

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	44
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15385-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: PIC16(L)F153XX FAMILY TYPES

Device	Data Sheet Index	Program Flash Memory (KW)	Program Flash Memory (KB)	Storage Area Flash (B)	Data SRAM (bytes)	I/OPins	10-bit ADC	5-bit DAC	Comparator	8-bit/ (with HLT) Timer	16-bit Timer	Window Watchdog Timer	CCP/10-bit PWM	CWG	NCO	CLC	Zero-Cross Detect	Temperature Indicator	Memory Access Partition	Device Information Area	EUSART/ I ² C-SPI	Peripheral Pin Select	Peripheral Module Disable	Debug ⁽¹⁾
PIC16(L)F15313	(C)	2	3.5	224	256	6	5	1	1	1	2	Υ	2/4	1	1	4	Y	Υ	Y	Y	1/1	Y	Y	Ι
PIC16(L)F15323	(C)	2	3.5	224	256	12	11	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	1/1	Υ	Υ	Ι
PIC16(L)F15324	(D)	4	7	224	512	12	11	1	2	1	2	Υ	2/4	1	1	4	Y	Y	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15325	(B)	8	14	224	1024	12	11	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15344	(D)	4	7	224	512	18	17	1	2	1	2	Υ	2/4	1	1	4	Y	Y	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15345	(B)	8	14	224	1024	18	17	1	2	1	2	Υ	2/4	1	1	4	Y	Y	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15354	(A)	4	7	224	512	25	24	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15355	(A)	8	14	224	1024	25	24	1	2	1	2	Υ	2/4	1	1	4	Y	Y	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15356	(E)	16	28	224	2048	25	24	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15375	(E)	8	14	224	1024	36	35	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	
PIC16(L)F15376	(E)	16	28	224	2048	36	35	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15385	(E)	8	14	224	1024	44	43	1	2	1	2	Υ	2/4	1	1	4	Y	Y	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15386	(E)	16	28	224	2048	44	43	1	2	1	2	Υ	2/4	1	1	4	Y	Y	Y	Y	2/2	Υ	Y	Ι

Note 1: I - Debugging integrated on chip.

Data Sheet Index:

ote:	For other small form	factor package availability and marking information, visit v
E:	DS40001866	PIC16(L)F15356/75/76/85/86 Data Sheet, 28/40/48-Pin
D:	Future Release	PIC16(L)F15324/44 Data Sheet, 14/20-Pin
C:	Future Release	PIC16(L)F15313/23 Data Sheet, 8/14-Pin
B:	DS40001865	PIC16(L)F15325/45 Data Sheet, 14/20-Pin
A:	DS40001853	PIC16(L)F15354/5 Data Sheet, 28-Pin

Note: For other small form-factor package availability and marking information, visit www.microchip.com/packaging or contact your local sales office.

IABL	= 4 :		40/	44-r		LUCA		ADLE (P		5375, 1		L)F15570)								
VO ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	ССР	MWd	CWG	MSSP	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RA0	2	17	19	19	ANA0	-	C1IN0- C2IN0-	_	_	—	—	_	-	-	—	—	CLCIN0 ⁽¹⁾	-	IOCA0	Y	_
RA1	3	18	20	20	ANA1	—	C1IN1- C2IN1-	_	—	—	_		_		—	_	CLCIN1 ⁽¹⁾		IOCA1	Y	_
RA2	4	19	21	21	ANA2	—	C1IN0+ C2IN0+	—	DAC1OUT1	—	_		—	-	—	-	-		IOCA2	Y	—
RA3	5	20	22	22	ANA3	VREF+	C1IN1+	—	DACREF+	—	-	-	-		—	-	-		IOCA3	Y	Ι
RA4	6	21	23	23	ANA4	_	_	_	_	TOCKI(1)	_	_	_	_	_	_	_	-	IOCA4	Y	_
RA5	7	22	24	24	ANA5	_	_	_	_	T1G ⁽¹⁾	_	_	_	SS1 ⁽¹⁾	_	-	-	_	IOCA5	Y	_
RA6	14	29	33	31	ANA6	-	—	-	-	—	_	-	-	-	—	-	-	_	IOCA6	Y	CLKOUT/ OSC1
RA7	13	28	32	30	ANA7	-	—	-	-	—	_	_	-	_	—	_	-	_	IOCA7	Y	CLKIN/ OSC2
RB0	33	8	9	8	ANB0	-	C2IN1+	-	-	—	_	-	CWG1 ⁽¹⁾	SS2 ⁽¹⁾	ZCD1	-	-	_	INT ⁽¹⁾ IOCB0	Y	Ι
RB1	34	9	10	9	ANB1	_	C1IN3- C2IN3-	_	—	—	_		_	SCL1 SCK1 ^(1,4)	—	_	—		IOCB1	Y	_
RB2	34	10	11	10	ANB2	_	—	—	—	—	—	_	—	SDA1 SDI1 ^(1,4)	—	_	—		IOCB2	Y	—
RB3	36	11	12	11	ANB3	_	C1IN2- C2IN2-	_	—	—	_		_		—	_	—		IOCB3	Y	_
RB4	37	12	14	14	ANB4 ADACT (1)	-	_	—	—	_	_		_		_	_	-	_	IOCB4	Y	_
RB5	38	13	15	15	ANB5	—	—	—	—	—	-	-	-		—	-	-		IOCB5	Y	Ι
RB6	39	14	16	16	ANB6	-	—	-	_	—		-		-	—	TX2 CK2 ⁽¹⁾	CLCIN2 ⁽¹⁾		IOCB6	Y	ICSPCLK
RB7	40	15	17	17	ANB7	-	—	—	DAC1OUT2	—	—	-	—	_	—	RX2 DT2 ⁽¹⁾	CLCIN3 ⁽¹⁾		IOCB7	Y	ICSPDAT
RC0	15	30	34	32	ANC0	—	—	—	—	SOSCO T1CKI ⁽¹⁾			_	—	—	-	-		IOCC0	Y	—
RC1	16	31	35	35	ANC1	_	—	_	_	SOSCI	CCP2 ⁽¹⁾	_	—	_	—	-	—	-	IOCC1	Υ	_
RC2	17	32	36	36	ANC2	-	—	—	_	_	CCP1 ⁽¹⁾	—	—	_	_	_	—	_	IOCC2	Υ	_

