E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g30f128-qfn64t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Energy Friendly Microcontrollers

1.1 Typical Applications

The EFM32G Gecko is the ideal choice for demanding 8-, 16-, and 32-bit energy sensitive applications. These devices are developed to minimize the energy consumption by lowering both the power and the active time, over all phases of MCU operation. This unique combination of ultra low energy consumption and the performance of the 32-bit ARM Cortex-M3 processor, help designers get more out of the available energy in a variety of applications.

Ultra low energy EFM32G microcontrollers are perfect for:

- · Gas metering
- Energy metering
- Water metering
- Smart metering
- Alarm and security systems
- Health and fitness applications
- Industrial and home automation

1.2 EFM32G Development

Because EFM32G use the Cortex-M3 CPU, embedded designers benefit from the largest development ecosystem in the industry, the ARM ecosystem. The development suite spans the whole design process and includes powerful debug tools, and some of the world's top brand compilers. Libraries with documentation and user examples shorten time from idea to market.

The range of EFM32G devices ensure easy migration and feature upgrade possibilities.

Reserved

Registers and bit fields marked with *reserved* are reserved for future use. These should be written to 0 unless otherwise stated in the Register Description. Reserved bits might be read as 1 in future devices.

Reset Value

The reset value denotes the value after reset.

Registers denoted with X have an unknown reset value and need to be initialized before use. Note that, before these registers are initialized, read-modify-write operations might result in undefined register values.

Pin Connections

Pin connections are given as a module prefix followed by a short pin name:

USn_TX (USARTn TX pin)

The pin locations referenced in this document are given in the device-specific datasheet.

2.2 Related Documentation

Further documentation on the EFM32G family and the ARM Cortex-M3 can be found at the Silicon Laboratories and ARM web pages:

www.silabs.com

www.arm.com

- 3x 16-bit Timer/Counter
 - 3 Compare/Capture/PWM channels
 - Dead-Time Insertion on TIMER0
- 16-bit Low Energy Timer
- 24-bit Real-Time Counter
- 3x 8-bit Pulse Counter
 - Asynchronous pulse counting/quadrature decoding
- Watchdog Timer with dedicated RC oscillator @ 50 nA
- Ultra low power precision analog peripherals
 - 12-bit 1 Msamples/s Analog to Digital Converter
 - 8 input channels and on-chip temperature sensor
 - Single ended or differential operation
 - Conversion tailgating for predictable latency
 - 12-bit 500 ksamples/s Digital to Analog Converter
 - 2 single ended channels/1 differential channel
 - 2× Analog Comparator
 - Programmable speed/current
 - Capacitive sensing with up to 8 inputs
 - Supply Voltage Comparator
- Ultra efficient Power-on Reset and Brown-Out Detector
- 2-pin Serial Wire Debug interface
 - 1-pin Serial Wire Viewer
- Temperature range -40 85°C
- Single power supply 1.98 3.8 V
- Packages
 - QFN32
 - QFN64
 - TQFP48
 - TQFP64
 - LQFP100
 - LFBGA112

3.3 Block Diagram

Figure 3.1 (p. 7) shows the block diagram of EFM32G. The color indicates peripheral availability in the different energy modes, described in Section 3.4 (p. 7).

