

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	44
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15385t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description			
RA6/ANA6/CLKOUT/IOCA6/OSC1	RA6	TTL/ST	CMOS/OD	General purpose I/O.			
	ANA6	AN	_	ADC Channel A6 input.			
	CLKOUT	_	CMOS/OD	Fosc/4 digital output (in non-crystal/resonator modes).			
	IOCA6	TTL/ST	_	Interrupt-on-change input.			
	OSC1	XTAL	_	External Crystal/Resonator (LP, XT, HS modes) driver input.			
RA7/ANA7/CLKIN/IOCA7/OSC2	RA7	TTL/ST	CMOS/OD	General purpose I/O.			
	ANA7	AN	—	ADC Channel A7 input.			
	CLKIN	TTL/ST	_	External digital clock input.			
	IOCA7	TTL/ST	_	Interrupt-on-change input.			
	OSC2	_	XTAL	External Crystal/Resonator (LP, XT, HS modes) driver output.			
$\frac{\text{RB0/ANB0/C2IN1+/ZCD1/\overline{SS2}^{(1)}}{(1)}}{(1)}$	RB0	TTL/ST	CMOS/OD	General purpose I/O.			
CWG1 ¹ //INT ¹ //IOCB0	ANB0	AN	_	ADC Channel B0 input.			
	C2IN1+	AN	_	Comparator positive input.			
	ZCD1	AN	AN	Zero-cross detect input pin (with constant current sink/source).			
	SS2 ⁽¹⁾	TTL/ST	_	MSSP2 SPI slave select input.			
	CWG1 ⁽¹⁾	TTL/ST	_	Complementary Waveform Generator 1 input.			
	INT ⁽¹⁾	TTL/ST	_	External interrupt request input.			
	IOCB0	TTL/ST	_	Interrupt-on-change input.			
RB1/ANB1/C1IN3-/C2IN3-/	RB1	TTL/ST	CMOS/OD	General purpose I/O.			
SULT VSUKT VIUCBT	ANB1	AN	_	ADC Channel B1 input.			
	C1IN3-	AN	_	Comparator negative input.			
	C2IN3-	AN	_	Comparator negative input.			
	SCL1 ⁽¹⁾	I ² C	OD	MSSP1 I ² C input/output.			
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK1 is a PPS remappable input and output).			
	IOCB1	TTL/ST	—	Interrupt-on-change input.			
RB2/ANB2/SDA1 ⁽¹⁾ /SDI1 ⁽¹⁾ /IOCB2	RB2	TTL/ST	CMOS/OD	General purpose I/O.			
	ANB2	AN	—	ADC Channel B2 input.			
	SDA1 ⁽¹⁾	I ² C	OD	MSSP1 I ² C serial data input/output.			
	SDI1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI serial data input (default input location, SDI1 is a PPS remappable input and output).			
	IOCB2	TTL/ST	—	Interrupt-on-change input.			
RB3/ANB3/C1IN2-/C2IN2-/IOCB3	RB3	TTL/ST	CMOS/OD	General purpose I/O.			
	ANB3	AN	—	ADC Channel B3 input.			
	C1IN2-	AN	_	Comparator negative input.			
	C2IN2-	AN	_	Comparator negative input.			
	IOCB3	TTL/ST	_	Interrupt-on-change input.			

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION (CONTINUED)

TTL = TTL compatible input HV = High Voltage

= Schmitt Trigger input with CMOS levels

I²C = Schmitt Trigger input with I²C

Note

= Crystal levels XTAL This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 15-5, Table 15-6 and Table 15-6.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

IADLE	4-11: SPECI	AL FUNCTION	REGISTER	SUMMAR 1	DANKS 0-						
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 17											
				CPU COF	RE REGISTERS;	see Table 4-3 for	r specifics				
88Ch	CPUDOZE	IDLEN	DOZEN	ROI	DOE	_	DOZE2	DOZE1	DOZE0	0000 -000	u000 -000
88Dh	OSCCON1	—		NOSC<2:0>			ND	IV<3:0>		-qqq 0000	-qqq 0000
88Eh	OSCCON2	—		COSC<2:0>			CDIV<3:0>				-वेवेवे वेवेवेवे
88Fh	OSCCON3	CSWHOLD	SOSCPWR	—	ORDY	NOSCR	—	—	—	00-0 0	00-0 0
890h	OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	d000 dd-0	dddd dd-d
891h	OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	—	—	0000 00	0000 00
892h	OSCTUNE	—	—			HFT	UN<5:0>			10 0000	10 0000
893h	OSCFRQ	—	—	—	—	—		HFFRQ<2:0	>	ddd	ddd
894h	—				Unimple	mented				—	—
895h	CLKRCON	CLKREN	—	—	CLKRE	DC<1:0>		CLKRDIV<2:0)>	0x xxxx	0u uuuu
896h	CLKRCLK	—	—	—	—	- CLKRCLK<3:0>					0000
897h 89Fh	_	Unimplemented						_	_		