TABLE 4: 40/44-PIN ALLOCATION TABLE (PIC16(L)F15375, PIC16(L)F15376)

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

Н	
	_
	O
	Ŧ
	35
	5
	UT I
	6
I	
I	85/
I	
I	8
I	ő
н	

Preliminary

I/O ⁽²⁾	48-Pin UQFN/TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	CCP	MWM	SWC	ASSM	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RC2	40	ANC2	—	—	—	_	—	CCP1 ⁽¹⁾	-	—	—		—	-	—	IOCC2	Y	—
RC3	41	ANC3	-	-	-	_	T2IN ⁽¹⁾	-	_	_	SCL1 SCL2 ^(1,4)	_	—	_	-	IOCC3	Y	-
RC4	46	ANC4	-	_	_	_	-	—	_	-	SDA1 SDI1 ^(1,4)	_	—	_	_	IOCC4	Y	_
RC5	47	ANC5	_	—	_	_	_	_	_	_	_	_	—	_	_	IOCC5	Υ	_
RC6	48	ANC6	-	—	—	_	_	—	_	—	—		TX1 CK1 ⁽¹⁾	_	-	IOCC6	Y	—
RC7	1	ANC7	-	—	—	_	—	—	_	—	_		RX1 DT1 ⁽¹⁾	_	-	IOCC7	Y	—
RD0	42	AND0	-	—	-	-	-	—	—	-	SCK2 SCL2 ^(1,4)	—	-	—	-	-	Y	—
RD1	43	AND1	—	—	—		—	—	_	—	SDA2 SDI2 ^(1,4)		_	_	-	—	Y	—
RD2	44	AND2	_	_	—	_	_	_	-	_	_	_	—	-	_	_	Y	_
RD3	45	AND3	_	_	_	_	_	_		_	_		_		—	_	Y	_
RD4	2	AND4	_	_	—	_	_	—	_	_	_	_	_	_	_	_	Υ	_
RD5	3	AND5	_	_	—	_	_	—	-	_	_	-	_	-	_	_	Υ	_
RD6	4	AND6	_	_	—	_	_	_	_	—	_	_	_	_	_	—	Υ	_
RD7	5	AND7	—	—	—	_	—	—	-	—	—	-	—	-	—	—	Υ	—
RE0	27	ANE0	-	—	—	_	—	—	-	—	—	-	—	-	—	—	Υ	—
RE1	28	ANE1	_	—	—	_	-	—	_	-	_	_	_		—	-	Υ	—
RE2	29	ANE2	_	—	—	—	—	—	—	—	—	_	—	—	—	—	Y	—
RE3	20	_	-	—	—		—	—	_	—	—	_	—	_	_	IOCE3	Y	MCLR VPP
RF0	36	ANF0	_	_	—	_	—	_	_	—	_		_	_	_	—	Y	_
RF1	37	ANF1	_	—	—	_	-	—	-	—	—	_	—	-	—	—	Υ	—
RF2	38	ANF2	_	—	—	_	-	_	_	—	—	_	—	_	—	—	Υ	_
RF3	39	ANF3	_	—	—	_	-	—	-	—	—	_	—	-	—	—	Υ	—
RF4	12	ANF4	—	—	—		—	—		_	_		_		—	—	Υ	—

