

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	44
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 43x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15386t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Н	
	_
	O
	Ŧ
	35
	5
	UT I
	6
I	
I	85/
I	
I	8
I	ő
н	

Preliminary

I/O ⁽²⁾	48-Pin UQFN/TQFP	ADC	Reference	Comparator	NCO	DAC	Timers	CCP	MWM	SWC	ASSM	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RC2	40	ANC2	—	—	—	_	—	CCP1 ⁽¹⁾	-	—	—		—	-	—	IOCC2	Y	—
RC3	41	ANC3	-	-	-	_	T2IN ⁽¹⁾	-	_	_	SCL1 SCL2 ^(1,4)	_	—	_	-	IOCC3	Y	-
RC4	46	ANC4	-	_	_	_	-	—	_	-	SDA1 SDI1 ^(1,4)	_	—	_	_	IOCC4	Y	_
RC5	47	ANC5	_	—	_	_	_	_	_	_	_	_	—	_	_	IOCC5	Υ	_
RC6	48	ANC6	-	—	—	_	—	—	_	—	—		TX1 CK1 ⁽¹⁾	_	-	IOCC6	Y	—
RC7	1	ANC7	-	—	—	_	—	—	_	—	—		RX1 DT1 ⁽¹⁾	_	-	IOCC7	Y	—
RD0	42	AND0	-	—	-	-	-	—	—	-	SCK2 SCL2 ^(1,4)	—	-	—	-	-	Y	—
RD1	43	AND1	—	—	—		—	—	_	—	SDA2 SDI2 ^(1,4)		_	_	-	—	Y	—
RD2	44	AND2	_	_	—	_	_	_	-	_	_	_	—	-	_	_	Y	_
RD3	45	AND3	_	_	_	_	_	_		_	_		_		—	_	Y	_
RD4	2	AND4	_	_	—	_	_	—	_	_	_	_	_	_	_	_	Υ	_
RD5	3	AND5	_	—	—	_	_	—	-	_	_	-	_	-	_	_	Υ	_
RD6	4	AND6	_	_	—	_	_	_	_	—	_	_	_	_	_	—	Υ	_
RD7	5	AND7	—	—	—	_	—	—	-	—	—	-	—	-	—	—	Υ	—
RE0	27	ANE0	-	—	—	_	—	—	-	—	—	-	—	-	—	—	Υ	—
RE1	28	ANE1	_	—	—	_	-	—		-	_	_	_	_	—	-	Υ	—
RE2	29	ANE2	_	—	—	—	—	—	—	—	—	_	—	—	—	—	Y	—
RE3	20	_	-	—	—		—	—	_	—	—	_	—	_	_	IOCE3	Y	MCLR VPP
RF0	36	ANF0	_	_	—	_	—	_	_	—	_		_	_	_	—	Υ	_
RF1	37	ANF1	_	—	—	_	-	—	-	—	—	_	—	-	—	—	Υ	—
RF2	38	ANF2	_	—	—	_	-	_	_	—	—	_	—	_	—	—	Υ	_
RF3	39	ANF3	_	—	—	_	-	—	-	—	—	_	—	-	—	—	Υ	—
RF4	12	ANF4	—	—	—		—	—		_	_		_		—	—	Υ	—

TABLE 5: 48-PIN ALLOCATION TABLE (PIC16(L)F15385, PIC16(L)F15386) (CONTINUED)

Note 1: This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.
 All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBUS input buffer thresholds.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 2					•	•			•		
				CPU COF	RE REGISTERS;	see Table 4-3 for	specifics				
10Ch	_				Unimpler	mented				_	_
118h											
119h	RC1REG	EUSART Receive Dat	a Register							0000 0000	0000 0000
11Ah	TX1REG	EUSART Transmit Da	ta Register							0000 0000	0000 0000
11Bh	SP1BRGL				SP1BR0	G<7:0>				0000 0000	0000 0000
11Ch	SP1BRGH				SP1BRG	6<15:8>				0000 0000	0000 0000
11Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000
11Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
11Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00