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

9.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

9.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 9-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 determine the type of oscillator that will be used when the device reset, including when it is first powered up.

The internal clock modes, LFINTOSC, HFINTOSC (set at 1 MHz), or HFINTOSC (set at 32 MHz) can be set through the RSTOSC bits.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used to select the external clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode ECL<= 500 kHz
- 2. ECM External Clock Medium Power mode ECM <= 8 MHz
- 3. ECH External Clock High-Power mode ECH <= 32 MHz
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 4 MHz)
- HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 9-1). A wide selection of device clock frequencies may be derived from these clock sources.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON1	—		NOSC<2:0>			NDIV<3:0>			
OSCCON2	—		COSC<2:0>			CDIV<3:0>			
OSCCON3	CSWHOLD	SOSCPWR	_	ORDY	NOSCR	—	—	—	136
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	124
STATUS	—	—	_	TO	PD	Z	DC	С	54
WDTCON0	—	—			WDTPS<4:0)>		SWDTEN	175
WDTCON1	—	V	VDTCS<2:0>		—	WI	NDOW<2:0>	>	176
WDTPSL				PSCN	T<7:0>				177
WDTPSH			PSCNT<15:8>						
WDTTMR			WDTTM	R<4:0>		STATE	PSCNT	<17:16>	177

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	-	FCMEN	-	CSWEN	_		CLKOUTEN	100
CONFIGT	7:0	_	F	RSTOSC<2:0	>	—	F	EXTOSC<2:0	>	102

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	211
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	211
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	211
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	212
WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	212
ODCONC	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	213
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	213
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	213

TABLE 14-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCD7 | ODCD6 | ODCD5 | ODCD4 | ODCD3 | ODCD2 | ODCD1 | ODCD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ODCD<7:0>: PORTD Open-Drain Enable bits

For RD<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 14-31: SLRCOND: PORTD SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRD7 | SLRD6 | SLRD5 | SLRD4 | SLRD3 | SLRD2 | SLRD1 | SLRD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRD<7:0>: PORTD Slew Rate Enable bits

For RD<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 14-32: INLVLD: PORTD INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLD7 | INLVLD6 | INLVLD5 | INLVLD4 | INLVLD3 | INLVLD2 | INLVLD1 | INLVLD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLD<7:0>: PORTD Input Level Select bits

For RD<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
RC1PPS	_	—	_			RC1PPS<	4:0>		242		
RC2PPS	—	_	_			RC2PPS<	4:0>		242		
RC3PPS	_	_	_			RC3PPS<	4:0>		242		
RC4PPS	_	_	_			RC4PPS<	4:0>		242		
RC5PPS	_	_	_			RC5PPS<	4:0>		242		
RC6PPS	_	_	_			RC6PPS<	4:0>		242		
RC7PPS	_	—	—			RC7PPS<	4:0>		242		
RD0PPS ⁽¹⁾	_	_	—			RD0PPS<4	k:0>		242		
RD1PPS ⁽¹⁾	_	—	—			RD1PPS<4	k:0>		242		
RD2PPS ⁽¹⁾	—	_	—			RD2PPS<4	k:0>		242		
RD3PPS ⁽¹⁾	—	—	—			RD3PPS<4	k:0>		242		
RD4PPS ⁽¹⁾	—	_	—			RD4PPS<4	l:0>		242		
RD5PPS ⁽¹⁾	—		_			RD5PPS<4	k:0>		242		
RD6PPS ⁽¹⁾	—	—	—			RD6PPS<4	k:0>		242		
RD7PPS ⁽¹⁾	—		-			RD7PPS<4	1:0>		242		
RE0PPS ⁽¹⁾	—	—	—			RD5PPS<4	k:0>		242		
RE1PPS ⁽¹⁾	—	—	—			RD6PPS<4	k:0>		242		
RE2PPS ⁽¹⁾	—		-			RD7PPS<4	1:0>		242		
RF0PPS ⁽²⁾	—	—	—			RF0PPS<4	:0>		242		
RF1PPS ⁽²⁾	—	—	—			RF1PPS<4	:0>		242		
RF2PPS ⁽²⁾	—		-			RF2PPS<4	:0>		242		
RF3PPS ⁽²⁾	—	—	—			RF3PPS<4	:0>		242		
RF4PPS ⁽²⁾	—	—	—		RF4PPS<4:0>						
RF5PPS ⁽²⁾	—	—	—	RF5PPS<4:0>							
RF6PPS ⁽²⁾	—	_	—		RF6PPS<4:0>						
RF7PPS ⁽²⁾	_	_	_			RF7PPS<4	:0>		242		

