

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	44
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15386-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 4-3)	C80h	Core Registers (Table 4-3)	D00h	Core Registers (Table 4-3)	D80h	Core Registers (Table 4-3)	E00h	Core Registers (Table 4-3)	E80h	Core Registers (Table 4-3)	F00h	Core Registers (Table 4-3)	F80h	Core Registers (Table 4-3)
C0Bh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
COCh	Unimplemented Read as '0'	C8Ch	Unimplemented Read as '0'	D0Ch	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
C20h		CA0h													
	General Purpose Register 80 Bytes ⁽¹⁾		General Purpose Register 80 Bytes ⁽¹⁾												
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h CFFh	Accesses 70h – 7Fh	CF0h CFFh	Accesses 70h – 7Fh	D70h D7Fh	Accesses 70h – 7Fh	DF0h DFFh	Accesses 70h – 7Fh	E70h E7Fh	Accesses 70h – 7Fh	EF0h	Accesses 70h – 7Fh	F70h F7Fh	Accesses 70h – 7Fh	FF0h FFFh	Accesses 70h – 7Fh

TABLE 4-7: PIC16(L)F15356/75/76/85/86 MEMORY MAP, BANK 24-31

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Present only in PIC16(L)F15356/76/86.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 60											
				CPU COF	RE REGISTERS;	see Table 4-3 for	r specifics				
1E0Ch	—				Unimpler	mented				—	
1E0Dh	—				Unimpler	mented				—	_
1E0Eh	—				Unimpler	mented				—	—
1E0Fh	CLCDATA	_	—	—	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	xxxx	uuuu
1E10h	CLCCON	LC1EN	—	LC1OUT	LC1INTP	LC1INTN		LC1MODE<2:	0>	0-00 0000	0-00 0000
1E11h	CLC1POL	LC1POL	—	—	—	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
1E12h	CLC1SEL0	—	—			LC1E	D1S<5:0>			xx xxxx	uu uuuu
1E13h	CLC1SEL1	—	—			LC1	D2S<5:0>			xx xxxx	uu uuuu
1E14h	CLC1SEL2	—	—			LC1	03S<5:0>			xx xxxx	uu uuuu
1E15h	CLC1SEL3	_	—			LC1	04S<5:0>			xx xxxx	uu uuuu
1E16h	CLC1GLS0	LC1G1D4T	LC1G4D3N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuuu
1E17h	CLC1GLS1	LC1G2D4T	LC1G4D3N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuuu
1E18h	CLC1GLS2	LC1G3D4T	LC1G4D3N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuuu
1E19h	CLC1GLS3	LC1G4D4T	LC1G4D3N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuuu
1E1Ah	CLC2CON	LC2EN	—	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:	0>	0-00 0000	0-00 0000
1E1Bh	CLC2POL	LC2POL	—	_	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuuu
1E1Ch	CLC2SEL0	_	—			LC2	D1S<5:0>			xx xxxx	uu uuuu
1E1Dh	CLC2SEL1	_	_			LC2	02S<5:0>			xx xxxx	uu uuuu
1E1Eh	CLC2SEL2	_	_			LC2	03S<5:0>			xx xxxx	uu uuuu
1E1Fh	CLC2SEL3	_	_			LC2	04S<5:0>			xx xxxx	uu uuuu
1E20h	CLC2GLS0	LC2G1D4T	LC2G4D3N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	XXXX XXXX	uuuu uuuu
1E21h	CLC2GLS1	LC2G2D4T	LC2G4D3N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	uuuu uuuu
1E22h	CLC2GLS2	LC2G3D4T	LC2G4D3N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	xxxx xxxx	uuuu uuuu
1E23h	CLC2GLS3	LC2G4D4T	LC2G4D3N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	xxxx xxxx	uuuu uuuu
1E24h	CLC3CON	LC3EN		LC3OUT	LC3INTP	LC3INTN		LC3MODE		0-00 0000	0-00 0000
1E25h	CLC3POL	LC3POL				LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuuu
1E26h	CLC3SEL0	—	_			LC3E	01S<5:0>	•		xx xxxx	uu uuuu
1E27h	CLC3SEL1	_	_			LC3	02S<5:0>			xx xxxx	uu uuuu
1E28h	CLC3SEL2					LC3	03S<5:0>			xx xxxx	uu uuuu
1E29h	CLC3SEL3					LC3	04S<5:0>			xx xxxx	uu uuuu
1E2Ah	CLC3GLS0	LC3G1D4T	LC3G4D3N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	xxxx xxxx	uuuu uuuu

TABLE 4-11: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-1/1	R/W-x/u	R/W-x/u	R/W-x/u		
LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0		
bit 7						•	bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets					

REGISTER 14-3: LATA: PORTA DATA LATCH REGISTER

bit 7-0 LATA<7:0>: RA<7:0> Output Latch Value bits⁽¹⁾

'1' = Bit is set

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register returns actual I/O pin values.