TABLE 5: 48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) (CONTINUED)

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.
 All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

Name	Function	Input Type	Output Type	Description
RB3/ANB3/C1IN2-/C2IN2-/IOCB3	RB3	TTL/ST	CMOS/OD	General purpose I/O.
	ANB3	AN	_	ADC Channel B3 input.
	C1IN2-	AN	_	Comparator 1 negative input.
	C2IN2-	AN	_	Comparator 2 negative input.
	IOCB3	TTL/ST	-	Interrupt-on-change input.
RB4/ANB4/ADACT ⁽¹⁾ /IOCB4	RB4	TTL/ST	CMOS/OD	General purpose I/O.
	ANB4	AN	-	ADC Channel B4 input.
	ADACT ⁽¹⁾	TTL/ST	-	ADC Auto-Conversion Trigger input.
	IOCB4	TTL/ST	_	Interrupt-on-change input.
RB5/ANB5/T1G ⁽¹⁾ /IOCB5	RB5	TTL/ST	CMOS/OD	General purpose I/O.
	ANB5	AN	-	ADC Channel B5 input.
	T1G ⁽¹⁾	ST	_	Timer1 Gate input.
	IOCB5	TTL/ST	_	Interrupt-on-change input.
RB6/ANB6/CLCIN2 ⁽¹⁾ /IOCB6/TX2/ CK2 ⁽³⁾ /ICSPCLK	RB6	TTL/ST	CMOS/OD	General purpose I/O.
JK2 ^w /IUSPULK	ANB6	AN	_	ADC Channel B6 input.
	CLCIN2 ⁽¹⁾	TTL/ST	-	Configurable Logic Cell source input.
	IOCB6	TTL/ST	-	Interrupt-on-change input.
	TX2	—	CMOS	EUSART2 asynchronous.
	CK2 ⁽³⁾	TTL/ST	CMOS/OD	EUSART2 synchronous mode clock input/output.
	ICSPCLK	ST	-	In-Circuit Serial Programming™ and debugging clock inpu
RB7/ANB7/RX2/DT2/CLCIN3 ⁽¹⁾ /	RB7	TTL/ST	CMOS/OD	General purpose I/O.
IOCB7/DAC1OUT2/ICSPDAT	ANB7	AN	-	ADC Channel B7 input.
	CLCIN3 ⁽¹⁾	TTL/ST	-	Configurable Logic Cell source input.
	IOCB7	TTL/ST	_	Interrupt-on-change input.
	RX2 ⁽¹⁾	TTL/ST	_	EUSART2 Asynchronous mode receiver data input.
	DT2 ⁽³⁾	TTL/ST	CMOS/OD	EUSART2 Synchronous mode data input/output.
	DAC1OUT2	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming™ and debugging data inpu output.
RC0/ANC0/T1CKI ⁽¹⁾ /IOCC0/SOSCO	RC0	TTL/ST	CMOS/OD	General purpose I/O.
	ANC0	AN	_	ADC Channel C0 input.
	T1CKI ⁽¹⁾	TTL/ST	_	Timer1 external digital clock input.
	IOCC0	TTL/ST	_	Interrupt-on-change input.
	SOSCO	_	AN	32.768 kHz secondary oscillator crystal driver output.

TABLE 1-2: PIC16(L)F15356 PINOUT DESCRIPTION (CONTINUED)

Note

Schmitt Trigger input of output
 Schmitt Trigger input with CMOS levels
 Crystal levels

 $\begin{aligned} HV &= \text{Airadeg input of output} & \text{Since on the comparison of the comparison o$ 1:

2: options as described in Table 15-3. This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and

