

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Details	
Product Status	Obsolete
Core Processor	ARM7TDMI
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	74MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	Keypad, LCD, Touchscreen
Ethernet	-
SATA	-
USB	-
Voltage - I/O	2.5V, 2.7V, 3.0V, 3.3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	Hardware ID
Package / Case	204-TFBGA
Supplier Device Package	204-TFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/cirrus-logic/ep7312-cr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 48 KBytes of on-chip SRAM
- MaverickKey[™] IDs
 - 32-bit unique ID can be used for DRM compliance 128-bit random ID
- Available in 74 and 90 MHz clock speeds
- LCD controller
 - Interfaces directly to a single-scan panel monochrome STN LCD
 - Interfaces to a single-scan panel color STN LCD with minimal external glue logic
- Full JTAG boundary scan and Embedded ICE[®] support
- Integrated Peripheral Interfaces
 - 32-bit SDRAM Interface up to 2 external banks
 - 8/32/16-bit SRAM/FLASH/ROM Interface
 - Digital Audio Interface providing glueless interface to low-power DACs, ADCs and CODECs
 - Two Synchronous Serial Interfaces (SSI1, SSI2)
 - CODEC Sound Interface
 - 8×8 Keypad Scanner

— 27 General Purpose Input/Output pins

CIRRUS LOGIC

- Dedicated LED flasher pin from the RTC
- Internal Peripherals
 - Two 16550 compatible UARTs
 - IrDA Interface
 - Two PWM Interfaces
 - Real-time Clock
 - Two general purpose 16-bit timers
 - Interrupt Controller
 - Boot ROM
- Package
 - 208-Pin LQFP
 - 256-Ball PBGA
 - 204-Ball TFBGA
- The fully static EP7312 is optimized for low power dissipation and is fabricated on a 0.25 micron CMOS process

OVERVIEW (cont.)

The EP7312 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of 2.5 V–3.3 V. The device has three basic power states: operating, idle and standby.

MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism. The EP7312 integrates an interface to enable a direct connection to many low cost, low power, high quality audio converters. In particular, high quality ADCs, DACs, or CODECs such as the Cirrus Logic CS53L32A, CS43L42, and CS42L50 are easily added to an EP73xx design via the DAI. Some of these devices feature digital bass and treble boost, digital volume control and compressor-limiter functions.

Simply by adding desired memory and peripherals to the highly integrated EP7312 completes a low-power system solution. All necessary interface logic is integrated onchip.

Table of Contents

FEATURES	1
OVERVIEW	1
FEATURES (cont)	2
OVERVIEW (cont.)	2
Description of the EP7312's Components, Functionality, and Interfaces	6
Processor Core - ARM720T	
Power Management	6
MaverickKey [™] Unique ID	6
Memory Interfaces	6
Digital Audio Capability	
Universal Asynchronous Receiver/Transmitters (UARTs)	
Digital Audio Interface (DAI)	
CODEC Interface	8
SSI2 Interface	
Synchronous Serial Interface	
LCD Controller	
64-Key Keypad Interface	
Interrupt Controller	
Real-Time Clock	
PLL and Clocking	
DC-to-DC Converter Interface (PWM)	
Timers	
General Purpose Input/Output (GPIO)	
Hardware Debug Interface	
LED Flasher	
Internal Boot ROM	
Packaging	
Pin Multiplexing	
System Design	

Contacting Cirrus Logic Support

For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at: http://www.cirrus.com/corporate/contacts/sales.cfm

IMPORTANT NOTICE

"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. "Advance" product information describes products that are in development and subject to development changes. Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information prelied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information. Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus of the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other parts of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. An export license and/or quota needs to be obtained from the competent authorities of the Chinese Government if any of the products or technologies described in this material is subject to the PRC Foreign Trade Law and is to be exported or taken out of the PRC.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDER-STOOD TO BE FULLY AT THE CUSTOMER'S RISK.

Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.

Description of the EP7312's Components, Functionality, and Interfaces

The following sections describe the EP7312 in more detail.

Processor Core - ARM720T

The EP7312 incorporates an ARM 32-bit RISC micro controller that controls a wide range of on-chip peripherals. The processor utilizes a three-stage pipeline consisting of fetch, decode and execute stages. Key features include:

- ARM (32-bit) and Thumb (16-bit compressed) instruction sets
- Enhanced MMU for Microsoft Windows CE and other operating systems
- 8 KB of 4-way set-associative cache.
- Translation Look Aside Buffers with 64 Translated Entries

Power Management

The EP7312 is designed for ultra-low-power operation. Its core operates at only 2.5 V, while its I/O has an operation range of 2.5 V–3.3 V. The device has three basic power states:

- Operating This state is the full performance state. All the clocks and peripheral logic are enabled.
- Idle This state is the same as the Operating State, except the CPU clock is halted while waiting for an event such as a key press.
- Standby This state is equivalent to the computer being switched off (no display), and the main oscillator shut down. An event such as a key press can wake-up the processor.