REGISTER 14-4: ANSELA: PORTA ANALOG SELECT REGISTER

'0' = Bit is cleared

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSA7 | ANSA6 | ANSA5 | ANSA4 | ANSA3 | ANSA2 | ANSA1 | ANSA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ANSA<7:0>: Analog Select between Analog or Digital Function on pins RA<7:0>, respectively

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 14-39: SLRCONE: PORTE SLEW RATE CONTROL REGISTER⁽¹⁾

0-0 0-0 0-0 0-0 R/W-1/1 R/W-1/1	
0-0 0-0 0-0 0-0 0-0 R/W-1/1 R/W-1/1	bit 0
0-0 0-0 0-0 0-0 0-0 R/W-1/1 R/W-1/1 R	LRE0
	W-1/1

Legend	
--------	--

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	Unimplemented: Read as '0'
bit 2-0	SLRE<2:0>: PORTE Slew Rate Enable bits
	For RE<2:0> pins, respectively
	1 = Port pin slew rate is limited
	0 = Port pin slews at maximum rate

Note 1: Present on PIC16(L)F15375/76/85/86 only.

REGISTER 14-40: INLVLE: PORTE INPUT LEVEL CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	_	_	—	INLVLE3	INLVLE2 ⁽¹⁾	INLVLE1 ⁽¹⁾	INLVLE0 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented:	Read	as	'0'
				-

bit 3-0 INLVLE<3:0>: PORTE Input Level Select bits For RE<3:0> pins, 1 = ST input used for PORT reads and interrupt-on-change 0 = TTL input used for PORT reads and interrupt-on-change

Note 1: Present on PIC16(L)F15375/76/85/86 only.

15.8 Register Definitions: PPS Input Selection

REGISTER 15-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION⁽¹⁾

U-0	U-0	R/W-q/u	R/W-q/u	R/W/q/u	R/W-q/u	R/W-q/u	R/W-q/u
—	_			xxxPF	PS<5:0>		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res				ther Resets	
'1' = Bit is set		'0' = Bit is cleared q = value depends on peripheral					

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **xxxPPS<5:0>:** Peripheral xxx Input Selection bits See Tables 15-1 through 15-3.

- **Note 1:** The "xxx" in the register name "xxxPPS" represents the input signal function name, such as "INT", "T0CKI", "RX", etc. This register summary shown here is only a prototype of the array of actual registers, as each input function has its own dedicated SFR (ex: INTPPS, T0CKIPPS, RXPPS, etc.).
 - 2: Each specific input signal may only be mapped to a subset of these I/O pins, as shown in Table 15-4. Attempting to map an input signal to a non-supported I/O pin will result in undefined behavior. For example, the "INT" signal map be mapped to any PORTA or PORTB pin. Therefore, the INTPPS register may be written with values from 0x00-0x0F (corresponding to RA0-RB7). Attempting to write 0x10 or higher to the INTPPS register is not supported and will result in undefined behavior.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		—	—	ADPRE	F<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	pit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7 bit 6-4	ADFM: ADC 1 = Right jus loaded. 0 = Left justin loaded. ADCS<2:0>:	Result Format S tified. Six Most fied. Six Least ADC Conversio	Select bit Significant bit Significant bit	s of ADRESH	are set to '0' w are set to '0' w	when the conve	ersion result is rsion result is
	ADCS<2:05: ADC Conversion Clock Select bits 111 = ADCRC (dedicated RC oscillator) 110 = Fosc/64 101 = Fosc/16 100 = Fosc/4 011 = ADCRC (dedicated RC oscillator) 010 = Fosc/32 001 = Fosc/8 000 = Fosc/2						
bit 3-2	Unimplemen	ted: Read as 'o)'				
bit 1-0	ADPREF<1:0>: ADC Positive Voltage Reference Configuration bits 11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module ⁽¹⁾ 10 = VREF+ is connected to external VREF+ pin ⁽¹⁾ 01 = Reserved 00 = VREF+ is connected to VDD						

REGISTER 20-2: ADCON1: ADC CONTROL REGISTER 1

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Table 37-14 for details.