3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

REGISTER 10-10: PIR0: PERIPHERAL INTERRUPT STATUS REGISTER 0

U-0	U-0	R/W/HS-0/0	R-0	U-0	U-0	U-0	R/W/HS-0/0				
_		- TMR0IF		_			INTF ⁽¹⁾				
bit 7				·			bit 0				
Legend:											
R = Readable b	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'							
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	HS= Hardware Set							

bit 7-6	Unimplemented: Read as '0'
bit 5	TMR0IF: Timer0 Overflow Interrupt Flag bit
	 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 4	IOCIF: Interrupt-on-Change Interrupt Flag bit (read-only) ⁽²⁾
	 1 = One or more of the IOCAF-IOCEF register bits are currently set, indicating an enabled edge was detected by the IOC module.
	0 = None of the IOCAF-IOCEF register bits are currently set
bit 3-1	Unimplemented: Read as '0'
bit 0	INTF: INT External Interrupt Flag bit ⁽¹⁾
	 1 = The INT external interrupt occurred (must be cleared in software) 0 = The INT external interrupt did not occur
Note 1:	The External Interrupt GPIO pin is selected by INTPPS (Register 15-1).
2:	The IOCIF bit is the logical OR of all the IOCAF-IOCEF flags. Therefore, to clear the IOCIF flag, application firmware must clear all of the lower level IOCAF-IOCEF register bits.
Note:	Interrupt flag bits are set when an interrupt

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state
	of its corresponding enable bit or the
	Global Enable bit, GIE, of the INTCON
	register. User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

© 2016 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page							
OSCCON1	_		NOSC<2:0>			NDIV<3:0>										
OSCCON2	—	COSC<2:0>				CDIV<3:0>						CDIV<3:0>				
OSCCON3	CSWHOLD	SOSCPWR	—	ORDY	NOSCR	—	—	-	136							
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	124							
STATUS	_	—	_	TO	PD	Z	DC	С	54							
WDTCON0	—	—			WDTPS<4:0)>		SWDTEN	175							
WDTCON1	—	V	VDTCS<2:0>		—	WI	NDOW<2:0	>	176							
WDTPSL				PSCN	T<7:0>											
WDTPSH				PSCN	T<15:8>	<15:8>										
WDTTMR	—		WDTTMR<4:0> STATE PSCNT<17:16>													
Lonondi -		unimplemented leastions read as '0'. Checked calls are not used by Watehday Timer														

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		_	FCMEN	_	CSWEN	_	_	CLKOUTEN	100
CONFIG1	7:0	_	F	RSTOSC<2:0	>	_	F	EXTOSC<2:0	>	102

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

EXAMPLE 13-3: ERASING ONE ROW OF PROGRAM FLASH MEMORY (PFM)

		()
; 1.A valid ad		umes the following: e row is loaded in variables ADDRH:ADDRL common RAM (locations 0x70 - 0x7F)
BANKSEL	NVMADRL	
MOVF	ADDRL,W	
MOVWF	NVMADRL	; Load lower 8 bits of erase address boundary
MOVF	ADDRH,W	
MOVWF	NVMADRH	; Load upper 6 bits of erase address boundary
BCF	NVMCON1, NVMREGS	; Choose PFM memory area
BSF	NVMCON1, FREE	; Specify an erase operation
BSF	NVMCON1,WREN	; Enable writes
BCF	INTCON,GIE	; Disable interrupts during unlock sequence
;	REQ	UIRED UNLOCK SEQUENCE:
MOVLW	55h	; Load 55h to get ready for unlock sequence
MOVWF	NVMCON2	; First step is to load 55h into NVMCON2
MOVLW	AAh	; Second step is to load AAh into W
MOVWF	NVMCON2	; Third step is to load AAh into NVMCON2
BSF	NVMCON1,WR	; Final step is to set WR bit
;		
BSF	INTCON, GIE	; Re-enable interrupts, erase is complete
BCF	NVMCON1,WREN	; Disable writes

TABLE 13-2: NVM ORGANIZATION AND ACCESS INFORMATION

	Master Values		N	VMREG Acce	ess	FSR	FSR Access	
Memory Function	Program Counter (PC), ICSP™ Address	Memory Type	NVMREGS bit (NVMCON1)	NVMADR< 14:0>	Allowed Operations	FSR Address	FSR Programming Address	
Reset Vector	0000h		0	0000h		8000h		
User Memory	0001h		0	0001h		8001h		
User Memory	0003h		0	0003h		8003h		
INT Vector	0004h	PFM	0	0004h	Read Write	8004h	Read-0nly	
	0005h			0005h	White	8005h		
User Memory	1FFFh		0	1FFFh		9FFFh		
	3FFFh			3FFFh		BFFFh		
	8000h	PFM	1	0000h	Read			
User ID	8003h	PEM	1	0003h	Write			
Reserved	8004h	—	-	0004h	_			
Rev ID	8005h		1	0005h	Deed Only			
Device ID	8006h		1	0006h	Read-Only	No	A	
CONFIG1	8007h		1	0007h		INO	Access	
CONFIG2	8008h	PFM	1	0008h	_ .			
CONFIG3	8009h		1	0009h	Read Write			
CONFIG4	800Ah	1	1	000Ah	VVIILE			
CONFIG5	800Bh		1	000Bh				
DIA and DCI	8100h-82FFh	PFM and Hard coded	1	0100h- 02FFh	Read-Only	No	Access	

14.12 PORTF Registers

Note: Present only on PIC16(L)F15385/86.