Table 1 shows the power management pin assignments.

Table 1.	Power	Management	Pin	Assignments
----------	-------	------------	-----	-------------

Pin Mnemonic	I/O	Pin Description
BATOK	I	Battery ok input
nEXTPWR	I	External power supply sense input
nPWRFL	I	Power fail sense input
nBATCHG	I	Battery changed sense input

MaverickKey[™] Unique ID

MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism.

Both a specific 32-bit ID as well as a 128-bit random ID is programmed into the EP7312 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP7312 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today's Internet appliances.

Memory Interfaces

There are two main external memory interfaces. The first one is the ROM/SRAM/FLASH-style interface that has programmable wait-state timings and includes burstmode capability, with six chip selects decoding six 256 MB sections of addressable space. For maximum flexibility, each bank can be specified to be 8-, 16-, or 32bits wide. This allows the use of 8-bit-wide boot ROM options to minimize overall system cost. The on-chip boot ROM can be used in product manufacturing to serially download system code into system FLASH To further minimize system memory memory. requirements and cost, the ARM Thumb instruction set is supported, providing for the use of high-speed 32-bit operations in 16-bit op-codes and yielding industryleading code density. shows the Static Memory Interface pin assignments.

Pin Mnemonic		I/O	Pin Description
nCS[5:0]		0	Chip select out
A[27:0]		0	Address output
D[31:0]		I/O	Data I/O
nMOE/nSDCAS	(Note)	0	ROM expansion OP enable
nMWE/nSDWE	(Note)	0	ROM expansion write enable
HALFWORD		0	Halfword access select output
WORD		0	Word access select output
WRITE/nSDRAS	(Note)	0	Transfer direction

Note: Pins are multiplexed. See Table 19 on page 11 for more information.

Pin Multiplexing

Table 18 shows the pin multiplexing of the DAI, SSI2 and the CODEC. The selection between SSI2 and the CODEC is controlled by the state of the SERSEL bit in SYSCON2. The choice between the SSI2, CODEC, and the DAI is controlled by the DAISEL bit in SYSCON3 (see the *EP7312 User's Manual* for more information).

Table 18. DAI/SSI2/CODEC	Pin	Multiplexing
--------------------------	-----	--------------

Pin Mnemonic	I/O	DAI	SSI2	CODEC
SSICLK	I/O	SCLK	SSICLK	PCMCLK
SSITXDA	0	SDOUT	SSITXDA	PCMOUT
SSIRXDA	Ι	SDIN	SSIRXDA	PCMIN
SSITXFR	I/O	LRCK	SSITXFR	PCMSYNC
SSIRXFR	I	MCLKIN	SSIRXFR	p/u
BUZ	0	MCLKOUT		

Table 19 shows the pins that have been multiplexed in the EP7312.

Table	19.	Pin	Multiplexing
-------	-----	-----	--------------

Signal	Block	Signal	Block
nMOE	Static Memory	nSDCAS	SDRAM
nMWE	Static Memory	nSDWE	SDRAM
WRITE	Static Memory	nSDRAS	SDRAM
A[27:15]	Static Memory	DRA[0:12]	SDRAM
A[14:13]	Static Memory	DRA[13:14]	SDRAM
PD[7:6]	GPIO	SDQM[1:0]	SDRAM
RUN	System Configuration	CLKEN	System Configuration
nMEDCHG	Interrupt Controller	nBROM	Boot ROM select
PD[0]	GPIO	LEDFLSH	LED Flasher
PE[1:0]	GPIO	BOOTSEL[1:0]	System Configuration
PE[2]	GPIO	CLKSEL	System Configuration

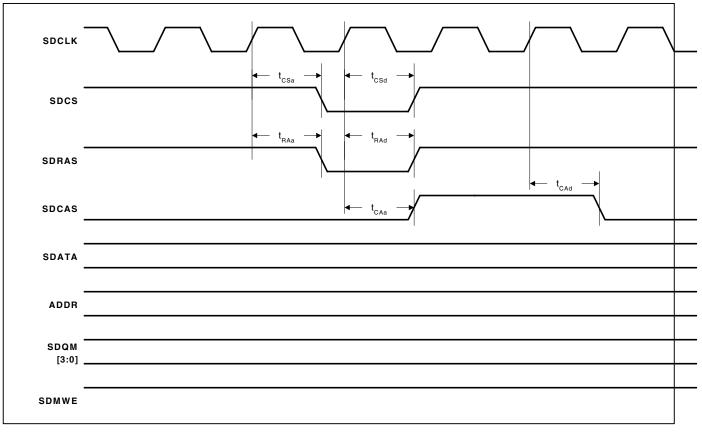
EP7312 High-Performance, Low-Power System on Chip