EFM[®]32

Bit	Name	Description
		b1000Arbitrates after 256 DMA transfers.b1001Arbitrates after 512 DMA transfers.b1010 - b1111Arbitrates after 1024 DMA transfers. This means that no arbitration occurs during the DMA transfer because the maximum transfer size is 1024.
[13:4]	n_minus_1	Prior to the DMA cycle commencing, these bits represent the total number of DMA transfers that the DMA cycle contains. You must set these bits according to the size of DMA cycle that you require.
		The 10-bit value indicates the number of DMA transfers, minus one. The possible values are:
		b00000000 = 1 DMA transfer
		b00000001 = 2 DMA transfers
		b00000010 = 3 DMA transfers
		b00000011 = 4 DMA transfers
		b00000100 = 5 DMA transfers
		b11111111 = 1024 DMA transfers.
		The controller updates this field immediately prior to it entering the arbitration process. This enables the controller to store the number of outstanding DMA transfers that are necessary to complete the DMA cycle.
[3]	next_useburst	Controls if the chnl_useburst_set [C] bit is set to a 1, when the controller is performing a peripheral scatter-gather and is completing a DMA cycle that uses the alternate data structure.
		Note Immediately prior to completion of the DMA cycle that the alternate data structure specifies, the controller sets the chnl_useburst_set [C] bit to 0 if the number of remaining transfers is less than 2 ^R . The setting of the next_useburst bit controls if the controller performs an additional modification of the chnl_useburst_set [C] bit.
		In peripheral scatter-gather DMA cycle then after the DMA cycle that uses the alternate data structure completes, either:
		0 = the controller does not change the value of the chnl_useburst_set [C] bit. If the chnl_useburst_set [C] bit is 0 then for all the remaining DMA cycles in the peripheral scatter-gather transaction, the controller responds to requests on dma_req[] and dma_sreq[], when it performs a DMA cycle that uses an alternate data structure.
		1 = the controller sets the chnl_useburst_set [C] bit to a 1. Therefore, for the remaining DMA cycles in the peripheral scatter-gather transaction, the controller only responds to requests on dma_req[], when it performs a DMA cycle that uses an alternate data structure.
[2:0]	cycle_ctrl	The operating mode of the DMA cycle. The modes are:
		 b000 Stop. Indicates that the data structure is invalid. b001 Basic. The controller must receive a new request, prior to it entering the arbitration process, to enable the DMA cycle to complete.
		b010 Auto-request. The controller automatically inserts a request for the appropriate channel during the arbitration process. This means that the initial request is sufficient to enable the DMA cycle to complete.
		b011 Ping-pong. The controller performs a DMA cycle using one of the data structures. After the DMA cycle completes, it performs a DMA cycle using the other data structure. After the DMA cycle completes and provided that the host processor has updated the original data structure, it performs a DMA cycle using the original data structure. The controller continues to perform DMA cycles until it either reads an invalid data structure or the host processor changes the cycle_ctrl bits to b001 or b010. See Section 8.4.2.3.4 (p. 47).
		b100 Memory scatter/gather. See Section 8.4.2.3.5 (p. 49).
		When the controller operates in memory scatter-gather mode, you must only use this value in the primary data structure.b101 Memory scatter/gather. See Section 8.4.2.3.5 (p. 49).
		When the controller operates in memory scatter-gather mode, you must only use this value in the alternate data structure. b110 Peripheral scatter/gather. See Section 8.4.2.3.6 (p. 51)

Bit	Name	R	eset A	ccess	Description
31:4	Reserved	To	o ensure compatibi	lity with fu	iture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0	HFCORECLKDIV	0x	0 R\	W	HFCORECLK Divider
	Specifies the cloc	k divider for H	IFCORECLK.		
	Value	Mode		Des	scription
	0	HFCLK		HFG	CORECLK = HFCLK.
	1	HFCLK2		HFC	CORECLK = HFCLK/2.
	2	HFCLK4		HFG	CORECLK = HFCLK/4.
	3	HFCLK8		HFG	CORECLK = HFCLK/8.
	4	HFCLK16		HFG	CORECLK = HFCLK/16.
	5	HFCLK32		HFC	CORECLK = HFCLK/32.
	6	HFCLK64		HFG	CORECLK = HFCLK/64.
	7	HFCLK128		HFG	CORECLK = HFCLK/128.
	8	HFCLK256		HFG	CORECLK = HFCLK/256.
	9	HFCLK512		HFG	CORECLK = HFCLK/512.