14.12.1 DATA REGISTER

PORTF is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISF (Register 14-42). Setting a TRISF bit (= 1) will make the corresponding PORTF pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISF bit (= 0) will make the corresponding PORTF pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize an I/O port.

Reading the PORTF register (Register 14-41) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATF).

The PORT data latch LATF (Register 14-43) holds the output port data, and contains the latest value of a LATF or PORTF write.

14.12.2 DIRECTION CONTROL

The TRISF register (Register 14-42) controls the PORTF pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISF register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.12.3 INPUT THRESHOLD CONTROL

The INLVLF register (Register 14-48) controls the input voltage threshold for each of the available PORTF input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTF register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

14.12.4 OPEN-DRAIN CONTROL

The ODCONF register (Register 14-46) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONF bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONF bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note: It is not necessary to set open-drain control when using the pin for I²C; the I²C module controls the pin and makes the pin open-drain.

14.12.5 SLEW RATE CONTROL

The SLRCONF register (Register 14-47) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONF bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONF bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.12.6 ANALOG CONTROL

The ANSELF register (Register 14-44) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELF bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELF bits has no effect on digital output functions. A pin with TRIS clear and ANSELF set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELF bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

14.12.7 WEAK PULL-UP CONTROL

The WPUF register (Register 14-45) controls the individual weak pull-ups for each port pin.

14.12.8 PORTF FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

Output Signal	RxyPPS	Remappable to Pins of PORTx PIC16(L)F15385/86							
Name	RxyPP5 Register Value								
	5	PORTA	PORTB	PORTC	PORTD	PORTE	PORTF		
CLKR	0x1B		•			•			
NCO1OUT	0x1A	•			•				
TMR0	0x19			•			•		
SDO2/SDA2	0x18		•		•				
SCK2/SCL2	0X17		•		•				
SDO1/SDA1	0x16		•	•					
SCK1/SCL1	0x15		•	•					
C2OUT	0x14	٠				•			
C1OUT	0x13	٠			•				
DT2	0x12		•	•					
TX2/CK2	0x11		•		•				
DT1	0x10			•			٠		
TX1/CK1	0x0F			•			٠		
PWM6OUT	0x0E	٠			•				
PWM5OUT	0x0D	٠					•		
PWM4OUT	0x0C		•		•				
PWM3OUT	0x0B		•		•				
CCP2	0x0A			•			•		
CCP1	0x09			•			•		
CWG1D	0x08		•		•				
CWG1C	0x07		•		•				
CWG1B	0x06		•		•				
CWG1A	0x05		•	•					
CLC4OUT	0x04		•		•				
CLC3OUT	0x03		•		•				
CLC2OUT	0x02	•					•		
CLC1OUT	0x01	•					•		

TABLE 15-7: PPS OUTPUT SIGNAL ROUTING OPTIONS (PIC16(L)F15385/86)

ADC Clock Period (TAD)			Device Frequency (Fosc)				
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽²⁾
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽²⁾	64.0 μs ⁽²⁾
ADCRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)				

TABLE 20-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.


Note 1: See TAD parameter for ADCRC source typical TAD value.

2: These values violate the required TAD time.

3: Outside the recommended TAD time.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the ADCRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 20-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

TABLE 20-3	. 000000							1	1
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	146
PIE1	OSFIE	CSWIE	—	—	—	—	—	ADIE	148
PIR1	OSFIF	CSWIF	_	_	_	_	_	ADIF	156
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	200
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	206
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	211
ANSELA	ANSA7	ANSA6	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	201
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	207
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	212
ADCON0			CHS<	:5:0>			GO/DONE	ADON	277
ADCON1	ADFM		ADCS<2:0>		—	_	ADPREF	<1:0>	279
ADACT	_	—	—	—		ADA	ACT<3:0>		280
ADRESH				ADRE	SH<7:0>				281
ADRESL				ADRE	ESL<7:0>				281
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVR<	<1:0>	264
DAC1CON1		_	_			DAC1R<4	:0>		287
OSCSTAT1	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR	137

TABLE 20-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: – = unimplemented read as '0'. Shaded cells are not used for the ADC module.

