

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	44
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15386-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1-3: PIC16(L)F15385/86 BLOCK DIAGRAM

Name	Function	Input Type	Output Type	Description
RB3/ANB3/C1IN2-/C2IN2-/IOCB3	RB3	TTL/ST	CMOS/OD	General purpose I/O.
	ANB3	AN	_	ADC Channel B3 input.
	C1IN2-	AN	_	Comparator 1 negative input.
	C2IN2-	AN	_	Comparator 2 negative input.
	IOCB3	TTL/ST	_	Interrupt-on-change input.
RB4/ANB4/ADACT ⁽¹⁾ /IOCB4	RB4	TTL/ST	CMOS/OD	General purpose I/O.
	ANB4	AN	_	ADC Channel B4 input.
	ADACT ⁽¹⁾	TTL/ST	_	ADC Auto-Conversion Trigger input.
	IOCB4	TTL/ST	_	Interrupt-on-change input.
RB5/ANB5/T1G ⁽¹⁾ /IOCB5	RB5	TTL/ST	CMOS/OD	General purpose I/O.
	ANB5	AN	_	ADC Channel B5 input.
	T1G ⁽¹⁾	ST	_	Timer1 Gate input.
	IOCB5	TTL/ST	_	Interrupt-on-change input.
RB6/ANB6/CLCIN2 ⁽¹⁾ /IOCB6/TX2/	RB6	TTL/ST	CMOS/OD	General purpose I/O.
CRZMICSFCLK	ANB6	AN	_	ADC Channel B6 input.
	CLCIN2 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCB6	TTL/ST	_	Interrupt-on-change input.
	TX2	—	CMOS	EUSART2 asynchronous.
	CK2 ⁽³⁾	TTL/ST	CMOS/OD	EUSART2 synchronous mode clock input/output.
	ICSPCLK	ST	—	In-Circuit Serial Programming [™] and debugging clock input.
RB7/ANB7/RX2/DT2/CLCIN3 ⁽¹⁾ /	RB7	TTL/ST	CMOS/OD	General purpose I/O.
IOGB/IDACTOOTZ/ICSPDAT	ANB7	AN	—	ADC Channel B7 input.
	CLCIN3 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	IOCB7	TTL/ST	—	Interrupt-on-change input.
	RX2 ⁽¹⁾	TTL/ST	—	EUSART2 Asynchronous mode receiver data input.
	DT2 ⁽³⁾	TTL/ST	CMOS/OD	EUSART2 Synchronous mode data input/output.
	DAC1OUT2	—	AN	Digital-to-Analog Converter output.
	ICSPDAT	ST	CMOS	In-Circuit Serial Programming™ and debugging data input/ output.
RC0/ANC0/T1CKI ⁽¹⁾ /IOCC0/SOSCO	RC0	TTL/ST	CMOS/OD	General purpose I/O.
	ANC0	AN	_	ADC Channel C0 input.
	T1CKI ⁽¹⁾	TTL/ST	_	Timer1 external digital clock input.
	IOCC0	TTL/ST	_	Interrupt-on-change input.
	SOSCO	_	AN	32.768 kHz secondary oscillator crystal driver output.
Legend: AN = Analog input or out	out CMOS =	= CMOS co	mpatible input or o	output OD = Open-Drain

TABLE 1-2: PIC16(L)F15356 PINOUT DESCRIPTION (CONTINUED)

1:

Note

Schmitt Trigger input of output
Schmitt Trigger input with CMOS levels
Crystal levels

 $\begin{aligned} HV &= \text{Airadeg input of output} & \text{Since on the comparison of the comparison o$

2: options as described in Table 15-3. This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and