TABLE 15-8: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

Note 1: Present only on PIC16(L)F15375/76/85/86.

2: Present only on PIC16(L)F15385/86.

17.0 INTERRUPT-ON-CHANGE

All pins on ports A, B and C and lower four bits of PORTE can be configured to operate as Interrupt-on-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual pin, or combination of pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 17-1 is a block diagram of the IOC module.

17.1 Enabling the Module

To allow individual pins to generate an interrupt, the IOCIE bit of the PIE0 register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

17.2 Individual Pin Configuration

For each pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting the associated bits in both of the IOCxP and IOCxN registers.

17.3 Interrupt Flags

The bits located in the IOCxF registers are status flags that correspond to the interrupt-on-change pins of each port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIR0 register reflects the status of all IOCxF bits.

17.3.1 CLEARING INTERRUPT FLAGS

The individual status flags, (IOCxF register bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 17-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

17.4 Operation in Sleep

The interrupt-on-change interrupt event will wake the device from Sleep mode, if the IOCIE bit is set.

20.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting

20.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin will be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 14.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined									
	as a digital input may cause the input									
	buffer to conduct excess current.									

20.1.2 CHANNEL SELECTION

There are several channel selections available:

- Seven Port A channels
- Seven Port B channels
- Seven Port C channels
- Seven Port D channels⁽¹⁾
- Seven Port E channels⁽¹⁾
- Seven Port F channels⁽²⁾
- Temperature Indicator
- DAC output
- Fixed Voltage Reference (FVR)
- AVss (Ground)

Note 1: Present on PIC16(L)F15375/76/85/86 only.
 2: Present on PIC16(L)F15385/86 only.

The CHS<5:0> bits of the ADCON0 register (Register 20-1) determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 20.2** "**ADC Operation**" for more information.

20.1.3 ADC VOLTAGE REFERENCE

The ADPREF<1:0> bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADPREF bit of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 18.0** "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

20.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS<2:0> bits of the ADCON1 register. There are seven possible clock options:

- · Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- ADCRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 20-2.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 37-13 for more information. Table 20-1 gives examples of appropriate ADC clock selections.

Note: Unless using the ADCRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

R/W-0/0	R/W-0/0	R/W-0/0		R/VV-0/0	R/W-U/U	R/W-U/U	R/W-0/0
	1003<2:0>		TUASTING		TUCKP	/5<3:0>	
Dit 7							DIT
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	1 as '0'	
u = Bit is uncł	nanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-5	TOCS<2:0>: 111 = LC1_0 110 = SOSC 101 = MFINT 100 = LFINT 011 = HFINT 010 = Fosc/2 001 = TOCKI 000 = TOCKI	Timer0 Clock S ut OSC (500 kHz OSC OSC 4 PPS (Inverted) PPS (True)	Source select b	its			
bit 4	T0ASYNC: T 1 = The input 0 = The input	MR0 Input Asy it to the TMR0 of to the TMR0 of	nchronization counter is not s ounter is sync	Enable bit synchronized hronized to Fo	to system clock osc/4	s	
bit 3-0	TOCKPS<3:0 1111 = 1:327 1110 = 1:163 1101 = 1:819 1100 = 1:409 1011 = 1:204 1010 = 1:102 1001 = 1:512 1000 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:4 0011 = 1:2 0000 = 1:1	>: Prescaler R /68 /84 /2 /66 /8 /24 /2 /3	ate Select bit				

REGISTER 28-4: CCPRxH REGISTER: CCPx REGISTER HIGH BYTE

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
CCPRx<15:8>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

oits
bits
1

© 2016 Microchip Technology Inc.