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
COUT	Output capacitance	8	-	10.0	pF	
CI/O	Transceiver capacitance	8	-	10.0	pF	
IDD _{STANDBY} @ 25 C	Standby current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V	-	77 41	-	μA	Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = $V_{DD} \pm 0.1 V$, VIL = GND $\pm 0.1 V$
IDD _{STANDBY} @ 70 C	Standby current consumption Core, Osc, RTC @2.5 V T/O @ 3.3 V	-	-	570 111	μΑ	Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = $V_{DD} \pm 0.1 V$, VIL = GND $\pm 0.1 V$
IDD _{STANDBY} @ 85 C	Standby current consumption Core, Osc, RTC @2.5 V ¹ I/O @ 3.3 V	-	-	1693 163	μΑ	Only nPOR, nPWRFAIL, nURESET, PE0, PE1, and RTS are driven, while all other float, VIH = $V_{DD} \pm 0.1 V$, VIL = GND $\pm 0.1 V$
IDD _{idle} at 74 MHz	Idle current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V	-	6 10	-	mA	Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = $V_{DD} \pm 0.1$ V, VIL = GND ± 0.1 V
IDD _{IDLE} at 90 MHz	Idle current consumption Core, Osc, RTC @2.5 V I/O @ 3.3 V	-	7	-	mA	Both oscillators running, CPU static, Cache enabled, LCD disabled, VIH = $V_{DD} \pm 0.1$ V, VIL = GND ± 0.1 V
VDD _{STANDBY}	Standby supply voltage	2.0	-	-	V	Minimum standby voltage for state retention, internal SRAM cache, and RTC operation only

a. Refer to the strength column in the pin assignment tables for all package types.

b. Assumes buffer has no pull-up or pull-down resistors.

c. The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.


Note: 1) Total power consumption = IDD_{CORE} x 2.5 V + IDD_{IO} x 3.3 V

2) A typical design will provide 3.3 V to the I/O supply (i.e., V_{DDIO}), and 2.5 V to the remaining logic. This is to allow the I/O to be compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).

2) Pull-up current = 50 μ A typical at V_{DD} = 3.3 V.

SDRAM Refresh Cycle

Figure 6. SDRAM Refresh Cycle Timing Measurement

Note: 1. Timings are shown with CAS latency = 2

2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM central and data signals due to uneven loading. Designers should take care to ensure that delays between SDRAM controls and data signals are approximately equal

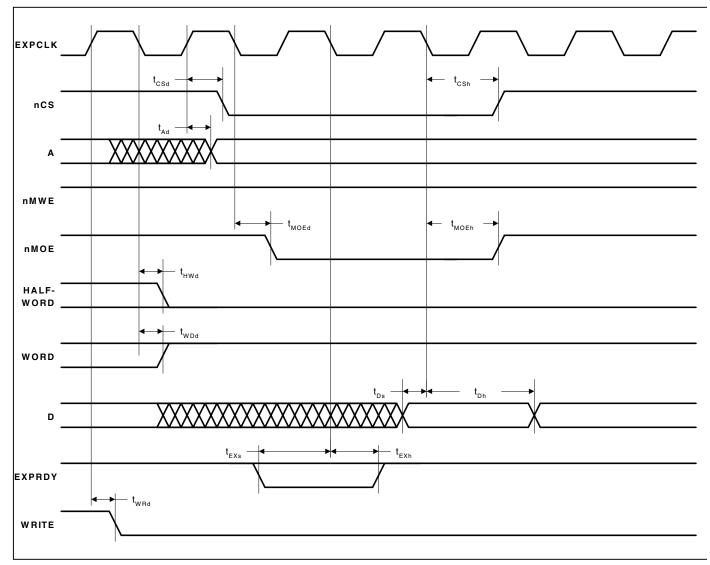

Static Memory

Figure 7 through Figure 10 define the timings associated with all phases of the Static Memory. The following table contains the values for the timings of each of the Static Memory modes.

Parameter	Symbol	Min	Тур	Мах	Unit
EXPCLK rising edge to nCS assert delay time	t _{CSd}	2	8	20	ns
EXPCLK falling edge to nCS deassert hold time	t _{CSh}	2	7	20	ns
EXPCLK rising edge to A assert delay time	t _{Ad}	4	9	16	ns
EXPCLK falling edge to A deassert hold time	t _{Ah}	3	10	19	ns
EXPCLK rising edge to nMWE assert delay time	t _{MWd}	3	6	10	ns
EXPCLK rising edge to nMWE deassert hold time	t _{MWh}	3	6	10	ns
EXPCLK falling edge to nMOE assert delay time	t _{MOEd}	3	7	10	ns
EXPCLK falling edge to nMOE deassert hold time	t _{MOEh}	2	7	10	ns
EXPCLK falling edge to HALFWORD deassert delay time	t _{HWd}	2	8	20	ns
EXPCLK falling edge to WORD assert delay time	t _{WDd}	2	8	16	ns
EXPCLK rising edge to data valid delay time	t _{Dv}	8	13	21	ns
EXPCLK falling edge to data invalid delay time	t _{Dnv}	6	15	30	ns
Data setup to EXPCLK falling edge time	t _{Ds}	-	-	1	ns
EXPCLK falling edge to data hold time	t _{Dh}	-	-	3	ns
EXPCLK rising edge to WRITE assert delay time	t _{WRd}	5	11	23	ns
EXPREADY setup to EXPCLK falling edge time	t _{EXs}	-	-	0	ns
EXPCLK falling edge to EXPREADY hold time	t _{EXh}	-	-	0	ns