3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Name	Function	Input Type	Output Type	Description			
OUT ⁽²⁾	C10UT	—	CMOS/OD	Comparator 1 output.			
	C2OUT	_	CMOS/OD	Comparator 2 output.			
	SDO1	_	CMOS/OD	MSSP1 SPI serial data output.			
	SCK1	—	CMOS/OD	MSSP1 SPI serial clock output.			
	SDO2	_	CMOS/OD	MSSP2 SPI serial data output.			
	SCK2	_	CMOS/OD	MSSP2 SPI serial clock output.			
	TX1	_	CMOS/OD	EUSART1 Asynchronous mode transmitter data output.			
	CK1 ⁽³⁾	_	CMOS/OD	EUSART1 Synchronous mode clock output.			
	TX2	_	CMOS/OD	EUSART2 Asynchronous mode transmitter data output.			
	CK2 ⁽³⁾	—	CMOS/OD	EUSART2 Synchronous mode clock output.			
	DT ⁽³⁾	_	CMOS/OD	EUSART Synchronous mode data output.			
	TMR0	_	CMOS/OD	Timer0 output.			
	CCP1	CCP1 — CMOS/OD CCP2 output (compare/PWM functions).					
	CCP2	_	CMOS/OD	CCP2 output (compare/PWM functions).			
	PWM3OUT	—	PWM3 output.				
	PWM4OUT	—	CMOS/OD	PWM4 output.			
	PWM5OUT	—	CMOS/OD	PWM5 output.			
	PWM6OUT	—	CMOS/OD	PWM6 output.			
	CWG1A	_	CMOS/OD	Complementary Waveform Generator 1 output A.			
	CWG1B	_	CMOS/OD	Complementary Waveform Generator 1 output B.			
	CWG1C	—	CMOS/OD	Complementary Waveform Generator 1 output C.			
	CWG1D	—	CMOS/OD	Complementary Waveform Generator 1 output D.			
	CLC1OUT	—	CMOS/OD	Configurable Logic Cell 1 output.			
	CLC2OUT	—	CMOS/OD	Configurable Logic Cell 2 output.			
	CLC3OUT	—	CMOS/OD	Configurable Logic Cell 3 output.			
	CLC4OUT	—	CMOS/OD	Configurable Logic Cell 4 output.			
	Numerically Controller Oscillator output.						
	CLKR	_	CMOS/OD	Clock Reference module output.			
Legend: AN = Analog input or outp TTL = TTL compatible input	ut CMOS = it ST =	CMOS cor Schmitt Tr	mpatible input or ou	utput OD = Open-Drain AOS levels I^2C = Schmitt Trigger input with I^2C			

TABLE 1-2: PIC16(L)F15356 PINOUT DESCRIPTION (CONTINUED)

TTL = TTL compatible input of output ST = Schmitt Trigger input with CMOS levels I²C = Schmitt Trigger input with I²C HV = High Voltage XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0-/C2IN0-/CLCIN0 ⁽¹⁾ /	RA0	TTL/ST	CMOS/OD	General purpose I/O.
IOCAU	ANA0	AN	_	ADC Channel A0 input.
	C1IN0-	AN	_	Comparator negative input.
	C2IN0-	AN	_	Comparator negative input.
	CLCIN0 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCA0	TTL/ST	—	Interrupt-on-change input.
RA1/ANA1/C1IN1-/C2IN1-/CLCIN1 ⁽¹⁾ /	RA1	TTL/ST	CMOS/OD	General purpose I/O.
IUCAT	ANA1	AN	_	ADC Channel A1 input.
	C1IN1-	AN	_	Comparator negative input.
	C2IN1-	AN	_	Comparator negative input.
	CLCIN1 ⁽¹⁾	TTL/ST	—	Configurable Logic Cell source input.
	IOCA1	TTL/ST	—	Interrupt-on-change input.
RA2/ANA2/C1IN0+/C2IN0+/	RA2	TTL/ST	CMOS/OD	General purpose I/O.
DACTOUTI/IOCAZ	ANA2	AN	_	ADC Channel A2 input.
	C1IN0+	AN	_	Comparator positive input.
	C2IN0+	AN	_	Comparator positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	—	Interrupt-on-change input.
RA3/ANA3/C1IN1+/VREF+/DACREF+/	RA3	TTL/ST	CMOS/OD	General purpose I/O.
IOCAS	ANA3	AN	—	ADC Channel A3 input.
	C1IN1+	AN	—	Comparator positive input.
	VREF+	AN	—	External ADC and/or DAC positive reference input.
	IOCA3	TTL/ST	—	Interrupt-on-change input.
RA4/ANA4/T0CKI ⁽¹⁾ /IOCA4	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	—	ADC Channel A4 input.
	T0CKI ⁽¹⁾	TTL/ST	—	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
RA5/ANA5/SS1 ⁽¹⁾ /T1G ⁽¹⁾ /IOCA5	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	ANA5	AN	_	ADC Channel A5 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	T1G ⁽¹⁾	TTL/ST	_	Timer1 gate input.
	IOCA5	TTL/ST	_	Interrupt-on-change input.
Legend: AN = Analog input or outr	ut CMOS =		mnatible input or	output OD = Open-Drain

TABLE 1-3: PIC16(L)F15375/76 PINOUT DESCRIPTION

CMOS = CMOS compatible input or output Legend: AN = Analog input or output TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels XTAL

HV = High Voltage

Note

= Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx 1: pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-5, Table 15-6 and Table 15-6.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I^2C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, 4: instead of the I²C specific or SMBus input buffer thresholds.