REGISTER 20-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unknown			-n/n = Value a	at POR and BO	R/Value at all o	other Resets	

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

'1' = Bit is set

REGISTER 20-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

'0' = Bit is cleared

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | S<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **ADRES<1:0>**: ADC Result Register bits Lower two bits of 10-bit conversion result

Lower two bits of 10-bit conversion

bit 5-0 Reserved: Do not use.

© 2016 Microchip Technology Inc.

25.0 TIMER0 MODULE

The Timer0 module is an 8/16-bit timer/counter with the following features:

- 16-bit timer/counter
- 8-bit timer/counter with programmable period
- Synchronous or asynchronous operation
- Selectable clock sources
- Programmable prescaler (independent of Watchdog Timer)
- Programmable postscaler
- Operation during Sleep mode
- · Interrupt on match or overflow
- Output on I/O pin (via PPS) or to other peripherals

25.1 Timer0 Operation

Timer0 can operate as either an 8-bit timer/counter or a 16-bit timer/counter. The mode is selected with the T016BIT bit of the T0CON register.

25.1.1 16-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

25.1.1.1 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0, which is neither directly readable nor writable (see Figure 25-1). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte was valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

25.1.2 8-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

The value of TMR0L is compared to that of the Period buffer, a copy of TMR0H, on each clock cycle. When the two values match, the following events happen:

- TMR0_out goes high for one prescaled clock period
- TMR0L is reset
- The contents of TMR0H are copied to the period buffer

In 8-bit mode, the TMR0L and TMR0H registers are both directly readable and writable. The TMR0L register is cleared on any device Reset, while the TMR0H register initializes at FFh.

Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR0L register
- A write to either the T0CON0 or T0CON1 registers
- <u>Any device Reset Power-on Reset (POR),</u> <u>MCLR Reset, Watchdog Timer Reset (WDTR) or</u>
- Brown-out Reset (BOR)

25.1.3 COUNTER MODE

In Counter mode, the prescaler is normally disabled by setting the T0CKPS bits of the T0CON1 register to '0000'. Each rising edge of the clock input (or the output of the prescaler if the prescaler is used) increments the counter by '1'.

25.1.4 TIMER MODE

In Timer mode, the Timer0 module will increment every instruction cycle as long as there is a valid clock signal and the T0CKPS bits of the T0CON1 register (Register 25-2) are set to '0000'. When a prescaler is added, the timer will increment at the rate based on the prescaler value.

25.1.5 ASYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is set (T0ASYNC = '1'), the counter increments with each rising edge of the input source (or output of the prescaler, if used). Asynchronous mode allows the counter to continue operation during Sleep mode provided that the clock also continues to operate during Sleep.

25.1.6 SYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is clear (T0ASYNC = 0), the counter clock is synchronized to the system oscillator (Fosc/4). When operating in Synchronous mode, the counter clock frequency cannot exceed Fosc/4.

26.3 Timer Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

26.4 Secondary Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO (amplifier output). This internal circuit is designed to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the SOSCEN bit of the OSCEN register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, SOSCEN should be set and a suitable delay observed prior to using Timer1 with the SOSC source. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

26.5 Timer Operation in Asynchronous Counter Mode

If the control bit SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 26.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

26.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

26.6 Timer Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using the time gate circuitry. This is also referred to as Timer Gate Enable.

The timer gate can also be driven by multiple selectable sources.

26.6.1 TIMER GATE ENABLE

The Timer Gate Enable mode is enabled by setting the GE bit of the T1GCON register. The polarity of the Timer Gate Enable mode is configured using the GPOL bit of the T1GCON register.

When Timer Gate Enable signal is enabled, the timer will increment on the rising edge of the Timer1 clock source. When Timer Gate Enable signal is disabled, the timer always increments, regardless of the GE bit. See Figure 26-3 for timing details.

TABLE 26-2: TIMER GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer Operation
\uparrow	1	1	Counts
\uparrow	1	0	Holds Count
\uparrow	0	1	Holds Count
\uparrow	0	0	Counts

27.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 27-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- · any device Reset
- External Reset Source event that resets the timer.

