF  | IOCCF7 | IOCCF6 | IOCCF5 | IOCCF4 | IOCCF3 | IOCCF2                | IOCCF1                | IOCCF0                | 259                 |
| IOCEP  | —      | -      | —      | —      | IOCEP3 | IOCEP2 <sup>(1)</sup> | IOCEP1 <sup>(1)</sup> | IOCEP0 <sup>(1)</sup> | 260                 |
| IOCEN  | —      | —      | —      | —      | IOCEN3 | IOCEN2 <sup>(1)</sup> | IOCEN1 <sup>(1)</sup> | IOCEN0 <sup>(1)</sup> | 260                 |
| IOCEF  | _      | _      | —      | _      | IOCEF3 | IOCEF2 <sup>(1)</sup> | IOCEF1 <sup>(1)</sup> | IOCEF0 <sup>(1)</sup> | 261                 |

**Legend:** — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

**Note 1:** Present only in PIC16(L)F15375/76/85/86.

### 29.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

### 29.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

### 29.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWMx registers to their Reset states.

### TABLE 29-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

| PWM Frequency             | 1.22 kHz | 4.88 kHz | 19.53 kHz | 78.12 kHz | 156.3 kHz | 208.3 kHz |
|---------------------------|----------|----------|-----------|-----------|-----------|-----------|
| Timer Prescale            | 16       | 4        | 1         | 1         | 1         | 1         |
| PR2 Value                 | 0xFF     | 0xFF     | 0xFF      | 0x3F      | 0x1F      | 0x17      |
| Maximum Resolution (bits) | 10       | 10       | 10        | 8         | 7         | 6.6       |

### TABLE 29-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

| PWM Frequency             | 1.22 kHz | 4.90 kHz | 19.61 kHz | 76.92 kHz | 153.85 kHz | 200.0 kHz |
|---------------------------|----------|----------|-----------|-----------|------------|-----------|
| Timer Prescale            | 16       | 4        | 1         | 1         | 1          | 1         |
| PR2 Value                 | 0xFF     | 0xFF     | 0xFF      | 0x3F      | 0x1F       | 0x17      |
| Maximum Resolution (bits) | 10       | 10       | 10        | 8         | 7          | 6.6       |

### 29.1.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the module for using the PWMx outputs:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- Configure the PWM output polarity by configuring the PWMxPOL bit of the PWMxCON register.
- 3. Load the PR2 register with the PWM period value, as determined by Equation 29-1.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value, as determined by Equation 29-2.
- 5. Configure and start Timer2:
- Clear the TMR2IF interrupt flag bit of the PIR4 register.
- Select the Timer2 prescale value by configuring the CKPS<2:0> bits of the T2CON register.
- Enable Timer2 by setting the Timer2 ON bit of the T2CON register.

- 6. Wait until the TMR2IF is set.
- 7. When the TMR2IF flag bit is set:
- Clear the associated TRIS bit(s) to enable the output driver.
- Route the signal to the desired pin by configuring the RxyPPS register.
- Enable the PWMx module by setting the PWMxEN bit of the PWMxCON register.

In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then the PWM module can be enabled during Step 2 by setting the PWMxEN bit of the PWMxCON register.

### **30.3 Selectable Input Sources**

The CWG generates the output waveforms from the input sources in Table 30-2.

### TABLE 30-2: SELECTABLE INPUT SOURCES

| Source Peripheral | Signal Name |
|-------------------|-------------|
| CWG input PPS pin | CWG1IN PPS  |
| CCP1              | CCP1_out    |
| CCP2              | CCP2_out    |
| PWM3              | PWM3_out    |
| PWM4              | PWM4_out    |
| PWM5              | PWM5_out    |
| PWM6              | PWM6_out    |
| NCO               | NCO1_out    |
| Comparator C1     | C1OUT_sync  |
| Comparator C2     | C2OUT_sync  |
| CLC1              | LC1_out     |
| CLC2              | LC2_out     |
| CLC3              | LC3_out     |
| CLC4              | LC4_out     |

The input sources are selected using the CWG1ISM register.