CISTED SUMMADY DANKS A 62 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

		R/W-1	U-1	R/W-1	U-1	R/W-1	R/W-1
		LVP	—	WRTSAF ⁽¹⁾	—	WRTC ⁽¹⁾	WRTB ⁽¹⁾
		bit 13	12	11	10	9	bit 8
R/W-1	U-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
WRTAPP ⁽¹⁾	0-1	0-1	SAFEN ⁽¹⁾	BBEN ⁽¹⁾	BBSIZE2	BBSIZE1	
						_	BBSIZE0
bit 7	6	5	4	3	2	1	bit
Legend:							
R = Readable	e bit	P = Programı	nable bit	x = Bit is unkn	own	U = Unimplem read as '1'	nented bit,
'0' = Bit is clea	ared	'1' = Bit is set		W = Writable t	bit	n = Value whe after Bulk Era	
bit 13		oltage Programr	ning Enable bit				
				ICLR/VPP pin fu	nction is MCL	R. MCLRE Cont	iguration bit i
	ignored		4 h a a a d fa a a				
		MCLR/VPP mus		rogramming. le operating fror	n tha LVD ara	aromming intorf	ann Tha
				om dropping out			
				e from the config			
		litioned (erased)	•		garation state		
bit 12	-	nted: Read as '					
bit 11		torage Area Fla		ction bit			
		DT write-protect					
		ite-protected	cu				
			ot supported in	the device famil	ly and only ap	plicable if SAFE	N = 0.
bit 10		nted: Read as '					
bit 9		figuration Regis		ction bit			
		uration Register					
		uration Register					
bit 8	Ŭ	t Block Write Pr	•				
		lock NOT write-					
		lock write-prote					
		ble if $\overline{BBEN} = 0$					
bit 7		pplication Block		on bit			
		ation Block NOT					
		ation Block write					
bit 6-5	Unimpleme	nted: Read as '	1'				
bit 4	SAFEN: SAF	Enable bit					
	1 = SAF dis	sabled					
	0 = SAF en	abled					
bit 3	BBEN: Boot	Block Enable b	it				
	1 = Boot Bl						
	0 = Boot Bl	ock enabled					
bit 2-0	BBSIZE[2:0]	· Boot Block Size	Soloction hite				
DIL 2-0							
DIL 2-0	BBSIZE is us	sed only when E	BBEN = 0	= 1; after BBEN			

Note 1: Bits are implemented as sticky bits. Once protection is enabled, it can only be reset through a Bulk Erase.

REGIST	ER 5-7:	REVI	SIONID	: REVIS	SION ID	REGIS	TER						
R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0			MJRRE	V<5:0>					MNRRE	EV<5:0>		
bit 13													bit 0
Legend													
	R = Read	able bit											
	'0' = Bit is	cleared				'1' = Bit	t is set		x = Bit	is unkno	own		

bit 13-12 **Fixed Value**: Read-only bits

These bits are fixed with value `10' for all devices included in this data sheet.

bit 11-6MJRREV<5:0>: Major Revision ID bits
These bits are used to identify a major revision.bit 5-0MNRREV<5:0>: Minor Revision ID bits

These bits are used to identify a minor revision.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	_	—	_	INTEDG	146
PIE0	—		TMR0IE	IOCIE	—	_		INTE	147
PIE1	OSFIE	CSWIE	_		—	—		ADIE	148
PIE2	_	ZCDIE	_	_	_	_	C2IE	C1IE	149
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	150
PIE4	—	_	_	—	—	—	TMR2IE	TMR1IE	151
PIR0	—	_	TMR0IF	IOCIF	—	—		INTF	155
PIR1	OSFIF	CSWIF	_		_	_	_	ADIF	156
PIR2	—	ZCDIF		_	—	—	C2IF	C1IF	157
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	158
PIR4	_		_	_	—	_	TMR2IF	TMR1IF	159
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	255
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	255
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	256
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	257
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	257
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	258
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	259
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	259
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	259
IOCEP	—			_	IOCEP3	IOCEP2 ⁽¹⁾	IOCEP1 ⁽¹⁾	IOCEP0 ⁽¹⁾	260
IOCEN	—	_	_	—	IOCEN3	IOCEN2 ⁽¹⁾	IOCEN1 ⁽¹⁾	IOCEN0 ⁽¹⁾	260
IOCEF	—			_	IOCEF3	IOCEF2 ⁽¹⁾	IOCEF1 ⁽¹⁾	IOCEF0 ⁽¹⁾	261
STATUS	_	_	_	TO	PD	Z	DC	С	54
VREGCON	_	_	_	_	_	—	VREGPM	_	168
CPUDOZE	IDLEN	DOZEN	ROI	DOE	_		DOZE<2:0>		169
WDTCON0	—	—		١	NDTPS<4:0	>		SWDTEN	175

TABLE 11-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

Note 1: Present only in PIC16(L)F15375/76/85/86.