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

27.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each TMR2_clk cycle. When the two values match, the comparator resets the value of TMR2 to 00h on the next rising TMR2_clk edge and increments

the output postscaler counter. When the postscaler count equals the value in the OUTPS<4:0> bits of the TMRxCON1 register, a one TMR2_clk period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

27.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

27.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

27.2 Timer2 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2CON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- The ADC module, as an Auto-conversion Trigger
- · COG, as an auto-shutdown source

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See Section 28.0 "Capture/Compare/PWM Modules" for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in Section 27.5 "Operation Examples" for examples of how the varying Timer2 modes affect CCP PWM output.

27.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2 with the T2RST register. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

32.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 32-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 32-6, Figure 32-8, Figure 32-9 and Figure 32-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 32-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

FIGURE 32-6: SPI MODE WAVEFORM (MASTER MODE)

32.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

32.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

32.4 I²C MODE OPERATION

All MSSP I^2C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I^2C devices.

32.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

32.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

32.4.3 SDA AND SCL PINS

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note 1:	Any device pin can be selected for SDA
	and SCL functions with the PPS periph-
	eral. These functions are bidirectional.
	The SDA input is selected with the
	SSPDATPPS registers. The SCL input is
	selected with the SSPCLKPPS registers.
	Outputs are selected with the RxyPPS
	registers. It is the user's responsibility to
	make the selections so that both the input
	and the output for each function is on the
	same pin.

34.0 REFERENCE CLOCK OUTPUT MODULE

The reference clock output module provides the ability to send a clock signal to the clock reference output pin (CLKR).

The reference clock output module has the following features:

- Selectable input clock
- Programmable clock divider
- Selectable duty cycle

34.1 CLOCK SOURCE

The reference clock output module has a selectable clock source. The CLKRCLK register (Register 34-2) controls which input is used.

34.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (CLKREN) is set, the module is ensured to be glitch-free at start-up.

When the reference clock output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

34.2 PROGRAMMABLE CLOCK DIVIDER

The module takes the system clock input and divides it based on the value of the CLKRDIV<2:0> bits of the CLKRCON register (Register 34-1).

The following configurations can be made based on the CLKRDIV<2:0> bits:

- · Base clock value
- · Base clock value divided by 2
- · Base clock value divided by 4
- Base clock value divided by 8
- Base clock value divided by 16
- Base clock value divided by 32
- Base clock value divided by 64
- Base clock value divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the CLKRDIV<2:0> bits should only be changed when the module is disabled (CLKREN = 0).

34.3 SELECTABLE DUTY CYCLE

The CLKRDC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the CLKRDC<1:0> bits should only be changed when the module is disabled (CLKREN = 0).

Note: The CLKRDC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

34.4 OPERATION IN SLEEP MODE

The reference clock output module clock is based on the system clock. When the device goes to Sleep, the module outputs will remain in their current state. This will have a direct effect on peripherals using the reference clock output as an input signal.

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch	BTFSS
Syntax:	[label]BRA label	Syntax:
	[<i>label</i>]BRA \$+k	Operands:
Operands:	-256 \leq label - PC + 1 \leq 255	
	$-256 \le k \le 255$	Operation:
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Affecte
Status Affected:	None	Description:
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.	

BRW Relative Branch with W

Syntax:	[label] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f					
Syntax:	[label]BSF f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$1 \rightarrow (f \le b >)$					
Status Affected:	None					
Description:	Bit 'b' in register 'f' is set.					

x:	[<i>label</i>]BTFSS f,b
ands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
ation:	skip if (f) = 1
Affected:	None
iption:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Set

© 2016 Microchip Technology Inc.

DS40001866A-page 520

 \wedge

TABLE 37-2: SUPPLY CURRENT (IDD)^(1,2,4)

PIC16LF	IC16LF15356/75/76/85/86 Standard Operating Conditions (un stated)					nless otherwise				
PIC16F15356/75/76/85/86										
Param. No.	Symbol	Device Characteristics		Тур.†	Max.	Units	NDD	Conditions Note		
D100	IDD _{XT4}	XT = 4 MHz	_	360	470	μA	3.0V			
D100	IDD _{XT4}	XT = 4 MHz	_	380	480	μA	3.00			
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	_	1.4	2.3	-mA	3.0			
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	_	1.5	2.3	> mA	3 .0∨			
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz		2.6	3.6	/mA `	3.0V			
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz	$\left \right\rangle$	2.7	3,7 '	mA	3.0V			
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz	_	2.6	3.6	∕mA	3.0V			
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz	Ì	M	3.7	mA	3.0V			
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	K	1.05	Z	mA	3.0V			
D104	IDD _{IDLE}	IDLE mode, HFINTOSC = 16 MHz	X	1.15		mA	3.0V			
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16		1.1	_	mA	3.0V			
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	\triangleright	1.2	—	mA	3.0V			