Static Memory Single Read Cycle

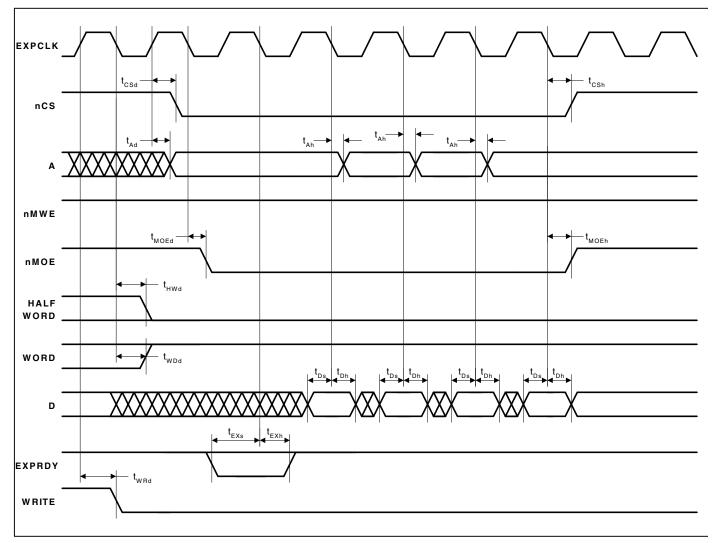


Figure 7. Static Memory Single Read Cycle Timing Measurement

Note: 1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 2. Address, Halfword, Word, and Write hold state until next cycle.

Static Memory Burst Read Cycle

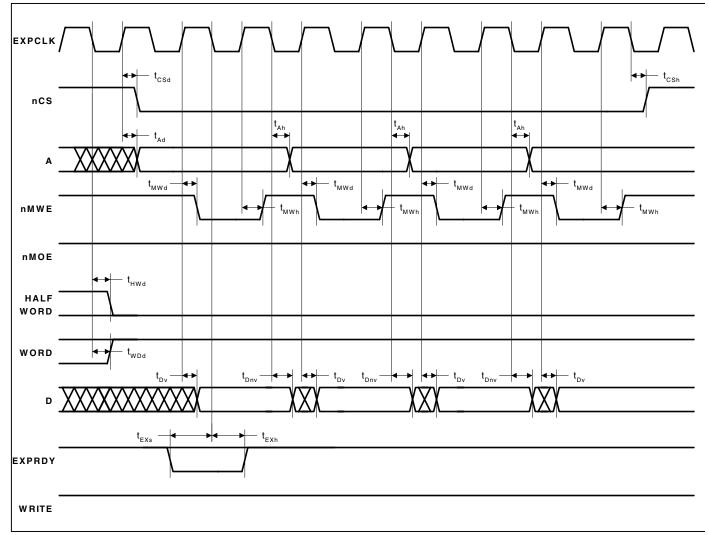


Figure 9. Static Memory Burst Read Cycle Timing Measurement

Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion cycles. This improves performance so the SQAEN bit should always be set where possible.
4. Address, Halfword, Word, and Write hold state until next cycle.

Static Memory Burst Write Cycle

Figure 10. Static Memory Burst Write Cycle Timing Measurement

Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively. 2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at 18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity. 3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with valid timing under zero wait state conditions.

4. Address, Data, Halfword, Word, and Write hold state until next cycle.

LCD Interface

Parameter	Symbol	Min	Max	Unit
CL[2] falling to CL[1] rising delay time	t _{CL1d}	- 10	25	ns
CL[1] falling to CL[2] rising delay time	t _{CL2d}	80	3,475	ns
CL[1] falling to FRM transition time	t _{FRMd}	300	10,425	ns
CL[1] falling to M transition time	t _{Md}	- 10	20	ns
CL[2] rising to DD (display data) transition time	t _{DDd}	- 10	20	ns