11.5.3 CMU_HFPERCLKDIV - High Frequency Peripheral Clock Division Register

Offset															Bi	it Po	ositi	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	e	2	-	0
Reset																								-								
Access																								RW						///0		
Name	-																							HFPERCLKEN								

Bit	Name	Reset	Acces	ss Description
31:9	Reserved	To ensure	e compatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
8	HFPERCLKEN	1	RW	HFPERCLK Enable
	Set to enable the	HFPERCLK.		
7:4	Reserved	To ensure	e compatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0	HFPERCLKDIV	0x0	RW	HFPERCLK Divider
	Specifies the cloc	k divider for the HFP	ERCLK.	
	Value	Mode		Description
	0	HFCLK		HFPERCLK = HFCLK.
	1	HFCLK2		HFPERCLK = HFCLK/2.
	2	HFCLK4		HFPERCLK = HFCLK/4.
	3	HFCLK8		HFPERCLK = HFCLK/8.
	4	HFCLK16		HFPERCLK = HFCLK/16.
	5	HFCLK32		HFPERCLK = HFCLK/32.
	6	HFCLK64		HFPERCLK = HFCLK/64.
	7	HFCLK128		HFPERCLK = HFCLK/128.
	8	HFCLK256		HFPERCLK = HFCLK/256.
	9	HFCLK512		HFPERCLK = HFCLK/512.

11.5.22 CMU_LFBCLKEN0 - Low Frequency B Clock Enable Register 0 (Async Reg)

Offset															Bi	t Po	siti	on														
0.000				~		6	10	-	~					~		10	10	-		01												
0x060	3	е Ю	56	28	27	26	26	24	53	52	5	50	5	4	17	16	15	4	100	1	7	ę	ര	ø	2	9	5	4	с	7	-	0
Reset																															0	0
Access																															RW	RW
Name																															LEUART1	LEUARTO
Bit	Na	ime						Re	set			Α		ess	;	De	scri	iptio	on													
31:2	Re	serve	ed					То	ensi	ure c	omp	oatib	ility	with	n futu	ire d	evice	es, a	lway	/S N	rite	bits i	to 0.	Mor	e inf	orm	atio	n in l	Sect	ion 2	2.1 (p	. 3)
1	LE	UAR	T1					0				R	W			Lo	v En	nerg	y UA	٩RT	1 C	loci	k En	able	•							
	Set	t to e	enabl	le th	e clo	ck f	or L	EUA	RT1																							
0	LEUART0 0 RW Low Energy UART 0 Clock Enable																															

11.5.23 CMU_LFAPRESC0 - Low Frequency A Prescaler Register 0 (Async Reg)

Offset															Bi	t Pc	siti	on														
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ი	ω	7	9	5	4	ю	2	-	0
Reset																						,		CXC CXC		ç	nxn			020		
Access																							M	Š			≷ צ			DVM		
Name																								L L L						CTG	2	

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
9:8	LCD	0x0	RW	Liquid Crystal Display Controller Prescaler

RW

Configure Liquid Crystal Display Controller prescaler

Value	Mode	Description
0	DIV16	LFACLK _{LCD} = LFACLK/16
1	DIV32	LFACLK _{LCD} = LFACLK/32
2	DIV64	LFACLK _{LCD} = LFACLK/64
3	DIV128	LFACLK _{LCD} = LFACLK/128

7:4

LETIMER0 0x0

Set to enable the clock for LEUART0.

Low Energy Timer 0 Prescaler

Configure Low Energy Timer 0 prescaler

Value	Mode	Description
0	DIV1	LFACLK _{LETIMER0} = LFACLK
1	DIV2	LFACLK _{LETIMER0} = LFACLK/2
2	DIV4	LFACLK _{LETIMER0} = LFACLK/4
3	DIV8	LFACLK _{LETIMER0} = LFACLK/8
4	DIV16	LFACLK _{LETIMER0} = LFACLK/16
5	DIV32	LFACLK _{LETIMER0} = LFACLK/32
6	DIV64	LFACLK _{LETIMER0} = LFACLK/64

13.5.2 PRS_SWLEVEL - Software Level Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	5	10	ი	8	7	6	5	4	ю	7	-	0
Reset				·				·	·	·		·			·	·	·					·	·		0	0	0	0	0	0	0	0
Access																									RW							
Name																									CH7LEVEL	CH6LEVEL	CH5LEVEL	CH4LEVEL	CH3LEVEL	CH2LEVEL	CH1LEVEL	CHOLEVEL