### 30.4 Output Control

### 30.4.1 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLx bits of the CWG1CON1. Auto-shutdown and steering options are unaffected by polarity.

### 30.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 30-12.

### 30.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

### 30.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWG1AS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event.

### 30.10.2 EXTERNAL INPUT SOURCE

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Comparator C1OUT\_sync
- Comparator C2OUT\_sync
- · Timer2 TMR2\_postscaled
- CWG1IN input pin

Shutdown inputs are selected using the CWG1AS1 register (Register 30-6).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

### 30.11 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep when all the following conditions are met:

- CWG module is enabled
- · Input source is active
- HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, then the CPU will go idle during Sleep, but the HFINTOSC will remain active and the CWG will continue to operate. This will have a direct effect on the Sleep mode current.

### 32.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

### 32.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

### 32.4 I<sup>2</sup>C MODE OPERATION

All MSSP I<sup>2</sup>C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the  $PIC^{$ <sup>®</sup>} microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I<sup>2</sup>C devices.

### 32.4.1 BYTE FORMAT

All communication in  $I^2C$  is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

### 32.4.2 DEFINITION OF I<sup>2</sup>C TERMINOLOGY

There is language and terminology in the description of  $I^2C$  communication that have definitions specific to  $I^2C$ . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips  $I^2C$  specification.

### 32.4.3 SDA AND SCL PINS

Selection of any I<sup>2</sup>C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

| Note 1: | Any device pin can be selected for SDA        |
|---------|-----------------------------------------------|
|         | and SCL functions with the PPS periph-        |
|         | eral. These functions are bidirectional.      |
|         | The SDA input is selected with the            |
|         | SSPDATPPS registers. The SCL input is         |
|         | selected with the SSPCLKPPS registers.        |
|         | Outputs are selected with the RxyPPS          |
|         | registers. It is the user's responsibility to |
|         | make the selections so that both the input    |
|         | and the output for each function is on the    |
|         | same pin.                                     |

# PIC16(L)F15356/75/76/85/86







### 32.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in  $I^2C$  is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an  $\overline{\text{ACK}}$  is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the  $\overline{ACK}$  value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

There are certain conditions where an ACK will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.



| REGISTER 32-5: SSPx | MSK: SSPx MASK REGISTER |
|---------------------|-------------------------|
|---------------------|-------------------------|

| R/W-1/1          | R/W-1/1                                                                                           | R/W-1/1          | R/W-1/1         | R/W-1/1                                               | R/W-1/1             | R/W-1/1                     | R/W-1/1 |  |  |
|------------------|---------------------------------------------------------------------------------------------------|------------------|-----------------|-------------------------------------------------------|---------------------|-----------------------------|---------|--|--|
|                  |                                                                                                   |                  | SSPxM           | ISK<7:0>                                              |                     |                             |         |  |  |
| bit 7            |                                                                                                   |                  |                 |                                                       |                     |                             | bit 0   |  |  |
|                  |                                                                                                   |                  |                 |                                                       |                     |                             |         |  |  |
| Legend:          |                                                                                                   |                  |                 |                                                       |                     |                             |         |  |  |
| R = Readable     | e bit                                                                                             | W = Writable     | bit             | U = Unimpler                                          | nented bit, read    | l as '0'                    |         |  |  |
| u = Bit is uncl  | nanged                                                                                            | x = Bit is unkr  | nown            | -n/n = Value at POR and BOR/Value at all other Resets |                     |                             |         |  |  |
| '1' = Bit is set |                                                                                                   | '0' = Bit is cle | ared            |                                                       |                     |                             |         |  |  |
|                  |                                                                                                   |                  |                 |                                                       |                     |                             |         |  |  |
| bit 7-1          | SSPxMSK<                                                                                          | 7:1>: Mask bits  |                 |                                                       |                     | 0                           |         |  |  |
|                  | 1 = The rec                                                                                       | eived address b  | it n is compar  | ed to SSPxADI                                         | D <n> to detect</n> | I <sup>2</sup> C address ma | atch    |  |  |
|                  | 0 = The rec                                                                                       | eived address b  | it n is not use | d to detect I <sup>2</sup> C                          | address match       |                             |         |  |  |
| bit 0            | bit 0 SSPxMSK<0>: Mask bit for I <sup>2</sup> C Slave mode, 10-bit Address                        |                  |                 |                                                       |                     |                             |         |  |  |
|                  | <u>l<sup>2</sup>C Slave m</u>                                                                     | ode, 10-bit addr | ess (SSPM<3     | 3:0> = 0111 or                                        | <u>1111)</u> :      | 0                           |         |  |  |
|                  | 1 = The received address bit 0 is compared to SSPxADD<0> to detect I <sup>2</sup> C address match |                  |                 |                                                       |                     |                             |         |  |  |