13.3.8 WRERR BIT

The WRERR bit can be used to determine if a write error occurred.

WRERR will be set if one of the following conditions occurs:

- If WR is set while the NVMADRH:NMVADRL points to a write-protected address
- A Reset occurs while a self-write operation was in progress
- An unlock sequence was interrupted

The WRERR bit is normally set by hardware, but can be set by the user for test purposes. Once set, WRERR must be cleared in software.

Free	LWLO	Actions for PFM when WR = 1	Comments
1	x	Erase the 32-word row of NVMADRH:NVMADRL location. See Section 13.3.3 "NVMREG Erase of PFM"	 If WP is enabled, WR is cleared and WRERR is set All 32 words are erased NVMDATH:NVMDATL is ignored
0	1	Copy NVMDATH:NVMDATL to the write latch corresponding to NVMADR LSBs. See Section 13.3.3 "NVMREG Erase of PFM"	Write protection is ignoredNo memory access occurs
0	0	Write the write-latch data to PFM row. See Sec- tion 13.3.3 "NVMREG Erase of PFM"	 If WP is enabled, WR is cleared and WRERR is set Write latches are reset to 3FFh NVMDATH:NVMDATL is ignored

TABLE 13-4: ACTIONS FOR PFM WHEN WR = 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
bit 7		·					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
•							

REGISTER 14-5: WPUA: WEAK PULL-UP PORTA REGISTER

bit 7-0 WPUA<7:0>: Weak Pull-up Register bits 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 14-6: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCA7 | ODCA6 | ODCA5 | ODCA4 | ODCA3 | ODCA2 | ODCA1 | ODCA0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

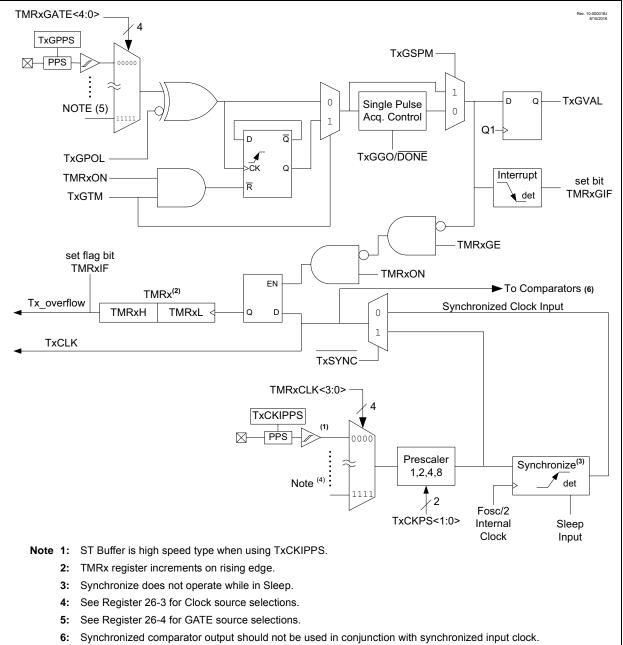
ODCA<7:0>: PORTA Open-Drain Enable bits bit 7-0

For RA<7:0> pins, respectively

- 1 = Port pin operates as open-drain drive (sink current only)
- 0 = Port pin operates as standard push-pull drive (source and sink current)

© 2016 Microchip Technology Inc.

