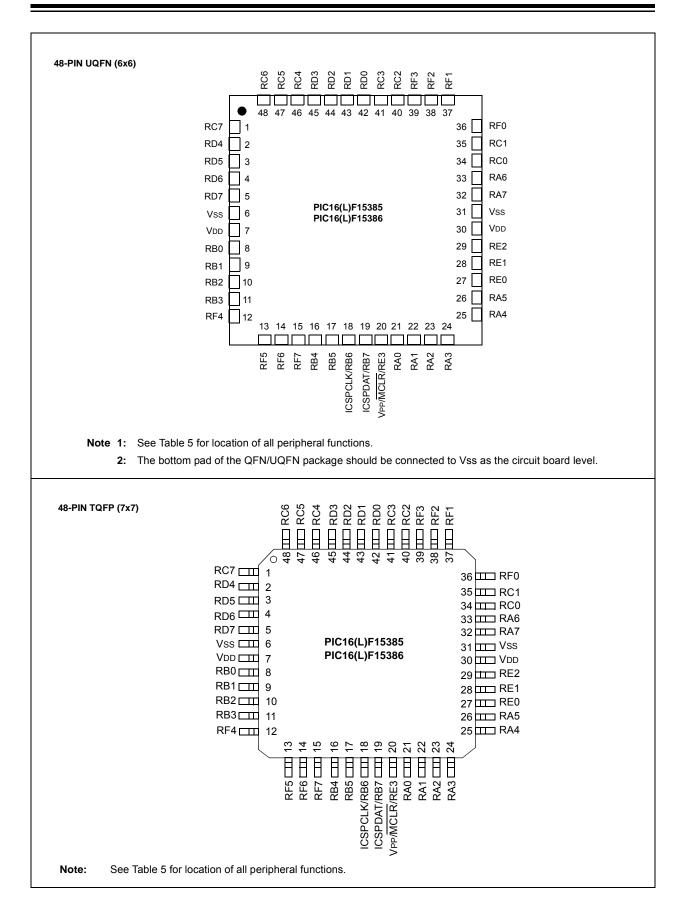


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	44
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15386-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

© 2016 Microchip Technology Inc.

_ _ _ CLKOUT/ OSC1 CLKIN/ OSC2 _ _ _ _ _ _ ICSPCLK ICSPDAT

Pull-up

Y

Y

Y

Y

Y

Y

Υ

Y

Υ

Y

Υ

Υ

Υ

Y

Y

_

_

Basic

_

2 2 2 2 2 2 3 3 3	48-Pin UQFN/T	ADC	Reference	Comparato	NCO	DAC	Timers	ССР	MWA	CWG	dssm	ZCD	EUSART	CLC	ССКК	Interrupt
2 2 2 2 2 3 3 3	21	ANA0	-	C1IN0- C2IN0-		—	-	-		-	-		—	CLCIN0 ⁽¹⁾		IOCA0
2 2 2 2 3 3 3	22	ANA1		C1IN1- C2IN1-	_	—	_	_	_	_	_	_	—	CLCIN1 ⁽¹⁾	l	IOCA1
22	23	ANA2	Ι	C1IN0+ C2IN0+	-	DAC1OUT1	-	-	-	-	-	-	—	-		IOCA2
3	24	ANA3	VREF+	C1IN1+	_	DACREF+	_	_	_	_	_	_	_	_	-	IOCA3
3	25	ANA4	_	C1IN1-	_	_	T0CKI ⁽¹⁾	_	_	_	_	_	—	_		IOCA4
3	26	ANA5 ADACT				_	T1G ⁽¹⁾				SS1 ⁽¹⁾		—	—		IOCA5
	33	ANA6	-	_	_	—	_	_	_	_	_	_	—	—		IOCA6
	32	ANA7			-	_		-	-	-	-	-	—	-		IOCA7
	8	ANB0		C2IN1+	—	_	-	-	_	CWG1 ⁽¹⁾	SS2 ⁽¹⁾	ZCD1	-	—		INT ⁽¹⁾ IOCB0
9	9	ANB1		C1IN3- C2IN3-		_					SCL1 SCK1 ^(1,4)		—	—		IOCB1
1	10	ANB2	Ι	-	-	_	-	-	-	-	SDA1 SDI1 ^(1,4)	-	—	-		IOCB2
1	11	ANB3		C1IN2- C2IN2-	_	_		-	_	-	-	-	—	—		IOCB3
1	16	ANB4 ADACT ⁽¹⁾	I			_							—	—		IOCB4
1	17	ANB5	-	_	_	_	_	_	-	_	_		—	_	Ι	IOCB5
1	18	ANB6	Ι	-	-	_	-	-	-	-	-	-	TX2 CK2 ⁽¹⁾	CLCIN2 ⁽¹⁾		IOCB6
1	19	ANB7			_	DAC1OUT2		-	-				RX2 DT2 ⁽¹⁾	CLCIN3 ⁽¹⁾		IOCB7
3	34	ANC0	-	—	—	_	SOSCO T1CKI ⁽¹⁾	-	-		—		-	—		IOCC0
3	35	ANC1	_	_	_	_	SOSCI	CCP2 ⁽¹⁾	_	_	_	_	_	_	_	IOCC1