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins are outputs driven low, MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: $IDD_{DOZE} = [IDD_{IDLE} / (N 1)/N] + IDD_{HFO} 16/N$ where N = DOZE Ratio (Register 11-2).

- 4: PMD bits are all in the default state, no modules are disabled.
- 5: = F device

TABLE 37-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD20	Tad	ADC Clock Period	1	_	9	μS	The requirement is to set ADCCS correctly to produce this period/frequency.		
AD21			1	2	6	μs	Using FRC as the ADC clock source ADOSC = 1		
AD22	TCNV	Conversion Time	_	11	-	TAD	Set of GO/DONE bit to Clear of GO/DONE bit		
AD23	TACQ	Acquisition Time	_	2	\neq	μs	*		
AD24	Тнср	Sample and Hold Capacitor Disconnect Time	_	_	_/	μs	Fosc-based clock source FRc-based clock source		

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 37-10: ADC CONVERSION TIMING (AQC CLOCK Fosc-BASED)

© 2016 Microchip Technology Inc.

TABLE 37-14: COMPARATOR SPECIFICATIONS

Standard (VDD = 3.0V	Operating Co 7, TA = 25°C	nditions (unless otherwise stated)		_			
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage	_	—	±30	mV	VIEM = VDD/2
CM02	VICM	Input Common Mode Range	GND	_	Vdd	V	
CM03	CMRR	Common Mode Input Rejection Ratio	_	50	—	dB <	
CM04	VHYST	Comparator Hysteresis	15	25	35	mV	$\sum_{i=1}^{n}$
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	_	300	600 /	ns	
		Response Time, Falling Edge	_	220	500	√ns	,
CMOS6	Тмсv2vo(2)	Mode Change to Valid Output	_	_	10	NS	\sim

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

TABLE 37-15: 5-BIT DAC SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
DSB01	VLSB	Step Size		(VDACREF+ VDACREF-)/32		V		
DSB01	VACC	Absolute Accuracy	$ \nearrow $	\sim >-	± 0.5	LSb		
DSB03*	RUNIT	Unit Resistor Value		5000	_	Ω		
DSB04*	TST	Settling Time ⁽¹⁾	$\langle - \rangle$	✓ –	10	μS		

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '00000' to '01111'.

TABLE 37-16: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
FVR01	VEVR1	1x Gain (1.024V)	-4		+4	%	$\begin{array}{l} V\text{DD} \geq 2.5\text{V}, \ \text{-40}^{\circ}\text{C} \ \text{to} \\ 85^{\circ}\text{C} \end{array}$	
FVR02	VFVR2	2x Gain (2.048V)	-4		+4	%	VDD \ge 2.5V, -40°C to 85°C	
FVR03	XFVR4	4x Gain (4.096V)	-5		+5	%	$VDD \ge 4.75V, -40^{\circ}C$ to $85^{\circ}C$	
FVR04	TFVRST	FVR Start-up Time	—	25	_	us		
FVR05	FVRA1x/FVRC1x	FVR output voltage for 1x setting stored in the DIA		1024		mV		
FVR06	FVRA2x/FVRC2x	FVR output voltage for 2x setting stored in the DIA		2048		mV		
FVR07	FVRA4x/FVRC4x	FVR output voltage for 4x setting stored in the DIA	_	4096	_	mV		

© 2016 Microchip Technology Inc.

FIGURE 37-13: **CAPTURE/COMPARE/PWM TIMINGS (CCP)**

TABLE 37-19: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standar Operatir	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Sym.	Characteri	stic	Min.	Турт	Max	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	$ \neq $	<u> </u>	ns	
			With Prescaler	20/	1	\checkmark	ns	
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	1	/	ns	
			With Prescaler	29	X	_	ns	
CC03*	TccP	CCPx Input Period		<u>3767 + 40</u> N		> -	ns	N = prescale value

These parameters are characterized but not tested. Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.