- 0 = The received address bit 0 is not used to detect  $I^2C$  address match
- I<sup>2</sup>C Slave mode, 7-bit address:

MSK0 bit is ignored.

### REGISTER 32-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I<sup>2</sup>C MODE)

| R/W-0/0 | R/W-0/0      | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0 |  |  |
|---------|--------------|---------|---------|---------|---------|---------|---------|--|--|
|         | SSPxADD<7:0> |         |         |         |         |         |         |  |  |
| bit 7   |              |         |         |         |         |         | bit 0   |  |  |
|         |              |         |         |         |         |         |         |  |  |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

### Master mode:

| bit 7-0 | SSPxADD<7:0>: Baud Rate Clock Divider bits      |
|---------|-------------------------------------------------|
|         | SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc |

### <u>10-Bit Slave mode – Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I<sup>2</sup>C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 SSPxADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

### <u>10-Bit Slave mode – Least Significant Address Byte:</u>

bit 7-0 SSPxADD<7:0>: Eight Least Significant bits of 10-bit address

### 7-Bit Slave mode:

- bit 7-1 SSPxADD<7:1>: 7-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

| R/W-0/0             | R/W-0/0                             | R/W-0/0                             | R/W-0/0                          | R/W-0/0          | R-0/0             | R-0/0            | R-0/0           |
|---------------------|-------------------------------------|-------------------------------------|----------------------------------|------------------|-------------------|------------------|-----------------|
| SPEN <sup>(1)</sup> | RX9                                 | SREN                                | CREN                             | ADDEN            | FERR              | OERR             | RX9D            |
| bit 7               |                                     |                                     |                                  |                  |                   |                  | bit 0           |
|                     |                                     |                                     |                                  |                  |                   |                  |                 |
| Legend:             |                                     |                                     |                                  |                  |                   |                  |                 |
| R = Readab          | ole bit                             | W = Writable                        | bit                              | U = Unimple      | mented bit, read  | l as '0'         |                 |
| u = Bit is un       | changed                             | x = Bit is unkr                     | nown                             | -n/n = Value     | at POR and BO     | R/Value at all o | ther Resets     |
| '1' = Bit is s      | et                                  | '0' = Bit is clea                   | ared                             |                  |                   |                  |                 |
| bit 7               | SDEN: Soria                         | l Port Enable bi                    | <sub>+</sub> (1)                 |                  |                   |                  |                 |
|                     | 1 = Serial po                       | ort enabled                         | L                                |                  |                   |                  |                 |
|                     | 0 = Serial po                       | ort disabled (hel                   | d in Reset)                      |                  |                   |                  |                 |
| bit 6               | <b>RX9:</b> 9-Bit R                 | eceive Enable b                     | bit                              |                  |                   |                  |                 |
|                     | 1 = Selects $9$                     | 9-bit reception                     |                                  |                  |                   |                  |                 |
|                     | 0 = Selects                         | 8-bit reception                     |                                  |                  |                   |                  |                 |
| bit 5               | SREN: Singl                         | e Receive Enab                      | ble bit                          |                  |                   |                  |                 |
|                     | Asynchronou                         | <u>is mode –</u> value              | ignored                          |                  |                   |                  |                 |
|                     | Synchronous                         | <u>s mode – Maste</u>               | <u>r:</u>                        |                  |                   |                  |                 |