48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) TABLE 5:

This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note 1:

All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options. 2:

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

TQFP

I/O⁽²⁾

RA0 RA1

RA2

RA3

RA4

RA5

RA6

RA7

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RC0

RC1

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/CLCIN0 ⁽¹⁾ / IOCA0	RA0	TTL/ST	CMOS/OD	General purpose I/O.
IUCAU	ANA0	AN	_	ADC Channel A0 input.
	C1IN0-	AN	_	Comparator 1 negative input.
	C2IN0-	AN	_	Comparator 2 negative input.
	CLCIN0 ⁽¹⁾	TTL/ST		Configurable Logic Cell source input.
	IOCA0	TTL/ST	-	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/CLCIN1 ⁽¹⁾ / IOCA1	RA1	TTL/ST	CMOS/OD	General purpose I/O.
IOCAT	ANA1	AN		ADC Channel A1 input.
	C1IN1-	AN		Comparator 1 negative input.
	C2IN1-	AN		Comparator 2 negative input.
	CLCIN1 ⁽¹⁾	TTL/ST		Configurable Logic Cell source input.
	IOCA1	TTL/ST	_	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/ DAC1OUT1/IOCA2	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DACTOUTINOCAZ	ANA2	AN	_	ADC Channel A2 input.
	C1IN0+	AN	-	Comparator 2 positive input.
	C2IN0+	AN	_	Comparator 2 positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	_	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/IOCA3/ DAC1REF+	RA3	TTL/ST	CMOS/OD	General purpose I/O.
DACIREFT	ANA3	AN	_	ADC Channel A3 input.
	C1IN1+	AN	_	Comparator 1 positive input.
	VREF+	AN	_	External ADC and/or DAC positive reference input.
	IOCA3	TTL/ST	_	Interrupt-on-change input.
	DAC1REF+	TTL/ST	AN	DAC positive reference.
RA4/ANA4/T0CKI ⁽¹⁾ /IOCA4	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	-	ADC Channel A4 input.
	T0CKI ⁽¹⁾	TTL/ST	_	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
RA5/ANA5/SS1 ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	_	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	IOCA5	TTL/ST	_	Interrupt-on-change input.