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7LEVEL	0	RW	Channel 7 Software Level
	See bit 0.			
6	CH6LEVEL	0	RW	Channel 6 Software Level
	See bit 0.			
5	CH5LEVEL	0	RW	Channel 5 Software Level
	See bit 0.			
4	CH4LEVEL	0	RW	Channel 4 Software Level
	See bit 0.			
3	CH3LEVEL	0	RW	Channel 3 Software Level
	See bit 0.			
2	CH2LEVEL	0	RW	Channel 2 Software Level
	See bit 0.			
1	CH1LEVEL	0	RW	Channel 1 Software Level
	See bit 0.			
0	CH0LEVEL	0	RW	Channel 0 Software Level
	The value in this reg the channel output.	ister is XOR'ed with the	e corresponding b	it in the SWPULSE register and the selected PRS input signal to generate

13.5.3 PRS_CHx_CTRL - Channel Control Register

Offset					·			·							Bi	t Po	siti	on									·					
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	ю	2	-	0
Reset	×												0	0x00																	0×0	
Access	0 0 RW Nu												RW																	RW		
Name	EDSEL													SOURCESEL																	SIGSEL	

Bit	Name	Reset	Access	Description
31:26	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
25:24	EDSEL	0x0	RW	Edge Detect Select

Select edge detection.

Value	Mode	Description
0	OFF	Signal is left as it is

multiplexed modes. Also for the non-multiplexed 8-bit address mode both the address and data fit into these 16 EBI_AD pins. If more address bits or data bits are needed, external latches can be used to support up to 24-bit addresses or 16-bit data in the multiplexed addressing modes using only the 16 EBI_AD pins.

When a read operation is requested by the Cortex-M3 or DMA via the EBI's AHB interface, the address is transferred onto the EBI_AD bus. After a specific number of cycles, the EBI_REn pin is activated and data is read from the EBI_AD bus. When a write operation is requested, the address is transferred onto the EBI_AD bus and subsequently the write data is transferred onto the EBI_AD bus as the EBI_WEn pin is activated. The detailed operation in the supported modes is presented in the following sections.

In this mode, 8-bit address and 8-bit data is supported. The address is put on the higher 8 bits of the EBI_AD lines while the data uses the lower 8 bits. This mode is set by programming the MODE field in the EBI_CTRL register to D8A8. Read and write signals in 8-bit mode are shown in Figure 14.1 (p. 137) and Figure 14.2 (p. 137) respectively.

Figure 14.1. EBI Non-multiplexed 8-bit Data, 8-bit Address Read Operation

Figure 14.2. EBI Non-multiplexed 8-bit Data, 8-bit Address Write Operation

In this mode, 16-bit address and 16-bit data is supported, but the utilization of an external latch is required. The 16-bit address and 16-bit data bits are multiplexed on the EBI_AD lines. An illustration of such a setup is shown in Figure 14.3 (p. 138). This mode is set by programming the MODE field in the EBI_CTRL register to D16A16ALE.

Note

In this mode the 16-bit address is organized in 2-byte chunks at memory addresses aligned to 2-byte offsets. Consequently, the LSB of the 16-bit address will always be 0. In order to double the address space, the 16-bit address is internally shifted one bit to the right so that

...the world's most energy friendly microcontrollers

Bit	Name	Reset	Access	Description
9:8	ADDRHOLD	0x3	RW	Address Hold Time
	Sets the number of cycles the	he address is held	after ALE is as	serted.
7:2	Reserved	To ensure compa	ntibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
1:0	ADDRSETUP	0x3	RW	Address Setup Time
	Sets the number of cycles th	ne address is driven	onto the ADD	RDAT bus before ALE is asserted. If set to 0, 1 cycle is inserted by HW.