R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
T0EN	_	TOOUT	T016BIT		TOOUTI	PS<3:0>						
bit 7							bit					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'						
u = Bit is unc	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets					
'1' = Bit is se	t	'0' = Bit is cle	ared									
bit 7	TOEN: Time	r0 Enable bit										
		dule is enabled										
		dule is disabled		vest power mod	de							
bit 6	Unimpleme	nted: Read as	0'									
bit 5	T0OUT: Tim Timer0 outp	er0 Output bit (ı ut bit	read-only)									
bit 4	T016BIT: Tir	mer0 Operating	as 16-bit Time	er Select bit								
		is a 16-bit timer										
	0 = Timer0 i	s an 8-bit timer										
bit 3-0	T0OUTPS<	3:0>: Timer0 ou	tput postscale	r (divider) seled	ct bits							
	1111 = 1:16											
	1110 = 1:15 1101 = 1:14											
	1101 - 1.14 1100 = 1:13											
	1011 = 1:12											
	1010 = 1:11											
	1001 = 1:10	Postscaler										
	1000 = 1:9	Postscaler										
	0111 = 1:8 											
	0110 = 1:7											
	0101 = 1:6											
	0100 = 1:5 0011 = 1:4											
	0011 = 1.41 0010 = 1:31											
		0001 = 1:2 Postscaler 0000 = 1:1 Postscaler										

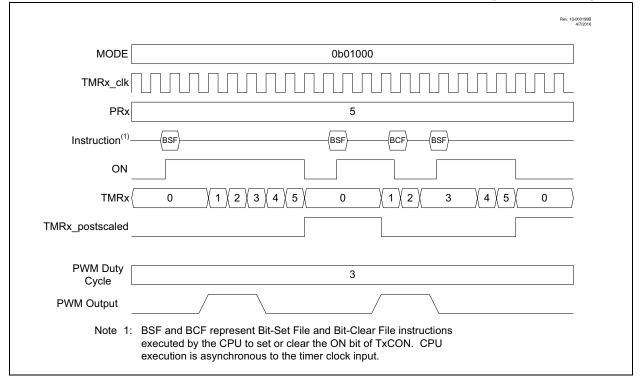

26.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is 16-bit timer/counters with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- · 2-bit prescaler
- Clock source for optional comparator synchronization
- Multiple Timer1 gate (count enable) sources
- · Interrupt on overflow

- Wake-up on overflow (external clock, Asynchronous mode only)
- · Time base for the Capture/Compare function
- Auto-conversion Trigger (with CCP)
- · Selectable Gate Source Polarity
- Gate Toggle mode
- · Gate Single-Pulse mode
- Gate Value Status
- · Gate Event Interrupt

Figure 26-1 is a block diagram of the Timer1 module. This device has one instance of Timer1 type modules.


FIGURE 26-1: TIMER1 BLOCK DIAGRAM

27.5.5 SOFTWARE START ONE-SHOT MODE

In One-Shot mode the timer resets and the ON bit is cleared when the timer value matches the PRx period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 27-8. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the CCP PWM operation the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the PRx match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a PRx period count match.

FIGURE 27-8: SOFTWARE START ONE-SHOT MODE TIMING DIAGRAM (MODE = 01000)

27.5.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

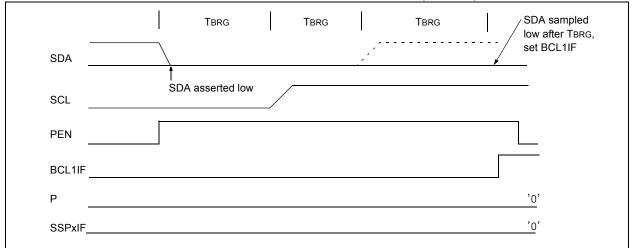
REGISTER 28-1: CCPxCON: CCPx CONTROL REGISTER (CONTINUED)

- bit 3-0 MODE<3:0>: CCPx Mode Select bits⁽¹⁾
 - 1111 1100 = PWM mode (Timer2 as the timer source)
 - 1110 = Reserved
 - 1101 = Reserved
 - 1100 = Reserved
 - 1011 = Compare mode: output will pulse 0-1-0; Clears TMR1
 - 1010 = Compare mode: output will pulse 0-1-0
 - 1001 = Compare mode: clear output on compare match
 - 1000 = Compare mode: set output on compare match
 - 0111 = Capture mode: every 16th rising edge of CCPx input
 - 0110 = Capture mode: every 4th rising edge of CCPx input
 - 0101 = Capture mode: every rising edge of CCPx input
 - 0100 = Capture mode: every falling edge of CCPx input
 - 0011 = Capture mode: every edge of CCPx input
 - 0010 = Compare mode: toggle output on match
 - 0001 = Compare mode: toggle output on match; clear TMR1
 - 0000 = Capture/Compare/PWM off (resets CCPx module)
- **Note 1:** All modes will set the CCPxIF bit, and will trigger an ADC conversion if CCPx is selected as the ADC trigger source.