TABLE 1-2:	PIC16(L)F15356 PINOUT DESCRIPTION
-------------------	-----------------------------------

CMOS = CMOS compatible input or output Legend: AN = Analog input or output OD = Open-Drain I²C TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels = Schmitt Trigger input with I²C HV = High Voltage XTAL = Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1: pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I^2C specific or SMBus input buffer thresholds. 4:

Note

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62											
				CPU COF	RE REGISTERS;	see Table 4-3 fo	or specifics				
1F0Ch	_				Unimple	mented				_	_
1F0Dh	_				Unimple	mented				_	_
1F0Eh	—				Unimple	mented				—	
1F0Fh	—				Unimple	mented				—	_
1F10h	RA0PPS	—	—	—			RA0PPS<4:0	>		00 0000	uu uuuu
1F11h	RA1PPS	—	—	—			RA1PPS<4:0	>		00 0000	uu uuuu
1F12h	RA2PPS	_	_	_			RA2PPS<4:0	>		00 0000	uu uuui
1F13h	RA3PPS	—	—	—			RA3PPS<4:0	>		00 0000	uu uuuu
1F14h	RA4PPS	—	—	—			RA4PPS<4:0	>		00 0000	uu uuu
1F15h	RA5PPS	—	—	—			RA5PPS<4:0	>		00 0000	uu uuu
1F16h	RA6PPS	—	—	—			RA6PPS<4:0	>		00 0000	uu uuu
1F17h	RA7PPS	_	—	—		RA7PPS<4:0>					uu uuu
1F18h	RB0PPS	_	—	—		RB0PPS<4:0>				00 0000	uu uuu
1F19h	RB1PPS	_	—	—		RB1PPS<4:0>					uu uuu
1F1Ah	RB2PPS	—	—	—		RB2PPS<4:0>					uu uuu
1F1Bh	RB3PPS	—	—	—			RB3PPS<4:0	>		00 0000	uu uuuu
1F1Ch	RB4PPS	—	—	—		RB4PPS<4:0>					uu uuu
1F1Dh	RB5PPS	—	—	—		RB5PPS<4:0>					uu uuuu
1F1Eh	RB6PPS	—	—	—		RB6PPS<4:0>					uu uuuu
1F1Fh	RB7PPS	—	—	—			RB7PPS<4:0	>		00 0000	uu uuuu
1F20h	RC0PPS	—	—	—			RC0PPS<4:0	>		00 0000	uu uuu
1F21h	RC1PPS	—	—	—			RC1PPS<4:0	>		00 0000	uu uuuu
1F22h	RC2PPS	_	—	—			RC2PPS<4:0	>		00 0000	uu uuu
1F23h	RC3PPS	_	—	—			RC3PPS<4:0	>		00 0000	uu uuu
1F24h	RC4PPS	_	—	—			RC4PPS<4:0	>		00 0000	uu uuuu
1F25h	RC5PPS	_	—	—	RC5PPS<4:0>00 0000 -						uu uuuu
1F26h	RC6PPS	_	—	—	RC6PPS<4:0>00 0000u						uu uuuu
1F27h	RC7PPS	—	—	—			RC7PPS<4:0	>		00 0000	uu uuu
1F28h	RD0PPS ⁽¹⁾	—	—	—			RD0PPS<4:0	>		00 0000	uu uuu
1F29h	RD1PPS ⁽¹⁾	_	_				RD1PPS<4:0	>		00 0000	uu uuu

SPECIAL EUNCTION DECISTED SUMMARY PANKS 0.62 (CONTINUED) A 44.

Legend:x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.Note1:Present only on PIC16(L)F15375/76/85/86.

REGISTER 5-2:

CONFIGURATION WORD 2: SUPERVISORS

REGISTER	5-2:	CONFIGUR	ATION WOR	D 2: SUPER	VISORS				
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1		
		DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV			
		bit 13					bit 8		
									