14.5.8 EBI_RDTIMING1 - Read Timing Register 1

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	S	4	ю	7	-	0
Reset		0	0	0											520	CY O						0x3F									22	cxn
Access		RW	RV	RW											Ma							RW										2 2 2
Name		PAGEMODE	PREFETCH	HALFRE																		RDSTRB										אטסבוטר

Bit	Name	Reset	Access	Description
31	Reserved	To ensure compa	tibility with futu	ire devices, always write bits to 0. More information in Section 2.1 (p. 3)
30	PAGEMODE	0	RW	Page Mode Access Enable
	Enables or disables page m	ode reads.		
29	PREFETCH	0	RW	Prefetch Enable
	Enables or disables prefetch	hing of data from s	equential addre	ess.
28	HALFRE	0	RW	Half Cycle REn Strobe Duration Enable
	Enables or disables half cyc	cle duration of the F	REn strobe in tl	he last RDSTRB cycle.
27:18	Reserved	To ensure compa	tibility with futu	rre devices, always write bits to 0. More information in Section 2.1 (p. 3)
17:16	RDHOLD	0x3	RW	Read Hold Time
	Sets the number of cycles C	CSn is held active a	fter the REn is	deasserted. This interval is used for bus turnaround.
15:14	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
13:8	RDSTRB	0x3F	RW	Read Strobe Time
	Sets the number of cycles the	e REn is held active	e. After the spec	cified number of cycles, data is read. If set to 0, 1 cycle is inserted by HW.
7:2	Reserved	To ensure compa	tibility with futu	rre devices, always write bits to 0. More information in Section 2.1 (p. 3)
1:0	RDSETUP	0x3	RW	Read Setup Time
	Sets the number of cycles the	he address setup b	efore REn is a	sserted.

14.5.9 EBI_WRTIMING1 - Write Timing Register 1

Offset												·			Bi	t Po	siti	on					•	·	•							
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	-	0
Reset	00														2~0	CYD						0x3F									ç	UX3
Access	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														M							RW		_								2 2 2
Name			WBUFDIS	HALFWE																		WRSTRB										WKOF OT

Bit	Name	Reset	Access	Description											
31:30	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)											
29	WBUFDIS	0	RW	Write Buffer Disable											
	Enables or disables the wri	te buffer.													
28	HALFWE	0	RW	Half Cycle WEn Strobe Duration Enable											
	Enables or disables half cy	cle duration of the	WEn strobe in	the last WRSTRB cycle.											
27:18	Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. WRHOLD 0x3 RW Write Hold Time														
17:16	WRHOLD	0x3	RW	Write Hold Time											
	Sets the number of cycles	CSn is held active	after the WEn i	is deasserted.											
15:14	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)											
13:8	WRSTRB	0x3F	RW	Write Strobe Time											
	Sets the number of cycles	the WEn is held ac	tive. If set to 0,	1 cycle is inserted by HW.											
7:2	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)											
1:0	WRSETUP	0x3	RW	Write Setup Time											
	Sets the number of cycles	the address setup	before WEn is	asserted.											

14.5.10 EBI_POLARITY1 - Polarity Register 1

Offset															Bi	t Po	ositi	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	5	4	ю	2	-	0
Reset																											0	0	0	0	0	0
Access																											RW	RW	RW	RW	RW	RV
Name																											BLPOL	ARDYPOL	ALEPOL	WEPOL	REPOL	CSPOL

Bit	Name	Reset	Acces	s Description
31:6	Reserved	To ensure co	ompatibility wit	h future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	BLPOL	0	RW	BL Polarity
	Sets the polari	ty of the EBI_BLn lines.		
	Value	Mode		Description
	0	ACTIVELOW		BLn[1:0] are active low.
	1	ACTIVEHIGH		BLn[1:0] are active high.
4	ARDYPOL	0	RW	ARDY Polarity
	Sets the polari	ty of the EBI_ARDY line.		
	Value	Mode		Description
	0	ACTIVELOW		ARDY is active low.
	1	ACTIVEHIGH		ARDY is active high.
3	ALEPOL	0	RW	Address Latch Polarity
	Sets the polari	y of the EBI_ALE line.		
	Value	Mode	Ĩ	Description
	0	ACTIVELOW		ALE is active low.
	1	ACTIVEHIGH		ALE is active high.
2	WEPOL	0	RW	Write Enable Polarity
	Sets the polari	y of the EBI_WEn and EBI	_NANDWEn li	nes.