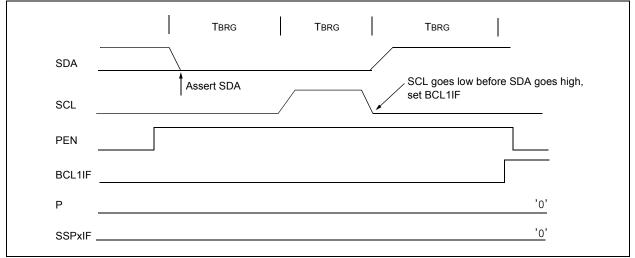
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	146		
PIR4	—	_	_	—	_	_	TMR2IF	TMR1IF	159		
PIE4	_	_	_	_	_	_	TMR2IE	TMR1IE	151		
CCP1CON	EN	—	OUT	FMT		366					
CCP1CAP		_	—	—	—	— CTS<2:0>					
CCPR1L	Capture/Con	ompare/PWM Register 1 (LSB)							368		
CCPR1H	Capture/Compare/PWM Register 1 (MSB)							369			
CCP2CON	EN		OUT	FMT		366					
CCP2CAP	_	—	_	—	_		368				
CCPR2L	Capture/Con	npare/PWM F	Register 1 (LSB)								
CCPR2H	Capture/Compare/PWM Register 1 (MSB)								368		
CCP1PPS	_	—			CCP1PPS<5:0>						
CCP2PPS	_	—	CCP2PPS<5:0>								
RxyPPS	_	_	_			242					
ADACT	_	—	—	—		280					
CLCxSELy	_	—	—		•	412					
CWG1ISM	_	—	—	—		401					

TABLE 28-5: SUMMARY OF REGISTERS ASSOCIATED WITH CCPx

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP module.


32.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 32-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 32-39).

FIGURE 32-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 32-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

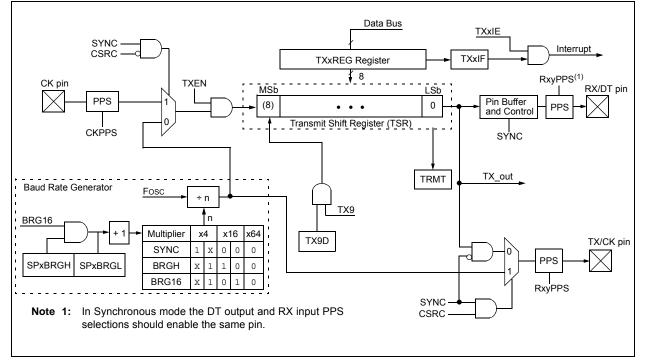
33.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

Note: Two identical EUSART modules are implemented on this device, EUSART1 and EUSART2. All references to EUSART1 apply to EUSART2 as well. The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:


- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- · 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 33-1 and Figure 33-2.

The EUSART transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

Configurable Logic Cell (CLC)