21.6 Register Definitions: DAC Control

REGISTER 21-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DAC1EN	—	DAC10E1	DAC10E2	DAC1F	'SS<1:0>	—	DAC1NSS
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncl	nanged	x = Bit is unki	nown	-n/n = Value a	at POR and BOI	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	1 = DAC is e 0 = DAC is d	isabled	e l				
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	1 = DAC volt	AC1 Voltage C age level is an age level is dis	output on the	DAC1OUT1 p			
bit 4	1 = DAC volt	 DAC1OE2: DAC1 Voltage Output 1 Enable bit 1 = DAC voltage level is an output on the DAC1OUT2 pin 0 = DAC voltage level is disconnected from the DAC1OUT2 pin 					
bit 3-2		•	sitive Source S	Select bits			
bit 1	Unimplemen	ted: Read as '	0'				
hit 0							

bit 0 DAC1NSS: Read as '0'

REGISTER 21-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DAC1R<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DAC1R<4:0>: DAC1 Voltage Output Select bits VOUT = (VSRC+ - VSRC-)*(DAC1R<4:0>/32) + VSRC

29.1.1 PWM CLOCK SELECTION

The PIC16(L)F15356/75/76/85/86 allows each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

29.1.2 USING THE TMR2 WITH THE PWM MODULE

This device has a newer version of the TMR2 module that has many new modes, which allow for greater customization and control of the PWM signals than on older parts. Refer to Section 27.5 "Operation Examples" for examples of PWM signal generation using the different modes of Timer2.

Note:	PWM operation requires that the timer
	used as the PWM time base has the
	FOSC/4 clock source selected.

29.1.3 **PWM PERIOD**

Referring to Figure 29-1, the PWM output has a period and a pulse width. The frequency of the PWM is the inverse of the period (1/period).

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

EQUATION 29-1: **PWM PERIOD**

$$PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC$$
$$\cdot (TMR2 Prescale Value)$$

Note 1: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The PWMx pin is set (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM pulse width is latched from PWMxDC.

Note:	If the p	ulse v	width value	is grea	ter than	the
	period	the	assigned	PWM	pin(s)	will
	remain	unch	anged.			

29.1.4 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the PWMxDC register. The PWMxDCH contains the eight MSbs and the PWMxDCL<7:6> bits contain the two LSbs.

The PWMDC register is double-buffered and can be updated at any time. This double buffering is essential for glitch-free PWM operation. New values take effect when TMR2 = PR2. Note that PWMDC is left-justified.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

Equation 29-2 is used to calculate the PWM pulse width.

Equation 29-3 is used to calculate the PWM duty cycle ratio.

EQUATION 29-2: PULSE WIDTH

 $Pulse Width = (PWMxDC) \cdot TOSC \cdot$ (TMR2 Prescale Value)

EQUATION 29-3: DUTY CYCLE RATIO

(PWMxDC) Duty Cycle Ratio =

```
4(PR2 + 1)
```

29.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 29-4.

EQUATION 29-4: **PWM RESOLUTION**

Resolution =
$$\frac{\log[4(PR2+1)]}{\log(2)}$$
 bits

30.9 CWG Steering Mode

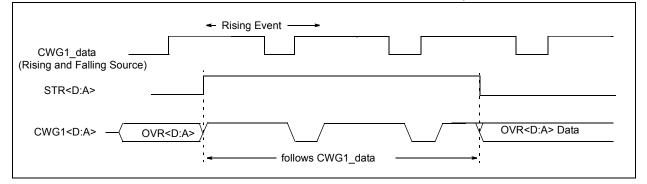
In Steering mode (MODE = 00x), the CWG allows any combination of the CWG1x pins to be the modulated signal. The same signal can be simultaneously available on multiple pins, or a fixed-value output can be presented.

When the respective STRx bit of CWG1OCON0 is '0', the corresponding pin is held at the level defined. When the respective STRx bit of CWG1OCON0 is '1', the pin is driven by the input data signal. The user can assign the input data signal to one, two, three, or all four output pins.

The POLx bits of the CWG1CON1 register control the signal polarity only when STRx = 1.

The CWG auto-shutdown operation also applies in Steering modes as described in **Section 30.10** "**Auto-Shutdown**". An auto-shutdown event will only affect pins that have STRx = 1.

30.9.1 STEERING SYNCHRONIZATION


Changing the MODE bits allows for two modes of steering, synchronous and asynchronous.

When MODE = 000, the steering event is asynchronous and will happen at the end of the instruction that writes to STRx (that is, immediately). In this case, the output signal at the output pin may be an incomplete waveform. This can be useful for immediately removing a signal from the pin.