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	ECCCLEAR	0	W1	Error Correction Code Clear
	Write to 1 to clear ECCPAR	ITY.		
1	ECCSTOP	0	W1	Error Correction Code Generation Stop
	Write to 1 to stop ECC gene	eration.		
0	ECCSTART	0	W1	Error Correction Code Generation Start
	Write to 1 to start ECC gene	eration.		

14.5.22 EBI_STATUS - Status Register

Offset															Bi	t Pc	ositi	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	6	5	4	e	2	-	0
Reset																			0	0		0	0	0				0		·		0
Access																			ĸ	ĸ		ĸ	Ж	ĸ				ĸ				ĸ
Name																			TFTDDEMPTY	DDACT		TFTPIXELFULL	TFTPIXEL1EMPTY	TFTPIXELOEMPTY				ECCACT				AHBACT

Bit	Name	Reset	Access	Description
31:14	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
13	TFTDDEMPTY	0	R	EBI_TFTDD register is empty.
	Indicates that EBI_TFTDD	register is empty.		
12	DDACT	0	R	EBI Busy with Direct Drive Transactions.
	Indicates that EBI is busy w	ith Direct Drive Tra	ansactions.	
11	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	TFTPIXELFULL	0	R	EBI_TFTPIXEL0 is full.
	Indicates that EBI_TFTPIXE	EL is full.		
9	TFTPIXEL1EMPTY	0	R	EBI_TFTPIXEL1 is empty.
	Indicates that EBI_TFTPIXE	EL1 is empty.		
8	TFTPIXEL0EMPTY	0	R	EBI_TFTPIXEL0 is empty.
	Indicates that EBI_TFTPIXE	EL0 is empty.		
7:5	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
4	ECCACT	0	R	EBI ECC Generation Active.
	Indicates that EBI is genera	ting ECC.		
3:1	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	AHBACT	0	R	EBI Busy with AHB Transaction.
	Indicates that EBI is busy w	rith an AHB Transa	ction.	

I2Cn_STA	Description	I2Cn_IF	Required interaction	Response
			START	START will be sent when bus becomes idle
-	Arbitration lost	ARBLOST interrupt	None	
		nag	START	START will be sent when bus becomes idle

15.3.8 Bus States

The I2Cn_STATE register can be used to determine which state the I^2C module and the I^2C bus are in at a given time. The register consists of the STATE bit-field, which shows which state the I^2C module is at in any ongoing transmission, and a set of single-bits, which reveal the transmission mode, whether the bus is busy or idle, and whether the bus is held by this I^2C module waiting for a software response.

The possible values of the STATE field are summarized in Table 15.7 (p. 187). When this field is cleared, the I²C module is not a part of any ongoing transmission. The remaining status bits in the I2Cn_STATE register are listed in Table 15.8 (p. 187).

Mode	Value	Description
IDLE	0	No transmission is being performed by this module.
WAIT	1	Waiting for idle. Will send a start condition as soon as the bus is idle.
START	2	Start being transmitted
ADDR	3	Address being transmitted or has been received
ADDRACK	4	Address ACK/NACK being transmitted or received
DATA	5	Data being transmitted or received
DATAACK	6	Data ACK/NACK being transmitted or received

Table 15.7. I²C STATE Values

Table 15.8. I²C Transmission Status

Bit	Description
BUSY	Set whenever there is activity on the bus. Whether or not this module is responsible for the activity cannot be determined by this byte.
MASTER	Set when operating as a master. Cleared at all other times.
TRANSMITTER	Set when operating as a transmitter; either a master transmitter or a slave transmitter. Cleared at all other times
BUSHOLD	Set when the bus is held by this I ² C module because an action is required by software.
NACK	Only valid when bus is held and STATE is ADDRACK or DATAACK. In that case it is set if a NACK was received. In all other cases, the bit is cleared.

Note

I2Cn_STATE reflects the internal state of the I²C module, and therefore only held constant as long as the bus is held, i.e. as long as BUSHOLD in I2Cn_STATUS is set.