R/P-1	R/P-1	R/P-1	U-1	U-1	U-1	R/P-1	R/P-1		
BOREN1	BOREN0	LPBOREN	—			PWRTE	MCLRE		
bit 7							bit 0		
Lonondi									
Legend: R = Readable	a bit	P = Programma	ahle hit	x = Bit is unkno		U = Unimpleme	nted hit read as		
	, Dit	i – i logramma			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	'1'	ited bit, read as		
'0' = Bit is cle	ared	'1' = Bit is set		W = Writable bi	t	n = Value when I Erase	olank or after Bulk		
bit 13	1 = Backgrour	ugger Enable bit nd debugger disa nd debugger ena							
bit 12	1 = Stack Ove	ck Overflow/Unde erflow or Underflo erflow or Underflo	w will cause a F	Reset					
bit 11	1 = The PPSL		cleared and set	only once; PPS i	egisters remain l	ocked after one c sequence)	lear/set cycle		
bit 10	1 = ZCD disab	-Cross Detect Di bled. ZCD can be ys enabled (ZCD	enabled by sett		I bit of the ZCDC	ON register			
bit 9	1 = Brown-out	-out Reset Voltag t Reset voltage (\ t Reset voltage (\	/BOR) set to low	er trip point leve					
bit 8	Unimplement	ed: Read as '1'							
bit 7-6	BOREN<1:0>: Brown-out Reset Enable bits When enabled, Brown-out Reset Voltage (VBOR) is set by the BORV bit 11 = Brown-out Reset is enabled; SBOREN bit is ignored 10 = Brown-out Reset is enabled while running, disabled in Sleep; SBOREN bit is ignored 01 = Brown-out Reset is enabled according to SBOREN 00 = Brown-out Reset is disabled								
bit 5	LPBOREN: Low-Power BOR Enable bit 1 = ULPBOR is disabled 0 = ULPBOR is enabled								
bit 4-2	Unimplement	ed: Read as '1'							
bit 1	PWRTE: Power-up Timer Enable bit 1 = PWRT is disabled 0 = PWRT is enabled								
bit 0	MCLRE: Master Clear (MCLR) Enable bit If LVP = 1: RE3 pin function is MCLR (it will reset the device when driven low) If LVP = 0: 1 = MCLR pin is MCLR (it will reset the device when driven low) 0 = MCLR pin may be used as general purpose RE3 input								
	 0 = MCLR pin may be used as general purpose RE3 input ee Vbor parameter for specific trip point voltages. DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers 								

2: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

NOSC<2:0>/ COSC<2:0>	Clock Source
111	EXTOSC ⁽¹⁾
110	HFINTOSC ⁽²⁾
101	LFINTOSC
100	SOSC
011	Reserved (operates like NOSC = 110)
010	EXTOSC with 4x PLL ⁽¹⁾
001	HFINTOSC with 2x PLL ⁽¹⁾
000	Reserved (it operates like NOSC = 110)
Note 1. EVTORC config	ured by the FEVTORC bits of

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 5-1).

TABLE 9-2: NDIV/CDIV BIT SETTINGS

NDIV<3:0>/ CDIV<3:0>	Clock divider
1111-1010	Reserved
1001	512
1000	256
0111	128
0110	64
0101	32
0100	16
0011	8
0010	4
0001	2
0000	1

REGISTER 9-3: OSCCON3: OSCILLATOR CONTROL REGISTER 3

R/W/HC-0/0	R/W-0/0	U-0	R-0/0	R-0/0	U-0	U-0	U-0
CSWHOLD	SOSCPWR	—	ORDY	NOSCR	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	CSWHOLD: Clock Switch Hold bit
	 1 = Clock switch will hold (with interrupt) when the oscillator selected by NOSC is ready 0 = Clock switch may proceed when the oscillator selected by NOSC is ready; if this bit
	is clear at the time that NOSCR becomes '1', the switch will occur
bit 6	SOSCPWR: Secondary Oscillator Power Mode Select bit
	1 = Secondary oscillator operating in High-power mode
	0 = Secondary oscillator operating in Low-power mode
bit 5	Unimplemented: Read as '0'.
bit 4	ORDY: Oscillator Ready bit (read-only)
	1 = OSCCON1 = OSCCON2; the current system clock is the clock specified by NOSC
	0 = A clock switch is in progress
bit 3	NOSCR: New Oscillator is Ready bit (read-only)
	 1 = A clock switch is in progress and the oscillator selected by NOSC indicates a "ready" condition 0 = A clock switch is not in progress, or the NOSC-selected oscillator is not yet ready
bit 2-0	Unimplemented: Read as '0'

^{2:} HFINTOSC settings are configured with the HFFRQ bits of the OSCFRQ register (Register 9-6).