FIGURE 33-1: EUSART TRANSMIT BLOCK DIAGRAM

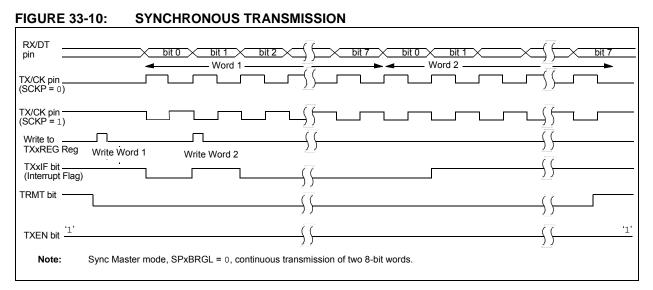
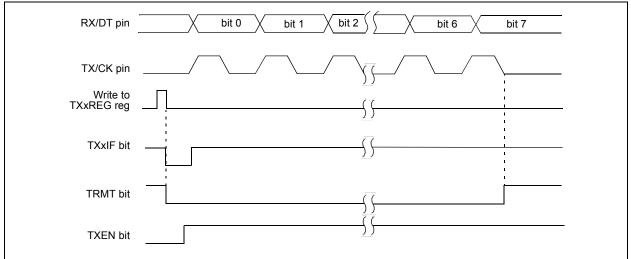
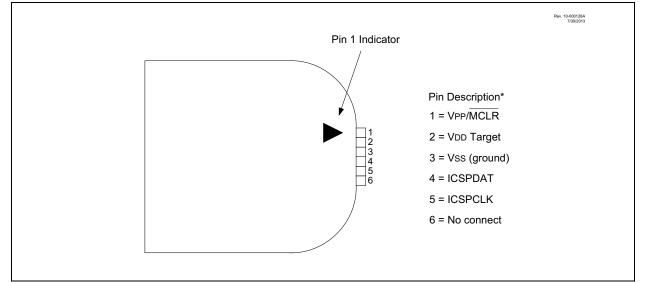
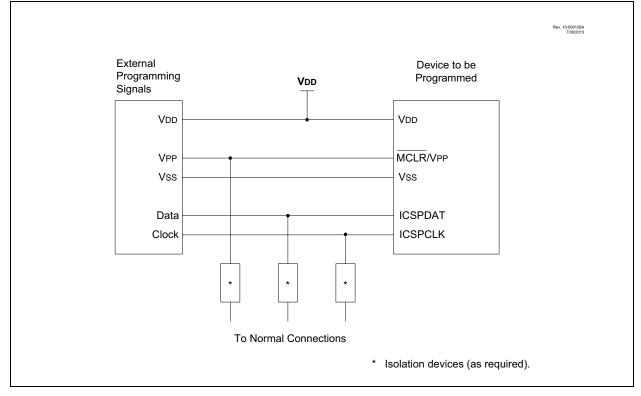



FIGURE 33-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

33.4.1.5 Synchronous Master Reception


Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCxSTA register) or the Continuous Receive Enable bit (CREN of the RCxSTA register).


When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence. To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RXxIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCxREG. The RXxIF bit remains set as long as there are unread characters in the receive FIFO.

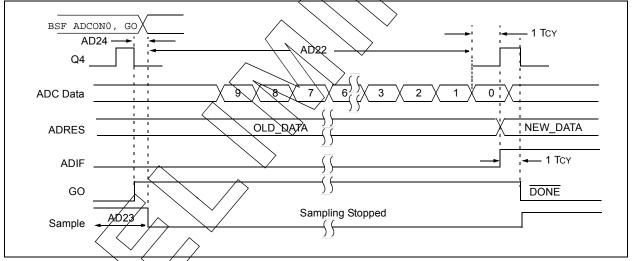
Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

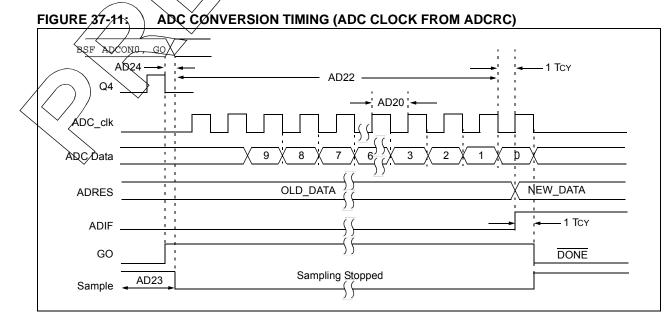
FIGURE 35-2: PICkit[™] PROGRAMMER STYLE CONNECTOR INTERFACE