15.3.9 Slave Operation

The I²C module operates in master mode by default. To enable slave operation, i.e. to allow the device to be addressed as an I²C slave, the SLAVE bit in I2Cn_CTRL must be set. In this case the slave operates in a mixed mode, both capable of starting transmissions as a master, and being addressed as a slave. When operating in the slave mode, HFPERCLK frequency must be higher than 4.2 MHz for Standard-mode, 11 MHz for Fast-mode, and 24.4 MHz for Fast-mode Plus.

15.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	I2Cn_CTRL	RW	Control Register
0x004	I2Cn_CMD	W1	Command Register
0x008	I2Cn_STATE	R	State Register
0x00C	I2Cn_STATUS	R	Status Register
0x010	I2Cn_CLKDIV	RW	Clock Division Register
0x014	I2Cn_SADDR	RW	Slave Address Register
0x018	I2Cn_SADDRMASK	RW	Slave Address Mask Register
0x01C	I2Cn_RXDATA	R	Receive Buffer Data Register
0x020	I2Cn_RXDATAP	R	Receive Buffer Data Peek Register
0x024	I2Cn_TXDATA	w	Transmit Buffer Data Register
0x028	I2Cn_IF	R	Interrupt Flag Register
0x02C	I2Cn_IFS	W1	Interrupt Flag Set Register
0x030	I2Cn_IFC	W1	Interrupt Flag Clear Register
0x034	I2Cn_IEN	RW	Interrupt Enable Register
0x038	I2Cn_ROUTE	RW	I/O Routing Register

15.5 Register Description

15.5.1 I2Cn_CTRL - Control Register

Offset	Bit Position																															
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ი	8	7	9	5	4	e	2	-	0
Reset															0x0		0			0X0				nxn		0	0	0	0	0	0	0
Access												RW		RV			× N				א צ		RV	RV	RΝ	RΝ	RV	RV	RV			
Name															CLTO		GIBITO			BITO				CLHK		GCAMEN	ARBDIS	AUTOSN	AUTOSE	AUTOACK	SLAVE	E

18:16	CLTO	0x0	RW	Clock Low Timeout
31:19	Reserved	To ensure compa	atibility with futu	are devices, always write bits to 0. More information in Section 2.1 (p. 3)
BIT	Name	Reset	Access	Description

18:16

Use to generate a timeout when CLK has been low for the given amount of time. Wraps around and continues counting when the timeout is reached.

Value	Mode		Description
0	OFF		Timeout disabled
1	40PCC		Timeout after 40 prescaled clock cycles. In standard mode at 100 kHz, this results in a 50us timeout.
2	80PCC		Timeout after 80 prescaled clock cycles. In standard mode at 100 kHz, this results in a 100us timeout.
3	160PCC		Timeout after 160 prescaled clock cycles. In standard mode at 100 kHz, this results in a 200us timeout.
4	320PPC		Timeout after 320 prescaled clock cycles. In standard mode at 100 kHz, this results in a 400us timeout.
5	1024PPC		Timeout after 1024 prescaled clock cycles. In standard mode at 100 kHz, this results in a 1280us timeout.
GIBITO	0	RW	Go Idle on Bus Idle Timeout

15

Desired	USART	n_OVS =00	<u>.</u>	USART	n_OVS =01	
baud rate [baud/s]	USARTn_CLKDIV/256	Actual baud rate [baud/s]	Error %	USARTn_CLKDIV/256	Actual baud rate [baud/s]	Error %
600	415,75	599,88	-0,02	832,25	600,06	0,01
1200	207,25	1200,48	0,04	415,75	1199,76	-0,02
2400	103,25	2398,082	-0,08	207,25	2400,96	0,04
4800	51	4807,692	0,16	103,25	4796,163	-0,08
9600	25	9615,385	0,16	51	9615,385	0,16
14400	16,25	14492,75	0,64	33,75	14388,49	-0,08
19200	12	19230,77	0,16	25	19230,77	0,16
28800	7,75	28571,43	-0,79	16,25	28985,51	0,64
38400	5,5	38461,54	0,16	12	38461,54	0,16
57600	3,25	58823,53	2,12	7,75	57142,86	-0,79
76800	2,25	76923,08	0,16	5,5	76923,08	0,16
115200	1,25	111111,1	-3,55	3,25	117647,1	2,12
230400	0	250000	8,51	1,25	222222,2	-3,55