NEOIDTER J	0. 000L				LOIOTEN		
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	1 = EXTOS	C is explicitly e	or Manual Requ nabled, operati abled by some i	ing as specifie	(1) d by FEXTOSC	2	
bit 6	HFOEN: HFINTOSC Oscillator Manual Request Enable bit 1 = HFINTOSC is explicitly enabled, operating as specified by OSCFRQ 0 = HFINTOSC could be enabled by another module						
bit 5	1 = MFINTOS	SC is explicitly	ator Manual Re enabled abled by anoth		bit		
bit 4	•						
bit 3							
bit 2	1 = FRC is e	explicitly enable	nual Request E ed by another mo				
bit 1-0	Unimplemen	ted: Read as '	0'				

REGISTER 9-5: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
		NVMIE	NCO1IE			_	CWG1IE
bit 7			NOOTIL				bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is und	hanged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is se	t	'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7-6 bit 5 bit 4	NVMIE: NVM 1 = NVM ta: 0 = NVM int NCO1IE: NC 1 = NCO ro	ted: Read as ' Interrupt Enat sk complete int terrupt not enal O Interrupt Ena llover interrupt llover interrupt	ole bit errupt enable oled able bit enabled	d			
bit 3-1 bit 0	CWG1IE: Co 1 = CWG1	ted: Read as ' mplementary V nterrupt is ena nterrupt disable	Vaveform Ger bled	nerator (CWG)	2 Interrupt Enat	le bit	
se	it PEIE of the IN et to enable a ontrolled by regis	ny peripheral	interrupt				

REGISTER 10-9: PIE7: PERIPHERAL INTERRUPT ENABLE REGISTER 7

11.4 Register Definitions: Voltage Regulator and DOZE Control

REGISTER 11-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER ⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	U-0		
_	—	—	—	—	—	VREGPM	_		
bit 7							bit C		
Legend:									
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	inged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0		'0' = Bit is clea	ared						

bit 7-2 Unimplemented: Read as '0'

bit 1

VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾
 - Draws lowest current in Sleep, slower wake-up
- Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up

bit 0 Unimplemented: Read as '1'. Maintain this bit set

Note 1: PIC16F15356/75/76/85/86 only.

2: See Section 37.0 "Electrical Specifications".

TABLE 14-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTE	—				RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	222
TRISE	—	—	_	_	_(2)	TRISE2 ⁽¹⁾	TRISE2 ⁽¹⁾	TRISE2 ⁽¹⁾	222
LATE ⁽¹⁾	—	—			—	LATE2	LATE2	LATE2	223
ANSELE ⁽¹⁾	—	—	-	-	—	ANSE2	ANSE1	ANSE0	217
WPUE	—	—			WPUE3	WPUE2 ⁽¹⁾	WPUE1 ⁽¹⁾	WPUE0 ⁽¹⁾	224
ODCONE ⁽¹⁾	—	—	-	-	—	ODCE2	ODCE1	ODCE0	224
SLRCONE	_	_	_	_	SLRE3	SLRE2 ⁽¹⁾	SLRE1 ⁽¹⁾	SLRE0 ⁽¹⁾	225
INLVLE	—				INLVLE3	INLVLE2 ⁽¹⁾	INLVLE1 ⁽¹⁾	INLVLE0 ⁽¹⁾	225

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: Present only in PIC16(L)F15375/76/85/86.