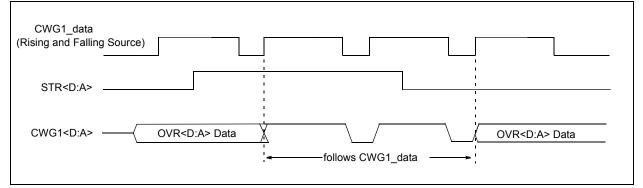

When MODE = 001, the steering update is synchronous and occurs at the beginning of the next rising edge of the input data signal. In this case, steering the output on/off will always produce a complete waveform.

Figure 30-10 and Figure 30-11 illustrate the timing of asynchronous and synchronous steering, respectively.

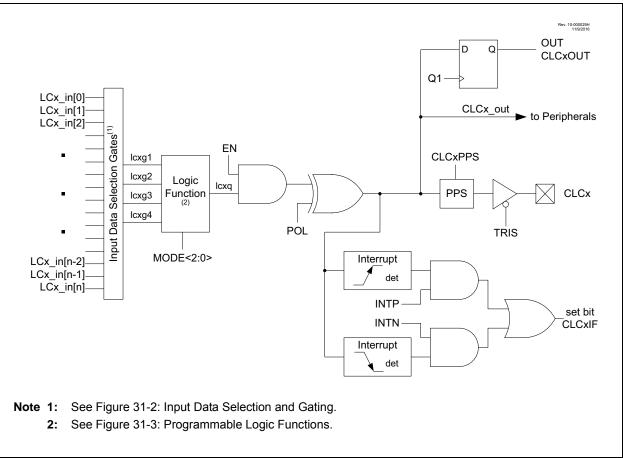


FIGURE 30-11: EXAMPLE OF STEERING EVENT (MODE<2:0> = 001)

REGISTER 31-3: CLCxSEL0: GENERIC CLCx DATA 0 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			LCxD	1S<5:0>		
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplement	ed bit, read as '0'		

u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LCxD1S<5:0>: CLCx Data1 Input Selection bits See Table 31-2.

REGISTER 31-4: CLCxSEL1: GENERIC CLCx DATA 1 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	—		LCxD2S<5:0>						
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 5-0 LCxD2S<5:0>: CLCx Data 2 Input Selection bits See Table 31-2.

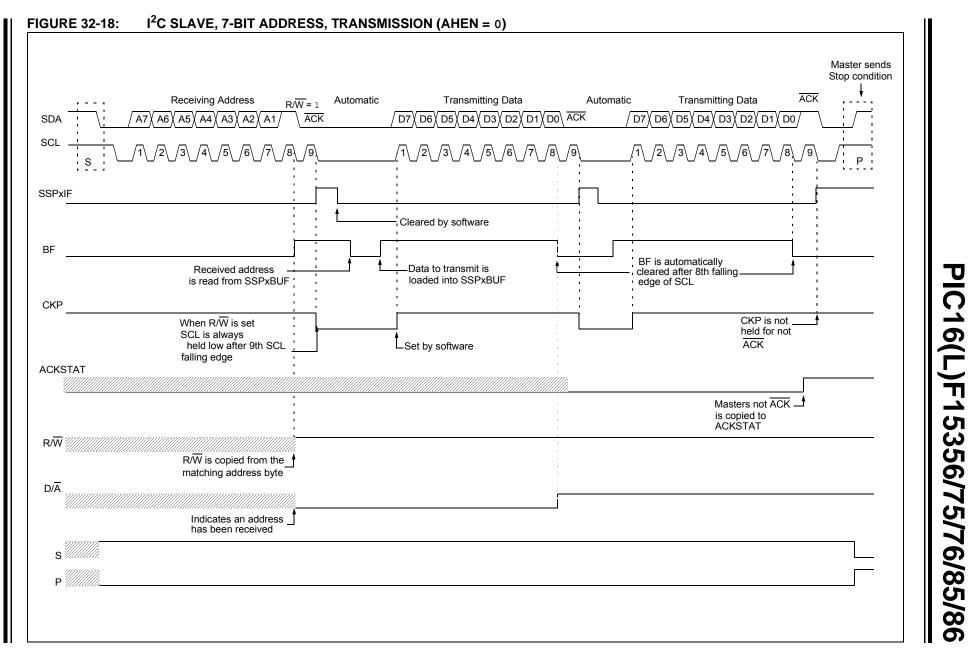
REGISTER 31-5: CLCxSEL2: GENERIC CLCx DATA 2 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—	LCxD3S<5:0>						
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

```
bit 7-6 Unimplemented: Read as '0'
```

bit 5-0 LCxD3S<5:0>: CLCx Data 3 Input Selection bits See Table 31-2.