29.1 Standard PWM Mode

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the PWMx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- TMR2 register
- PR2 register
- PWMxCON registers
- PWMxDCH registers
- PWMxDCL registers

Figure 29-2 shows a simplified block diagram of PWM operation.

If PWMPOL = 0, the default state of the output is '0'. If PWMPOL = 1, the default state is '1'. If PWMEN = 0, the output will be the default state.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin

FIGURE 29-2: SIMPLIFIED PWM BLOCK DIAGRAM

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion				
bit 7	OVRD: Steer	ng Data D bit								
bit 6	OVRC: Steer	ng Data C bit								
bit 5	OVRB: Steer	ng Data B bit								
bit 4	OVRA: Steer	ng Data A bit								
bit 3	STRD: Steeri	ng Enable D bi	(2)							
	1 = CWG1D	output has the	CWG1_data	waveform with	polarity control	from POLD bit				
1.11.0	0 = CWG1D	output is assigi	ned the value	of OVRD bit						
bit 2	SIRC: Steeri	ng Enable C bi								
	1 = CWG1C 0 = CWG1C	output nas the	CWG1_data	waveform with	polarity control	from POLC bit				
bit 1	STRB: Steeri	na Enable B bit	(2)							
	1 = CWG1B	output has the	CWG1_data	waveform with	polarity control	from POI B bit				
	0 = CWG1B	output is assig	ned the value	of OVRB bit						
bit 0	bit 0 STRA: Steering Enable A bit ⁽²⁾									
	1 = CWG1A	output has the	CWG1_data	waveform with	polarity control	from POLA bit				
	0 = CWG1A	output is assigi	ned the value	of OVRA bit						
Note 1: Th	e bits in this re	gister apply onl	v when MOD	E<2:0> = 00x.						

REGISTER 30-7: CWG1STR: CWG1 STEERING CONTROL REGISTER⁽¹⁾

2: This bit is effectively double-buffered when MODE<2:0> = 001.

31.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the PIE5 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR5 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

31.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

31.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

31.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

31.6 CLCx Setup Steps

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 31-2).
- · Clear any associated ANSEL bits.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE5 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

© 2016 Microchip Technology Inc.

FIGURE 32-7: SPI DAISY-CHAIN CONNECTION

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc = 32.000 MHz		Fosc	Fosc = 20.000 MHz			c = 18.43	2 MHz	Fosc	Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_			—				_		_		
1200	—	—	—	—	—	—	—	—	—	—	—	—	
2400	—	—	—	—	—	—	—	—	—	_	_		
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

TABLE 33-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD FOSC		c = 8.00	0 MHz	Fos	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	_			_	_	_	300	0.16	207	
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_	
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	_	_	_	
115.2k	—	_	_	—	_	_	115.2k	0.00	1	_	_	_	

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc	: = 18.43	2 MHz	Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[<u>X]</u> ⁽¹⁾ -	×	<u>/xx</u>	<u>xxx</u>	Exan	nples:	
Device	Tape and Reel Option	Temperature Range	Package	Pattern	a)	PIC16F Extend SPDIP	F15356- E/SP ed temperature package
Device:	PIC16F15356, PIC16F15375, PIC16F15376, PIC16F15385, PIC16F15386,	PIC16LF15356 PIC16LF15375 PIC16LF15376 PIC16LF15385 PIC16LF15386					
Tape and Reel Option:	Blank = Stan T = Tape	dard packaging (tu and Reel ⁽¹⁾	ibe or tray)				
Temperature Range:	I = -40 E = -40	°C to +85°C (/ °C to +125°C (/	ndustrial) Extended)		Note	1:	Tape and Reel identifier only appears in
Package: ⁽²⁾	ML = 44-1 MV = 28-1 MV = 40-1 PT = 44-1 PT = 44-1 PT = 44-1 PT = 44-1 SO = 28-1 SP = 28-1 SS = 28-1	ead QFN 8x8mm ead UQFN 4x4mn ead UQFN 5x5mn ead UQFN 6x6mn ead PDIP ead TQFP 10x10r ead TQFP 10x10r ead SOIC ead SPDIP ead SSOP	n 1 1 1			2:	the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. Small form-factor packaging options may be available. Check <u>www.microchip.com/packaging</u> for small-form factor package availability, or contact your local Sales Office.
Pattern:	QTP, SQTP, C (blank otherwis	ode or Special Re se)	quirements				