2: Unimplemented, read as '1'

TABLE 14-7: SUMMARY OF CONFIGURATION WORD WITH PORTE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		_	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV		102
CONFIG2	7:0	BOREN	l <1:0>	LPBOREN			_	PWRTE	MCLRE	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTE.

14.12 PORTF Registers

Note: Present only on PIC16(L)F15385/86.

14.12.1 DATA REGISTER

PORTF is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISF (Register 14-42). Setting a TRISF bit (= 1) will make the corresponding PORTF pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISF bit (= 0) will make the corresponding PORTF pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Figure 14-1 shows how to initialize an I/O port.

Reading the PORTF register (Register 14-41) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATF).

The PORT data latch LATF (Register 14-43) holds the output port data, and contains the latest value of a LATF or PORTF write.

14.12.2 DIRECTION CONTROL

The TRISF register (Register 14-42) controls the PORTF pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISF register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.12.3 INPUT THRESHOLD CONTROL

The INLVLF register (Register 14-48) controls the input voltage threshold for each of the available PORTF input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTF register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

14.12.4 OPEN-DRAIN CONTROL

The ODCONF register (Register 14-46) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONF bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONF bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note: It is not necessary to set open-drain control when using the pin for I²C; the I²C module controls the pin and makes the pin open-drain.

14.12.5 SLEW RATE CONTROL

The SLRCONF register (Register 14-47) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONF bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONF bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.12.6 ANALOG CONTROL

The ANSELF register (Register 14-44) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELF bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELF bits has no effect on digital output functions. A pin with TRIS clear and ANSELF set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

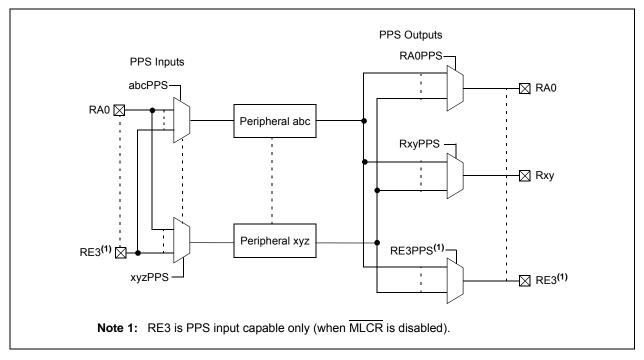
Note: The ANSELF bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

14.12.7 WEAK PULL-UP CONTROL

The WPUF register (Register 14-45) controls the individual weak pull-ups for each port pin.

14.12.8 PORTF FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.


Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

15.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections.

All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 15-1.

FIGURE 15-1: SIMPLIFIED PPS BLOCK DIAGRAM

15.1 PPS Inputs

Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 15-1.

Note: The notation "xxx" in the register name is a place holder for the peripheral identifier. For example, CLC1PPS.

15.2 PPS Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals are (See Section 15.3 "Bidirectional Pins"):

- EUSART (synchronous operation)
- MSSP (I²C)

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 15-2.

Note: The notation "Rxy" is a place holder for the pin port and bit identifiers. For example, x and y for PORTA bit 0 would be A and 0, respectively, resulting in the pin PPS output selection register RA0PPS.

21.4 Operation During Sleep

The DAC continues to function during Sleep. When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected.