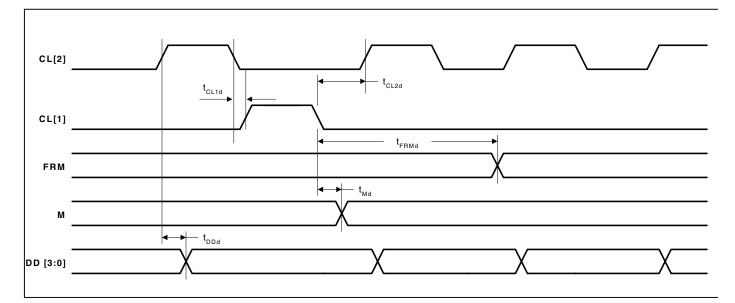


Figure 13. LCD Controller Timing Measurement

JTAG Interface

Parameter	Symbol	Min	Мах	Units
TCK clock period	t _{clk_per}	2	-	ns
TCK clock high time	t _{clk_high}	1	-	ns
TCK clock low time	t _{clk_low}	1	-	ns
JTAG port setup time	t _{JPs}	-	0	ns
JTAG port hold time	t _{JPh}	-	3	ns
JTAG port clock to output	t _{JPco}	-	10	ns
JTAG port high impedance to valid output	t _{JPzx}	-	12	ns
JTAG port valid output to high impedance	t _{JPxz}	-	19	ns

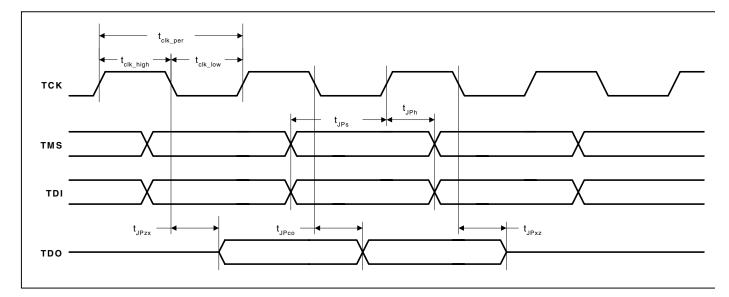
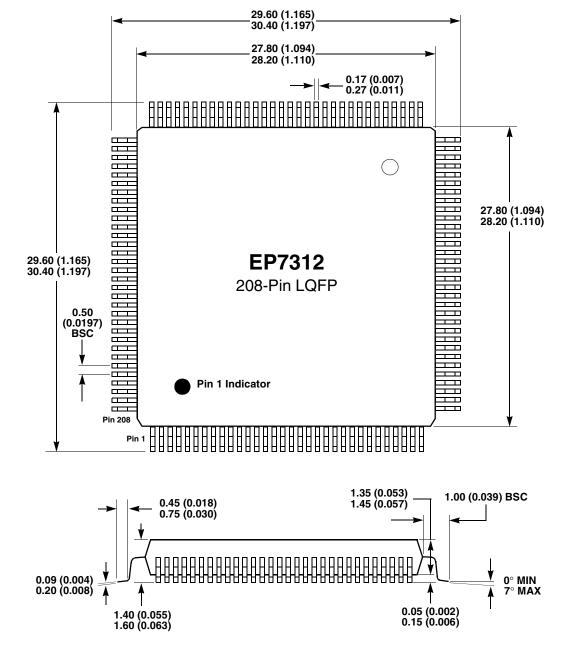



Figure 14. JTAG Timing Measurement

Packages

208-Pin LQFP Package Characteristics

Figure 15. 208-Pin LQFP Package Outline Drawing

Note: 1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.

- 2) Drawing above does not reflect exact package pin count.
- 3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.
- 4) For pin locations, please see Figure 16. For pin descriptions see the EP7312 User's Manual.

208-Pin LQFP Numeric Pin Listing

Pin No.	Signal	Strength [†]	Reset State	Туре	Description
1	nCS[5]	1	Low	0	Chip select 5
2	VDDIO		Pad Pwr Digit		Digital I/O power, 3.3 V
3	VSSIO			Pad Gnd	I/O ground
4	EXPCLK	1		I	Expansion clock input
5	WORD	1	Low	0	Word access select output
6	WRITE/nSDRAS	1	Low	о	Transfer direction / SDRAM RAS signal output
7	RUN/CLKEN	1	Low	0	Run output / clock enable output
8	EXPRDY	1		I	Expansion port ready input
9	TXD[2]	1	High	0	UART 2 transmit data output
10	RXD[2]			I	UART 2 receive data input
11	TDI	with p/u*		1	JTAG data input
12	VSSIO			Pad Gnd	I/O ground
13	PB[7]	1	Input [‡]	I/O	GPIO port B
14	PB[6]	1	Input [‡]	I/O	GPIO port B
15	PB[5]	1	Input [‡]	I/O	GPIO port B
16	PB[4]	1	Input [‡]	I/O	GPIO port B
17	PB[3]	1	Input [‡]	I/O	GPIO port B
18	PB[2]	1	Input [‡]	I/O	GPIO port B
19	PB[1]	1	Input [‡]	I/O	GPIO port B
20	PB[0]	1	Input [‡]	I/O	GPIO port B
21	VDDIO			Pad Pwr	Digital I/O power, 3.3 V
22	TDO	1	Input [‡]	0	JTAG data out
23	PA[7]	1	Input [‡]	I/O	GPIO port A
24	PA[6]	1	Input [‡]	I/O	GPIO port A
25	PA[5]	1	Input [‡]	I/O	GPIO port A
26	PA[4]	1	Input [‡]	I/O	GPIO port A
27	PA[3]	1	Input [‡]	I/O	GPIO port A
28	PA[2]	1	Input [‡]	I/O	GPIO port A
29	PA[1]	1	Input [‡]	I/O	GPIO port A
30	PA[0]	1	Input [‡]	I/O	GPIO port A
31	LEDDRV	1	Low	0	IR LED drive
32	TXD[1]	1	High	0	UART 1 transmit data out
33	VSSIO	1	High	Pad Gnd	I/O ground
34	PHDIN			I	Photodiode input
35	CTS			I	UART 1 clear to send input
36	RXD[1]			I	UART 1 receive data input
37	DCD			I	UART 1 data carrier detect