|                     | 1 = Enables                         | single receive                      |                                  |                  |                   |                  |                 |
|                     | 0 = Disables                        | s single receive                    | ation in compl                   | ata              |                   |                  |                 |
|                     | Synchronous                         | s mode – Slave                      |                                  | ele.             |                   |                  |                 |
|                     | Unused in th                        | is mode – value                     | ignored                          |                  |                   |                  |                 |
| bit 4               | CREN: Conti                         | inuous Receive                      | Enable bit                       |                  |                   |                  |                 |
|                     | <u>Asynchronou</u>                  | <u>is mode</u> :                    |                                  |                  |                   |                  |                 |
|                     | 1 = Enables                         | continuous rec                      | eive until enal                  | ole bit CREN i   | s cleared         |                  |                 |
|                     | 0 = Disables                        | s continuous rec<br>s mode:         | eive                             |                  |                   |                  |                 |
|                     | 1 = Enables                         | continuous rec                      | eive until enat                  | ole bit CREN i   | s cleared (CREN   | N overrides SRE  | EN)             |
|                     | 0 = Disables                        | s continuous rec                    | eive                             |                  | ,                 |                  | ,               |
| bit 3               | ADDEN: Add                          | dress Detect En                     | able bit                         |                  |                   |                  |                 |
|                     | Asynchronou                         | <u>is mode 9-bit (F</u>             | <u> X9 = 1)</u> :                |                  |                   |                  |                 |
|                     | 1 = Enables                         | address detect                      | ion – enable i                   | nterrupt and lo  | bad of the receiv | e buffer when t  | he ninth bit in |
|                     | 0 = Disables                        | address detec                       | tion, all bytes                  | are received a   | and ninth bit can | be used as par   | ity bit         |
|                     | <u>Asynchronou</u>                  | <u>ıs mode 8-bit (F</u>             | <u>RX9 = 0</u> ):                |                  |                   |                  |                 |
|                     | Unused in th                        | is mode – value                     | eignored                         |                  |                   |                  |                 |
| bit 2               | FERR: Fram                          | ing Error bit                       |                                  |                  |                   |                  |                 |
|                     | 1 = Framing<br>0 = No frami         | error (can be u<br>ing error        | pdated by rea                    | Iding RCxREG     | B register and re | ceive next valid | byte)           |
| bit 1               | OERR: Over                          | run Error bit                       |                                  |                  |                   |                  |                 |
|                     | 1 = Overrun                         | error (can be c                     | leared by clea                   | ring bit CREN    | )                 |                  |                 |
| hit 0               |                                     | iun error<br>bit of Bossived        | Data                             |                  |                   |                  |                 |
|                     | This can be a                       | DILUI RECEIVED                      | Dala<br>or a narity hit          | and must be      | calculated by us  | er firmware      |                 |
|                     |                                     |                                     |                                  |                  |                   |                  |                 |
| Note 1: 7           | The EUSART mod<br>associated TRIS b | dule automatica<br>bits for TX/CK a | Illy changes th<br>nd RX/DT to 2 | ne pin from tri- | state to drive as | needed. Config   | gure the        |