21.5 Effects of a Reset

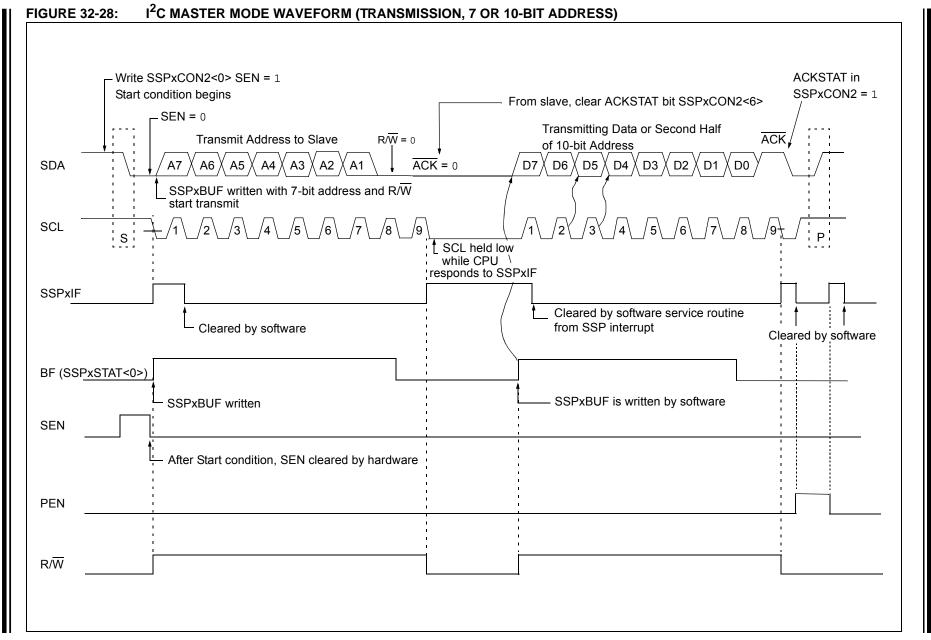
A device Reset affects the following:

- DAC is disabled.
- DAC output voltage is removed from the DAC10UT1/2 pins.
- The DAC1R<4:0> range select bits are cleared.

30.3 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 30-2.

TABLE 30-2: SELECTABLE INPUT SOURCES


Source Peripheral	Signal Name
CWG input PPS pin	CWG1IN PPS
CCP1	CCP1_out
CCP2	CCP2_out
PWM3	PWM3_out
PWM4	PWM4_out
PWM5	PWM5_out
PWM6	PWM6_out
NCO	NCO1_out
Comparator C1	C1OUT_sync
Comparator C2	C2OUT_sync
CLC1	LC1_out
CLC2	LC2_out
CLC3	LC3_out
CLC4	LC4_out

The input sources are selected using the CWG1ISM register.

30.4 Output Control

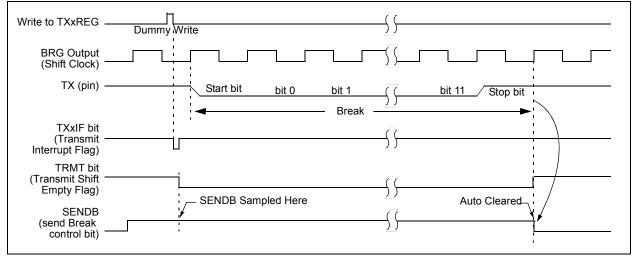
30.4.1 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLx bits of the CWG1CON1. Auto-shutdown and steering options are unaffected by polarity.

33.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCxSTA register and the received data as indicated by RCxREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.


A Break character has been received when:

- · RXxIF bit is set
- · FERR bit is set
- RCxREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 33.3.3 "Auto-Wake-up on Break"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RXxIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDxCON register before placing the EUSART in Sleep mode.

34.0 REFERENCE CLOCK OUTPUT MODULE

The reference clock output module provides the ability to send a clock signal to the clock reference output pin (CLKR).

The reference clock output module has the following features:

- Selectable input clock
- Programmable clock divider
- Selectable duty cycle

34.1 CLOCK SOURCE

The reference clock output module has a selectable clock source. The CLKRCLK register (Register 34-2) controls which input is used.

34.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (CLKREN) is set, the module is ensured to be glitch-free at start-up.

When the reference clock output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

34.2 PROGRAMMABLE CLOCK DIVIDER

The module takes the system clock input and divides it based on the value of the CLKRDIV<2:0> bits of the CLKRCON register (Register 34-1).