Table 20. 208-Pin LQFP Numeric Pin Listing (Continued)

Pin No.	Signal	Strength [†]	Reset State	Туре	Description
206	nCS[2]	1	High	0	Chip select 2
207	nCS[3]	1	High	0	Chip select 3
208	nCS[4]	1	High	0	Chip select 4

*With p/u" means with internal pull-up of 100 KOhms on the pin.

[†] Strength 1 = 4 ma

Strength 2 = 12 ma

[‡]Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.

	Iable 22. 256-Ball PBGA Ball Listing (Continued)						
Ball Location	Name	Strength ⁺	Reset State	Туре	Description		
C13	VSSIO			Pad ground	I/O ground		
C14	VSSIO			Pad ground	I/O ground		
C15	nPOR	Schmitt		I	Power-on reset input		
C16	nEXTPWR			I	External power supply sense input		
D1	WRITE/nSDRAS	1	Low	0	Transfer direction / SDRAM RAS signal output		
D2	EXPRDY	1		I	Expansion port ready input		
D3	VSSIO			Pad ground	I/O ground		
D4	VDDIO			Pad power	Digital I/O power, 3.3V		
D5	nCS[2]	1	High	0	Chip select 2		
D6	nMWE/nSDWE	1	High	0	ROM, expansion write enable/ SDRAM write enable control signal		
D7	nSDCS[0]	1	High	0	SDRAM chip select 2		
D8	CL[2]	1	Low	0	LCD pixel clock out		
D9	VSSRTC			Core ground	Real time clock ground		
D10	D[4]	1	Low	I/O	Data I/O		
D11	nPWRFL			I	Power fail sense input		
D12	MOSCIN			I	Main oscillator input		
D13	VDDIO			Pad power	Digital I/O power, 3.3V		
D14	VSSIO			Pad ground	I/O ground		
D15	D[7]	1	Low	I/O	Data I/O		
D16	D[8]	1	Low	I/O	Data I/O		
E1	RXD[2]			I	UART 2 receive data input		
E2	PB[7]	1	Input [‡]	I	GPIO port B		
E3	TDI	with p/u*		I	JTAG data input		
E4	WORD	1	Low	0	Word access select output		
E5	VSSIO			Pad ground	I/O ground		
E6	nCS[0]	1	High	0	Chip select 0		
E7	SDQM[2]	2	Low	0	SDRAM byte lane mask		
E8	FRM	1	Low	0	LCD frame synchronization pulse		
E9	A[0]	2	Low	0	System byte address		
E10	D[5]	1	Low	I/O	Data I/O		
E11	VSSOSC			Oscillator ground	PLL ground		
E12	VSSIO			Pad ground	I/O ground		
E13	nMEDCHG/nBROM			I	Media change interrupt input / internal ROM boot enable		
E14	VDDIO			Pad power	Digital I/O power, 3.3V		
E15	D[9]	1	Low	I/O	Data I/O		
E16	D[10]	1	Low	I/O	Data I/O		
F1	PB[5]	1	Input [‡]	I	GPIO port B		
F2	PB[3]	1	Input [‡]	I	GPIO port B		
F3	VSSIO			Pad ground	I/O ground		
F4	TXD[2]	1	High	0	UART 2 transmit data output		
F5	RUN/CLKEN	1	Low	0	Run output / clock enable output		
F6	VSSIO			Pad ground	I/O ground		
F7	SDCKE	2	Low	0	SDRAM clock enable output		
F8	DD[3]	1	Low	0	LCD serial display data		
F9	A[1]	2	Low	0	System byte address		

Table 22. 256-Ball PBGA Ball Listing (Continued)

Table 22. 256-Ball PBGA Ball Listing (Continued)