TABLE 37-4: I/O PORTS										
Standard Param. No.	Sym.	ng Conditions (unless otherwis Characteristic	se stated) Min.	Тур†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
		I/O PORT:								
D300		with TTL buffer	_	_	0.8	V	4.5V ≤ VDD ≤ 5.5V			
D301			_	_	0.15 VDD	V	1.8V ≤ Vop ≤ 4.5V			
D302		with Schmitt Trigger buffer	_	_	0.2 VDD	V	2.0V ≤ VpD ≤ 5.5V			
D303		with I ² C levels	_	_	0.3 VDQ	V				
0304		with SMBus levels	_	_	0.8	V	$2.7V \le VDD \le 5.5V$			
D305		MCLR	_	_	0.2 Vdd	\setminus \checkmark				
	VIH	Input High Voltage								
		I/O PORT:			//					
0320		with TTL buffer	2.0	1	$- \overline{-}$	$\setminus \vee^{\vee}$	$4.5V \leq V\text{DD} \leq 5.5V$			
0321			0.25 VDD + 0.8	<u> </u>		X	$1.8V \le V\text{DD} \le 4.5V$			
0322		with Schmitt Trigger buffer	0.8 Vdd <	$\overline{}$	$\langle \mathcal{F} \rangle$	V	$2.0V \leq V \text{DD} \leq 5.5 V$			
D323		with I ² C levels	0.7 Yap	/-/	\searrow	V				
D324		with SMBus levels	2.1		$\setminus -$	V	$2.7V \leq V\text{DD} \leq 5.5V$			
D325		MCLR	0.7 VDD		V _	V				
	lı∟	Input Leakage Current ⁽¹⁾	\sim \sim \sim	$\overline{//}$						
D340		I/O Ports		±5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C			
D341			$\langle \rangle$	±5	± 1000	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 125°C			
D342		MCLR ⁽²⁾	$\overline{}$	± 50	± 200	nA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, 85°C			
	IPUR	Weak Pull-up Current	· · · · · · · · · · · · · · · · · · ·				•			
0350			25	120	200	μA	VDD = 3.0V, VPIN = VSS			
	Vol	Output Løw Voltage								
0360		I/O ports	—	_	0.6	V	IOL = 10.0mA, VDD = 3.0V			
	Voн	Øutput High Voltage	•				•			
0370		I/O ports	Vdd - 0.7	_	_	V	ЮН = 6.0 mA, VDD = 3.0V			
D380	CIO	All I/O pins	_	5	50	pF				

† Data in "Typ) column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 Note 1: Negative current is defined as current sourced by the pin.
 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent

normal operating conditions. Higher leakage current may be measured at different input voltages.

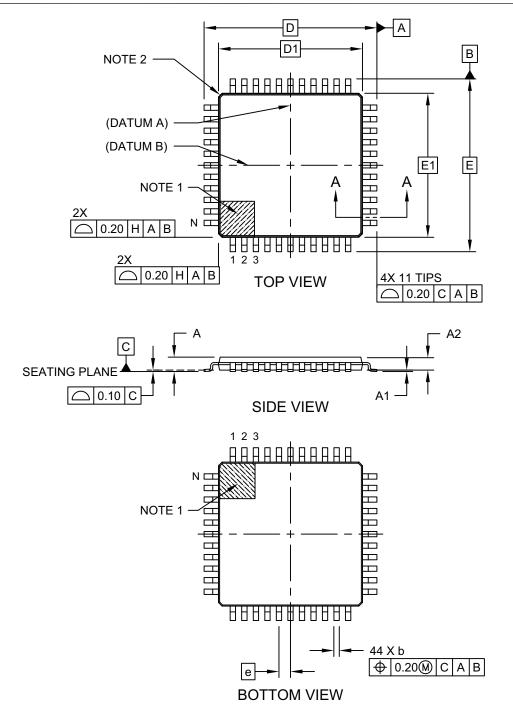

TABLE 37-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS


Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD20	Tad	ADC Clock Period	1	_	9	μs	The requirement is to set ADCCS correctly to produce this period/friequency.
AD21			1	2	6	μs	Using FRC as the ADC clock source ADOSC = 1
AD22	TCNV	Conversion Time	-	11	-	TAD	Set of GO/DONE bit to Clear of GO/DONE bit
AD23	TACQ	Acquisition Time	—	2	Ύ,	μs	
AD24	Тнср	Sample and Hold Capacitor Disconnect Time	—	-	_/	μs	Fosc-based clock source FRC-based clock source

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 37-10: ADC CONVERSION TIMING (AQC CLOCK Fosc-BASED)



© 2016 Microchip Technology Inc.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2