### REGISTER 33-2: RCxSTA: RECEIVE STATUS AND CONTROL REGISTER

# PIC16(L)F15356/75/76/85/86

## **REGISTER 33-7:** SPxBRGH<sup>(1, 2)</sup>: BAUD RATE GENERATOR HIGH REGISTER

| R/W-0   | R/W-0        | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |  |
|---------|--------------|-------|-------|-------|-------|-------|-------|--|--|
|         | SPxBRG<15:8> |       |       |       |       |       |       |  |  |
| bit 7   |              |       |       |       |       |       | bit 0 |  |  |
|         |              |       |       |       |       |       |       |  |  |
| Legend: |              |       |       |       |       |       |       |  |  |

| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
|----------------------|----------------------|-------------------------------------------------------|
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7 SPxBRG<15:8>: Upper eight bits of the Baud Rate Generator

**Note 1:** SPxBRGH value is ignored for all modes unless BAUDxCON<BRG16> is active.

2: Writing to SPxBRGH resets the BRG counter.

| Mnemonic,<br>Operands |      | Description                                   |        | 14-Bit Opcode |      |      |      | Status   | Notos |
|-----------------------|------|-----------------------------------------------|--------|---------------|------|------|------|----------|-------|
|                       |      | Description                                   | Cycles | MSb           |      | LSb  |      | Affected | Notes |
|                       |      | CONTROL OPERA                                 | TIONS  |               |      |      |      |          |       |
| BRA                   | k    | Relative Branch                               | 2      | 11            | 001k | kkkk | kkkk |          |       |
| BRW                   | _    | Relative Branch with W                        | 2      | 00            | 0000 | 0000 | 1011 |          |       |
| CALL                  | k    | Call Subroutine                               | 2      | 10            | 0kkk | kkkk | kkkk |          |       |
| CALLW                 | -    | Call Subroutine with W                        | 2      | 00            | 0000 | 0000 | 1010 |          |       |
| GOTO                  | k    | Go to address                                 | 2      | 10            | 1kkk | kkkk | kkkk |          |       |
| RETFIE                | k    | Return from interrupt                         | 2      | 00            | 0000 | 0000 | 1001 |          |       |
| RETLW                 | k    | Return with literal in W                      | 2      | 11            | 0100 | kkkk | kkkk |          |       |
| RETURN                | -    | Return from Subroutine                        | 2      | 00            | 0000 | 0000 | 1000 |          |       |
|                       |      | INHERENT OPERA                                | TIONS  |               |      |      |      |          |       |
| CLRWDT                | _    | Clear Watchdog Timer                          | 1      | 00            | 0000 | 0110 | 0100 | TO, PD   |       |
| NOP                   | _    | No Operation                                  | 1      | 00            | 0000 | 0000 | 0000 |          |       |
| RESET                 | _    | Software device Reset                         | 1      | 00            | 0000 | 0000 | 0001 |          |       |
| SLEEP                 | _    | Go into Standby or IDLE mode                  | 1      | 00            | 0000 | 0110 | 0011 | TO, PD   |       |
| TRIS                  | f    | Load TRIS register with W                     | 1      | 00            | 0000 | 0110 | Offf |          |       |
|                       |      | C-COMPILER OPT                                | IMIZED |               |      |      |      | •        |       |
| ADDFSR                | n, k | Add Literal k to FSRn                         | 1      | 11            | 0001 | 0nkk | kkkk |          |       |
| MOVIW                 | n mm | Move Indirect FSRn to W with pre/post inc/dec | 1      | 00            | 0000 | 0001 | 0nmm | Z        | 2, 3  |
|                       |      | modifier, mm                                  |        |               |      |      |      |          |       |
|                       | k[n] | Move INDFn to W, Indexed Indirect.            | 1      | 11            | 1111 | 0nkk | kkkk | Z        | 2     |
| MOVWI                 | n mm | Move W to Indirect FSRn with pre/post inc/dec | 1      | 00            | 0000 | 0001 | 1nmm |          | 2, 3  |
|                       |      | modifier, mm                                  |        |               |      |      |      |          |       |
|                       | k[n] | Move W to INDFn, Indexed Indirect.            | 1      | 11            | 1111 | 1nkk | kkkk |          | 2     |