Ball Location	Name	† Strength	Reset State	Туре	Description	
F10	D[6]	1	Low	I/O	Data I/O	
F11	VSSRTC			RTC ground	Real time clock ground	
F12	BATOK			I	Battery OK input	
F13	nBATCHG			I	Battery changed sense input	
F14	VSSIO			Pad ground	I/O ground	
F15	D[11]	1	Low	I/O	Data I/O	
F16	VDDIO			Pad power	Digital I/O power, 3.3V	
G1	PB[1]	1	Input [‡]	I	GPIO port B	
G2	VDDIO			Pad power	Digital I/O power, 3.3V	
G3	TDO	1	Input [‡]	0	JTAG data out	
G4	PB[4]	1	Input [‡]	I	GPIO port B	
G5	PB[6]	1	Input [‡]	I	GPIO port B	
G6	VSSCore			Core ground	Core ground	
G7	VSSRTC			RTC ground	Real time clock ground	
G8	DD[0]	1	Low	0	LCD serial display data	
G9	D[3]	1	Low	I/O	Data I/O	
G10	VSSRTC			RTC ground	Real time clock ground	
G11	A[7]	1	Low	0	System byte address	
G12	A[8]	1	Low	0	System byte address	
G13	A[9]	1	Low	0	System byte address	
G14	VSSIO			Pad ground	I/O ground	
G15	D[12]	1	Low	I/O	Data I/O	
G16	D[13]	1	Low	I/O	Data I/O	
H1	PA[7]	1	Input [‡]	I/O	GPIO port A	
H2	PA[5]	1	Input [‡]	I/O	GPIO port A	
H3	VSSIO			Pad ground	I/O ground	
H4	PA[4]	1	Input [‡]	I/O	GPIO port A	
H5	PA[6]	1	Input [‡]	I/O	GPIO port A	
H6	PB[0]	1	Input [‡]	I/O	GPIO port B	
H7	PB[2]	1	Input [‡]	I/O	GPIO port B	
H8	VSSRTC			RTC ground	Real time clock ground	
H9	VSSRTC			RTC ground	Real time clock ground	
H10	A[10]	1	Low	0	System byte address	
H11	A[11]	1	Low	0	System byte address	
H12	A[12]	1	Low	0	System byte address	
H13	A[13]/DRA[14]	1	Low	0	System byte address / SDRAM address	
H14	VSSIO			Pad ground	I/O ground	
H15	D[14]	1	Low	I/O	Data I/O	
H16	D[15]	1	Low	I/O	Data I/O	
J1	PA[3]	1	Input [‡]	I/O	GPIO port A	
J2	PA[1]	1	Input [‡]	I/O	GPIO port A	
J3	VSSIO			Pad ground	I/O ground	
J4	PA[2]	1	Input [‡]	I/O	GPIO port A	

Table 22. 256-Ball PBGA Ball Listing (Continued)

Ball Location	Name	Strength	Reset State	Туре	Description	
M4	PE[0]/BOOTSEL[0]	1	Input‡	I	GPIO port E / Boot mode select	
M5	TMS	with p/u*		I	JTAG mode select	
M6	VDDIO			Pad power	Digital I/O power, 3.3V	
M7	SSITXFR	1	Low	I/O	DAI/CODEC/SSI2 frame sync	
M8	DRIVE[1]	2	High / Low	I/O	PWM drive output	
M9	FB[0]			I	PWM feedback input	
M10	COL[0]	1	High	0	Keyboard scanner column drive	
M11	D[27]	1	Low	I/O	Data I/O	
M12	VSSIO			Pad ground	I/O ground	
M13	A[23]/DRA[4]	1	Low	0	System byte address / SDRAM address	
M14	VDDIO			Pad power	Digital I/O power, 3.3V	
M15	A[20]/DRA[7]	1	Low	0	System byte address / SDRAM address	
M16	D[21]	1	Low	I/O	Data I/O	
N1	nEXTFIQ			I	External fast interrupt input	
N2	PE[1]/BOOTSEL[1]	1	Input‡	I/O	GPIO port E / boot mode select	
N3	VSSIO			Pad ground	I/O ground	
N4	VDDIO			Pad power	Digital I/O power, 3.3V	
N5	PD[5]	1	Low	I/O	GPIO port D	
N6	PD[2]	1	Low	I/O	GPIO port D	
N7	SSIRXDA			I/O	DAI/CODEC/SSI2 serial data input	
N8	ADCCLK	1	Low	0	SSI1 ADC serial clock	
N9	SMPCLK	1	Low	0	SSI1 ADC sample clock	
N10	COL[2]	1	High	0	Keyboard scanner column drive	
N11	D[29]	1	Low	I/O	Data I/O	
N12	D[26]	1	Low	I/O	Data I/O	
N13	HALFWORD	1	Low	0	Halfword access select output	
N14	VSSIO			Pad ground	I/O ground	
N15	D[22]	1	Low	I/O	Data I/O	
N16	D[23]	1	Low	I/O	Data I/O	
P1	VSSRTC			RTC ground	Real time clock ground	
P2	RTCOUT			0	Real time clock oscillator output	
P3	VSSIO			Pad ground	I/O ground	
P4	VSSIO			Pad ground	I/O ground	
P5	VDDIO			Pad power	Digital I/O power, 3.3V	
P6	VSSIO			Pad ground	I/O ground	
P7	VSSIO			Pad ground	I/O ground	
P8	VDDIO			Pad power	Digital I/O power, 3.3V	
P9	VSSIO			Pad ground	I/O ground	
P10	VDDIO			Pad power	Digital I/O power, 3.3V	
P11	VSSIO			Pad ground	I/O ground	
P12	VSSIO			Pad ground	I/O ground	
P13	VDDIO			Pad power	Digital I/O power	
P14	VSSIO			Pad ground	I/O ground	
P15	D[24]	1	Low	I/O	Data I/O	
P16	VDDIO			Pad power	Digital I/O power, 3.3V	
R1	RTCIN			I/O	Real time clock oscillator input	
R2	VDDIO			Pad power	Digital I/O power, 3.3V	