⁼ Open-Drain 1²C = Schmitt Trigger input with I²C

Name	Function	Input Type	Output Type	Description
RD1/AND1/SDA2 ⁽¹⁾ /SDI2 ^(1,4)	RD1	TTL/ST	CMOS/OD	General purpose I/O.
	AND1	AN	_	ADC Channel D0 input.
	SDA2 ⁽¹⁾	l ² C	OD	MSSP2 I ² C serial data input/output.
	SDI2 ^(1,4)	TTL/ST	_	MSSP2 SPI serial data input (default input location, SDI2 is a PPS remappable input and output).
RD2/AND2	RD2	TTL/ST	CMOS/OD	General purpose I/O.
	AND2	AN	_	ADC Channel D0 input.
RD3/AND3	RD3	TTL/ST	CMOS/OD	General purpose I/O.
	AND3	AN	_	ADC Channel D0 input.
RD4/AND4	RD4	TTL/ST	CMOS/OD	General purpose I/O.
	AND4	AN	_	ADC Channel D0 input.
RD5/AND5	RD5	TTL/ST	CMOS/OD	General purpose I/O.
	AND5	AN	_	ADC Channel D0 input.
RD6/AND6	RD6	TTL/ST	CMOS/OD	General purpose I/O.
	AND6	AN	_	ADC Channel D0 input.
RD7/AND7	RD7	TTL/ST	CMOS/OD	General purpose I/O.
	AND7	AN	_	ADC Channel D0 input.
RE0/ANE0	RE0	TTL/ST	CMOS/OD	General purpose I/O.
	ANE0	AN	_	ADC Channel D0 input.
RE1/ANE1	RE1	TTL/ST	CMOS/OD	General purpose I/O.
	ANE1	AN	_	ADC Channel D0 input.
RE2/ANE2	RE2	TTL/ST	CMOS/OD	General purpose I/O.
	ANE2	AN	_	ADC Channel D0 input.
RE3/MCLR/IOCE3	RE3	TTL/ST	_	General purpose input only (when MCLR is disabled by the Configuration bit).
	MCLR	ST	_	Master clear input with internal weak pull-up resistor.
	IOCE3	TTL/ST	_	Interrupt-on-change input.
RF0/ANF0	RF0	TTL/ST	CMOS/OD	General purpose I/O.
	ANF0	AN	_	ADC Channel D0 input.
RF1/ANF1	RF1	TTL/ST	CMOS/OD	General purpose I/O.
	ANF1	AN	_	ADC Channel D0 input.
RF2/ANF2	RF2	TTL/ST	CMOS/OD	General purpose I/O.
	ANF2	AN	_	ADC Channel D0 input.
RF3/ANF3	RF3	TTL/ST	CMOS/OD	General purpose I/O.
	ANF3	AN	—	ADC Channel D0 input.
RF4/ANF4	RF4	TTL/ST	CMOS/OD	General purpose I/O.
	ANF4	AN	_	ADC Channel D0 input.
Legend: AN = Analog input or outp TTL = TTL compatible input	ut CMOS = ut ST =	= CMOS co = Schmitt Tr	mpatible input or	r output OD = Open-Drain CMOS levels I ² C = Schmitt Trigger input with I ² C

TABLE 1-4: PIC16(L)F15385/86 PINOUT DESCRIPTION (CONTINUED)

HV = High Voltage

chmitt Trigger input with CMOS levels

XTAL

Schmitt Trigger input with I²C

Note

= Crystal levels This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-4 for details on which PORT pins may be used for this signal. 1:

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options 2: as described in Table 15-5, Table 15-6 and Table 15-7.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFVR<1:0>		264
ADCON0	CHS<5:0>						GO/DONE	ADON	277
ADCON1	ADFM		ADCS<2:0>			_	ADPREF<1:0>		279
DAC1CON0	DAC1EN	-	DAC10E1	DAC10E2	AC10E2 DAC1PSS<1:0>			DAC1NSS	287

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: -= unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

20.2 ADC Operation

20.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit will not be set in the
	same instruction that turns on the ADC.
	Refer to Section 20.2.6 "ADC Conver-
	sion Procedure".