### TABLE 36-3: INSTRUCTION SET (CONTINUED)

**Note 1:** If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

### 37.2 Standard Operating Conditions

| The standard operating conditions for any device are defined as:                                         | ١                    |
|----------------------------------------------------------------------------------------------------------|----------------------|
| Operating Voltage:VDDMIN $\leq$ VDD $\leq$ VDDMAXOperating Temperature:TA $\leq$ TA $\leq$ TA $\leq$ MAX |                      |
| VDD — Operating Supply Voltage <sup>(1)</sup>                                                            | $\backslash \rangle$ |
| PIC16LF15356/75/76/85/86                                                                                 | $\checkmark$         |
| VDDMIN (Fosc ≤ 16 MHz)                                                                                   | +1.8V                |
| VDDMIN (Fosc ≤ 32 MHz)                                                                                   | +2.5V                |
| VDDMAX                                                                                                   | +3.6V                |
| PIC16F15356/75/76/85/86                                                                                  |                      |
| VDDMIN (Fosc ≤ 16 MHz)                                                                                   | +2.3V                |
| VDDMIN (Fosc ≤ 32 MHz)                                                                                   | +2.5V                |
| VDDMAX                                                                                                   | +5.5V                |
| TA — Operating Ambient Temperature Range                                                                 |                      |
| Industrial Temperature                                                                                   |                      |
| Ta_min                                                                                                   | 40°C                 |
| Та_мах                                                                                                   | +85°C                |
| Extended Temperature                                                                                     |                      |
| Та_міл                                                                                                   | 40°C                 |
| Та_мах                                                                                                   | +125°C               |
| Note 1: See Parameter Supply Voltage, DS Characteristics: Supply Voltage.                                |                      |

| TABLE 37-8: | INTERNAL OSCILLATOR PARAMETERS <sup>(1)</sup> |
|-------------|-----------------------------------------------|
|             |                                               |

| Standard Operating Conditions (unless otherwise stated) |          |                                                 |           |                          |            |            |                          |  |
|---------------------------------------------------------|----------|-------------------------------------------------|-----------|--------------------------|------------|------------|--------------------------|--|
| Param.<br>No.                                           | Sym.     | Characteristic                                  | Min.      | Тур†                     | Max.       | Units      | Conditions               |  |
| OS50                                                    | FHFOSC   | Precision Calibrated HFINTOSC<br>Frequency      |           | 4<br>8<br>12<br>16<br>32 |            | MHz        | (Note 2)                 |  |
| OS51                                                    | FHFOSCLP | Low-Power Optimized HFINTOSC<br>Frequency       |           | 1<br>2                   | _          | MHz<br>MHz |                          |  |
| OS52                                                    | FMFOSC   | Internal Calibrated MFINTOSC<br>Frequency       | _         | 500                      |            | кня        | 7/~                      |  |
| OS53*                                                   | FLFOSC   | Internal LFINTOSC Frequency                     |           | 31                       | $\searrow$ | kHx        | $\langle$                |  |
| OS54*                                                   | THFOSCST | HFINTOSC<br>Wake-up from Sleep Start-up<br>Time | _         | 11                       | 20         | μs<br>μs   | VREGPM = 0<br>VREGPM = 1 |  |
| OS56                                                    | TLFOSCST | LFINTOSC<br>Wake-up from Sleep Start-up Time    | $\langle$ | 0.2                      | X          | ms         |                          |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** To ensure these oscillator frequency tolerances, Vop and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

2: See Figure 37-6: Precision Calibrated HPINTOSC Frequency Accuracy Over Device VDD and Temperature.

FIGURE 37-6: PRECISION CALIBRATED HFINTOSC FREQUENCY ACCURACY OVER DEVICE



© 2016 Microchip Technology Inc.

### 39.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

### 39.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradeable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

### 39.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

### 39.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>).

### 39.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.