LQFP Pin No.	TFBGA Ball	PBGA Ball	Signal	Туре	Position
110	U20	M13	A[23]/DRA[4]	0	194
111	T19	N16	D[23]	I/O	196
112	T20	L12	A[22]/DRA[5]	0	199
113	R19	N15	D[22]	I/O	201
114	R20	L13	A[21]/DRA[6]	0	204
115	T18	M16	D[21]	I/O	206
117	P19	M15	A[20]/DRA[7]	0	209
118	P20	K11	D[20]	I/O	211
119	R18	L16	A[19]/DRA[8]	0	214
120	N19	K12	D[19]	I/O	216
121	N20	L15	A[18]/DRA[9]	0	219
122	P18	K13	D[18]	I/O	221
126	M19	J10	A[17]/DRA[10]	0	224
127	N18	J16	D[17]	I/O	226
128	L20	J11	A[16]/DRA[11]	0	229
129	L19	J15	D[16]	I/O	231
130	M18	J12	A[15]/DRA[12]	0	234
131	K20	H16	D[15]	I/O	236
132	K19	J13	A[14]/DRA[13]	0	239
133	K18	H15	D[14]	I/O	241
134	J20	H13	A[13]/DRA[14]	0	244
135	J19	G16	D[13]	I/O	246
136	H20	H12	A[12]	0	249
137	H19	G15	D[12]	I/O	251
138	J18	H11	A[11]	0	254
141	G20	F15	D[11]	I/O	256
142	H18	H10	A[10]	0	259
143	F20	E16	D[10]	I/O	261
144	G19	G13	A[9]	0	264
145	E20	E15	D[9]	I/O	266
146	F19	G12	A[8]	0	269
147	G18	D16	D[8]	I/O	271
148	D20	G11	A[7]	0	274
150	F18	D15	D[7]	I/O	276
151	D19	F13	nBATCHG	1	279
152	E19	C16	nEXTPWR		280
153	C19	F12	BATOK		281
154	C20	C15	nPOR		282

	Table 23. JTAG Boundary Scan Signar Ordering (Continued)					
LQFP Pin No.	TFBGA Ball	PBGA Ball	Signal	Туре	Position	
155	E18	E13	nMEDCHG/nBROM	I	283	
156	B20	B16	nURESET	I	284	
161	B16	B14	WAKEUP	I	285	
162	A16	D11	nPWRFL	I	286	
163	C15	A13	A[6]	0	287	
164	B15	F10	D[6]	I/O	289	
165	A15	B13	A[5]	0	292	
166	C14	E10	D[5]	I/O	294	
169	B14	B12	A[4]	0	297	
170	A14	D10	D[4]	I/O	299	
171	C13	A11	A[3]	0	302	
172	B13	G9	D[3]	I/O	304	
173	A13	B11	A[2]	0	307	
175	C12	A10	D[2]	I/O	309	
176	B12	F9	A[1]	0	312	
177	A12	B10	D[1]	I/O	314	
178	C11	E9	A[0]	0	317	
179	B11	A9	D[0]	I/O	319	
184	B10	D8	CL2	0	322	
185	A10	B8	CL1	0	324	
186	A9	E8	FRM	0	326	
187	B9	A7	М	0	328	
188	C9	F8	DD[3]	0	330	
189	A8	B7	DD[2]	0	333	
191	B8	A6	DD[1]	0	336	
192	C8	G8	DD[0]	0	339	
193	A7	B6	nSDCS[1]	0	342	
194	B7	D7	nSDCS[0]	0	344	
195	C7	A5	SDQM[3]	I/O	346	
196	A6	E7	SDQM[2]	I/O	349	
199	B6	F7	SDCKE	I/O	352	
200	C6	A4	SDCLK	I/O	355	
201	A5	D6	nMWE/nSDWE	0	358	
202	B5	B4	nMOE/nSDCAS	0	360	
204	C5	E6	nCS[0]	0	362	
205	A4	A3	nCS[1]	0	364	
	1	1		1	1	

Table 23. JTAG Boundary Scan Sig	nal Ordering (Continued)
Tuble 201 e frie Beandary eean eig	,nai oraoning (oonanaoa)