The following configurations can be made based on the CLKRDIV<2:0> bits:

- · Base clock value
- · Base clock value divided by 2
- · Base clock value divided by 4
- Base clock value divided by 8
- Base clock value divided by 16
- Base clock value divided by 32
- Base clock value divided by 64
- Base clock value divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the CLKRDIV<2:0> bits should only be changed when the module is disabled (CLKREN = 0).

34.3 SELECTABLE DUTY CYCLE

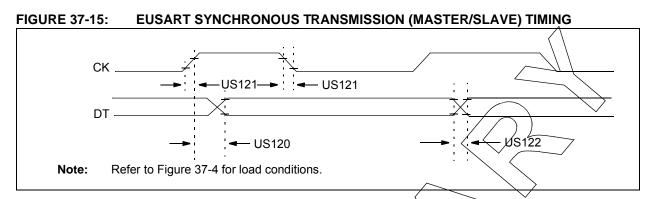
The CLKRDC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the CLKRDC<1:0> bits should only be changed when the module is disabled (CLKREN = 0).

Note: The CLKRDC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

34.4 OPERATION IN SLEEP MODE

The reference clock output module clock is based on the system clock. When the device goes to Sleep, the module outputs will remain in their current state. This will have a direct effect on peripherals using the reference clock output as an input signal.


TABLE 37-9: P	LL SPECIFICATIONS
---------------	-------------------

Standard Operating Conditions (unless otherwise stated) VDD $\ge 2.5V$								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
PLL01	FPLLIN	PLL Input Frequency Range	4	—	8	MHz		
PLL02	FPLLOUT	PLL Output Frequency Range	16	—	32	MHz	Note 1	
PLL03	TPLLST	PLL Lock Time from Start-up	—	200 /	$\langle - \rangle$	μs_	-	
PLL04	FPLLJIT	PLL Output Frequency Stability (Jitter)	-0.25	\	0.25	-%		
*	* These parameters are characterized but not tested.							

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

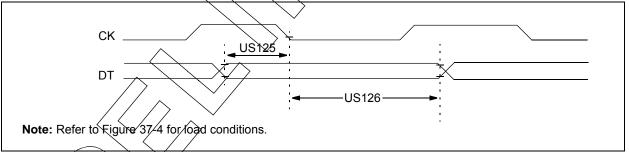

Note 1: The output frequency of the PLL must meet the Fosc requirements listed in Parameter D002.

TABLE 37-21: EUSART SYNCHRONOUS TRANSMISSION CHARACTERISTICS

Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
JS120	TCKH2DTV	SYNC XMIT (Master and Slave)		80	ns	$3.0V \le V\text{DD} \le 5.5V$
		Clock high to data-out valid	$\langle - \rangle$	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF	Clock out rise time and fall time	$\langle - \rangle$	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		(Master mode)		50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US122	TDTRF	Data-out rise time and fall time	$\langle \rangle$	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
			$\overline{)}$	50	ns	$1.8V \le V\text{DD} \le 5.5V$

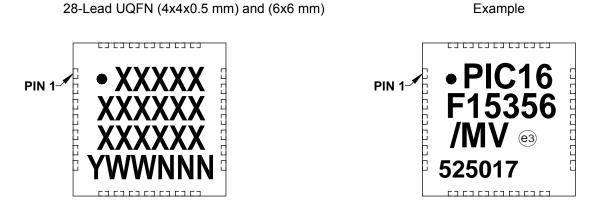

FIGURE 37-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 37-22: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating C	onditions (unless otherwise stated)				
Param. No. Symbol	Characteristic	Min.	Max.	Units	Conditions
	SYNC RCV (Master and Slave) Data-setup before CK \downarrow (DT hold time)	10	_	ns	
US126 TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns	

40.1 Package Marking Information (Continued)

Legend	: XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC [®] designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)
		can be found on the outer packaging for this package.
Note:	In the eve	ent the full Microchip part number cannot be marked on one line, it will
	be carrie	d over to the next line, thus limiting the number of available
	character	s for customer-specific information.