REGISTER 31-6: CLCxSEL3: GENERIC CLCx DATA 3 SELECT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	—		LCxD4S<5:0>						
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LCxD4S<5:0>: CLCx Data 4 Input Selection bits See Table 31-2.

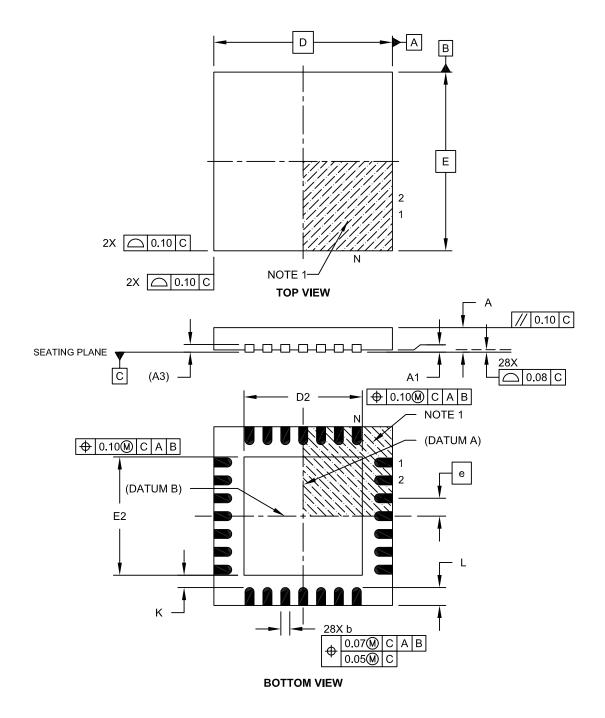
Mnen	nonic,	Description			14-Bit	Opcode	e	Status	Netes
Operands		Description		MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS					•	
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	_	No Operation	1	00	0000	0000	0000		
RESET	_	Software device Reset	1	00	0000	0000	0001		
SLEEP	_	Go into Standby or IDLE mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED					•	
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							-
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	lnmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11					2

TABLE 36-3: INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.


			P				
Standard Param. No.	Sym.	Characteristic	Se stated) Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:					
D300		with TTL buffer	_	_	0.8	V	4.5V ≤ VDD ≤ 5.5V
D301			_		0.15 VDD	V	1.8V ≤ Vop ≤ 4.5V
D302		with Schmitt Trigger buffer	_		0.2 VDD	V	2.0V ≤ VpD ≤ 5.5V
D303		with I ² C levels	_		0.3 VDQ	V	
0304		with SMBus levels	_		0.8	V	$2.7V \le VDD \le 5.5V$
D305		MCLR	_		0.2 Vdd	\setminus \checkmark	
	VIH	Input High Voltage	•				
		I/O PORT:			//		
0320		with TTL buffer	2.0	7		$\setminus \vee \vee$	$4.5V \leq V\text{DD} \leq 5.5V$
0321			0.25 VDD + 0.8	,		\searrow	$1.8V \le V\text{DD} \le 4.5V$
0322		with Schmitt Trigger buffer	0.8 VDD <		$\langle \mathcal{F} \rangle$	V	$2.0V \leq V \text{DD} \leq 5.5 V$
D323		with I ² C levels	0.7 Yap	/-/	\searrow	V	
D324		with SMBus levels	2.1		$\setminus -$	V	$2.7V \leq V\text{DD} \leq 5.5V$
D325		MCLR	0.7 VDD	<u> </u>	V _	V	
	lı∟	Input Leakage Current ⁽¹⁾	\sim $//$	$\overline{//}$			
D340		I/O Ports	R	±5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C
D341			$\langle \rangle$	± 5	± 1000	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 125°C
D342		MCLR ⁽²⁾	$\overline{\sum}$	± 50	± 200	nA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, 85°C
	IPUR	Weak Pull-up Current	·				
0350			25	120	200	μA	VDD = 3.0V, VPIN = VSS
	Vol	Output Løw Voltage					•
D360		I/O/ports	—	_	0.6	V	IOL = 10.0mA, VDD = 3.0V
	Voн	Øutput High Voltage					•
0370		I/O ports	Vdd - 0.7	_	_	V	ЮН = 6.0 mA, VDD = 3.0V
D380	CIO	All I/O pins	_	5	50	pF	

† Data in "Typ) column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: Negative current is defined as current sourced by the pin.
 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent

normal operating conditions. Higher leakage current may be measured at different input voltages.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2