20.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

20.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

20.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the ADCRC option. When the ADCRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than ADCRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

20.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The Auto-conversion Trigger source is selected with the ADACT<3:0> bits of the ADACT register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Table 20-2 for auto-conversion sources.

TABLE 20-2: ADC AUTO-CONVERSION TABLE

ADACT VALUE	SOURCE/ PERIPHERAL	DESCRIPTION
0x00	Disabled	External Trigger Disabled
0x01	ADACTPPS	Pin Selected by ADACTPPS
0x02	TMR0	Timer0 overflow condition
0x03	TMR1	Timer1 overflow condition
0x04	TMR2	Match between Timer2 postscaled value and PR2
0x05	CCP1	CCP1 output
0x06	CCP2	CCP2 output
0x07	PWM3	PWM3 output
0x08	PWM4	PWM4 output
0x09	PWM5	PWM5 output
0x0A	PWM6	PWM6 output
0x0B	NCO1	NCO1 output
0x0C	C1OUT	Comparator C1 output
0x0D	C2OUT	Comparator C2 output
0x0E	IOCIF	Interrupt-on change flag trigger
0x0F	CLC1	CLC1 output
0x10	CLC2	CLC2 output
0x11	CLC3	CLC3 output
0x12	CLC4	CLC4 output
0x13-0xFF	Reserved	Reserved, do not use

20.4 Register Definitions: ADC Control

REGISTER 20-1: ADCON0: ADC CONTROL REGISTER 0

rt/vv-U/U	rt/ VV-U/U	R/W-U/U	F(/ VV-U/U	K/W-U/U	r:/vv-U/U		
		CHS<5	0. ∪ >			GO/DONE	ADUN
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '	0'	
u = Bit is unchang	jed	x = Bit is unknow	n	-n/n = Value at F	OR and BOR/Va	lue at all other Res	sets
'1' = Bit is set		'0' = Bit is cleared	ł				
bit 7-2	CHS<5:0>: /	Analog Channel Select	t hits				
	1111111 =	FVR Buffer 2 referen	ce voltage ⁽²⁾				
	111110 =	FVR 1Buffer 1 refere	nce voltage ⁽²⁾				
	111101 =	DAC1 output voltage	(1)				
	111100 =	Temperature sensor	output ⁽³⁾				
	111011 =	AVss (Analog Group	d)				
	111010-100	0000 = Reserved No	channel conne	cted			
	101111 =	RF7					
	101110 =	RF6					
	101101 =	RE5					
	101100 =	RF4					
	101011 =	RF3					
	101011 =	RF2					
	101001 =	RF1					
	101001 =	REO					
	101000 =	RF2					
	100010 =	RE1					
	100001 -						
	100000 =						
	011111 -						
	011110 -						
	011101 -						
	01100 -						
	011011 -	RD3					
	011010 =	RD2					
	011001 =	RD1					
	011000 =						
	010111 =	RC/(*)					
	010110 =	RC6(*)					
	010101 =	RC5					
	010100 =	RC4					
	010011 =	RC3					
	010010 =	RC2					
	010001 =	RC1					
	010000 =	RC0					
	001111 =	RB7(4)					
	001110 =	RB6 ⁽⁴⁾					
	001101 =	RB5 ⁽⁴⁾					
	001100 =	RB4 ⁽⁴⁾					
	001011-000	0110 = Reserved					
	000101 =	RA5					
	000100 =	RA4					
	000011 =	RA3					
	000010 =	RA2					
	000001 =	RA1					
	000000 =	RA0					
bit 1	GO/DONE	ADC Conversion Statu	s bit				
	1 = ADC con	version cycle in progre	ess. Setting thi	s bit starts an ADC	conversion cycle.		
	This bit is	s automatically cleared	by hardware	when the ADC conv	version has comp	leted.	

0 = ADC conversion completed/not in progress

PIC16(L)F15356/75/76/85/86

PIC16(L)F15356/75/76/85/86

30.5 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWG1DBR and CWG1DBF registers, respectively.

30.5.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 30-9.

30.5.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWG1CON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWG1A and CWG1C signals will change upon the first rising input edge following a direction change, but the modulated signals (CWG1B or CWG1D, depending on the direction of the change) will experience a delay dictated by the deadband counters. This is demonstrated in Figure 30-3.

30.6 Rising Edge and Reverse Dead Band

CWG1DBR controls the rising edge dead-band time at the leading edge of CWG1A (Half-Bridge mode) or the leading edge of CWG1B (Full-Bridge mode). The CWG1DBR value is double-buffered. When EN = 0, the CWG1DBR register is loaded immediately when CWG1DBR is written. When EN = 1, then software must set the LD bit of the CWG1CON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

30.7 Falling Edge and Forward Dead Band

CWG1DBF controls the dead-band time at the leading edge of CWG1B (Half-Bridge mode) or the leading edge of CWG1D (Full-Bridge mode). The CWG1DBF value is double-buffered. When EN = 0, the CWG1DBF register is loaded immediately when CWG1DBF is written. When EN = 1 then software must set the LD bit of the CWG1CON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

Refer to Figure 30-6 and Figure 30-7 for examples.

PIC16(L)F15356/75/76/85/86

TABLE 30-3:	SUMMARY OF REGISTERS	ASSOCIATED WITH CWG

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1CLKCON	—	—	_	-	—	-	_	CS	401
CWG1ISM	_	_	_	— — IS<3:0>					401
CWG1DBR	_	_		DBR<5:0>					397
CWG1DBF	—	_			DBF	<5:0>			397
CWG1CON0	EN	LD	_	_	_		MODE<2:0>		400
CWG1CON1	_	_	IN	_	POLD	POLC	POLB	POLA	396
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	<1:0>		_	398
CWG1AS1	_	_	_	AS4E	AS3E	AS2E	AS1E	AS0E	399
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	400

Legend: -= unimplemented locations read as '0'. Shaded cells are not used by CWG.

The $\mathsf{I}^2\mathsf{C}$ interface supports the following modes and features:

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited multi-master support
- · 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- General call address matching
- · Address masking
- Selectable SDA hold times

Figure 32-2 is a block diagram of the I^2C interface module in Master mode. Figure 32-3 is a diagram of the I^2C interface module in Slave mode.

Note 1: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCONx register names. SSPxCON1 and SSPxCON2 registers control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.

> 2: Throughout this section, generic references to an MSSPx module in any of its operating modes may be interpreted as being equally applicable to MSSP1 or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required.

32.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 32-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 32-6, Figure 32-8, Figure 32-9 and Figure 32-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 32-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

FIGURE 32-6: SPI MODE WAVEFORM (MASTER MODE)

Note 1: If at the beginning of the Start condition,

the SDA and SCL pins are already

sampled low, or if during the Start condi-

tion, the SCL line is sampled low before

32.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 32-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

FIGURE 32-26: FIRST START BIT TIMING

PIC16(L)F15356/75/76/85/86

© 2016 Microchip Technology Inc.

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
CLKREN	_	– – Clkr		DC<1:0>	(CLKRDIV<2:0>	•	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7 bit 6-5	CLKREN: Reference Clock Module Enable bit 1 = Reference clock module enabled 0 = Reference clock module is disabled Unimplemented: Read as '0'							
bit 4-3	CLKRDC<1:0>: Reference Clock Duty Cycle bits ⁽¹⁾ 11 = Clock outputs duty cycle of 75% 10 = Clock outputs duty cycle of 50% 01 = Clock outputs duty cycle of 25% 00 = Clock outputs duty cycle of 0%							
bit 2-0	CLKRDIV<2:0 111 = Base cl 110 = Base cl 101 = Base cl 100 = Base cl 011 = Base cl 010 = Base cl 001 = Base cl 000 = Base cl	D>: Reference lock value divid lock value	Clock Divider led by 128 led by 64 led by 32 led by 16 led by 8 led by 4 led by 2	bits				

REGISTER 34-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

Note 1: Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.

40.1 Package Marking Information (Continued)

Legend:	gend: XXX Customer-specific information						
	YY	Year code (last 2 digits of calendar year)					
	NNN Alphanumeric traceability code						
	Pb-free JEDEC [®] designator for Matte Tin (Sn)						
	^	This package is Pb-free. The Pb-free JEDEC designator ((e_3)) can be found on the outer packaging for this package.					
Note:	In the eve be carrie character	ent the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.					

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е	.100 BSC		
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	с	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width		.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	W2			2.35
Optional Center Pad Length	T2			2.35
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A