Table 16.7. USART Baud Rates @ 4MHz Peripheral Clock

16.3.2.3 Data Transmission

Asynchronous data transmission is initiated by writing data to the transmit buffer using one of the methods described in Section 16.3.2.3.1 (p. 212). When the transmission shift register is empty and ready for new data, a frame from the transmit buffer is loaded into the shift register, and if the transmitter is enabled, transmission begins. When the frame has been transmitted, a new frame is loaded into the shift register if available, and transmission continues. If the transmit buffer is empty, the transmitter goes to an idle state, waiting for a new frame to become available.

Transmission is enabled through the command register USARTn_CMD by setting TXEN, and disabled by setting TXDIS in the same command register. When the transmitter is disabled using TXDIS, any ongoing transmission is aborted, and any frame currently being transmitted is discarded. When disabled, the TX output goes to an idle state, which by default is a high value. Whether or not the transmitter is enabled at a given time can be read from TXENS in USARTn_STATUS.

When the USART transmitter is enabled and there is no data in the transmit shift register or transmit buffer, the TXC flag in USARTn_STATUS and the TXC interrupt flag in USARTn_IF are set, signaling that the transmitter is idle. The TXC status flag is cleared when a new frame becomes available for transmission, but the TXC interrupt flag must be cleared by software.

16.3.2.3.1 Transmit Buffer Operation

The transmit-buffer is a 2-level FIFO buffer. A frame can be loaded into the buffer by writing to USARTn_TXDATA, USARTn_TXDATAX, USARTn_TXDOUBLE or USARTn_TXDOUBLEX. Using USARTn_TXDATA allows 8 bits to be written to the buffer, while using USARTn_TXDOUBLE will write 2 frames of 8 bits to the buffer. If 9-bit frames are used, the 9th bit of the frames will in these cases be set to the value of BIT8DV in USARTn_CTRL.

To set the 9th bit directly and/or use transmission control, USARTn_TXDATAX and USARTn_TXDOUBLEX must be used. USARTn_TXDATAX allows 9 data bits to be written, as well as a set of control bits regarding the transmission of the written frame. Every frame in the buffer is stored with 9 data bits and additional transmission control bits. USARTn_TXDOUBLEX allows two

Bit	Name	Reset	Access	Description							
31:16	Reserved	To ensure compa	To ensure compatibility with future devices, always write bits to 0. More information in Se								
15	FERR	0	R	Receive Data Framing Error							
	Set if data in buffer has a fr	aming error. Can b	e the result of	a break condition.							
14	PERR	0	R	Receive Data Parity Error							
	Set if data in buffer has a pa	arity error.									
13:9	Reserved	To ensure compa	atibility with futt	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)							
8:0	RXDATA	0x000	R	RX Data							
	Use this register to access	data read from the	LEUART. Buff	er is cleared on read access.							

18.5.8 LEUARTn_RXDATA - Receive Buffer Data Register

Offset		Bit Position																														
0x01C	31	30	29	28	27	26	25	24	23	52	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	5	4	ю	2	-	0
Reset																													0X00			
Access																								_		-			ĸ			
Name																													RXDATA			

Bit	Name	Reset	Access	Description					
31:8	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)					
7:0	RXDATA	0x00	R	RX Data					
	Use this register to access data read from LEUART. Buffer is cleared on read access. Only the 8 LSB can be read								

18.5.9 LEUARTn_RXDATAXP - Receive Buffer Data Extended Peek Register

Offset	Bit P								t Po	siti	on						•															
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ი	8	7	9	5	4	ю	2	-	0
Reset																	0	0										0000				
Access								ĸ	Ж										ď	:												
Name																	FERRP	PERRP										RXDATAP				

Bit	Name	Reset	Access	Description					
31:16	Reserved	eserved To ensure compatibility with future devices, always write bits to 0. More information in Sectio							
15	FERRP	0	R	Receive Data Framing Error Peek					
	Set if data in buffer has a fra	framing error. Can be the result of a break condition.							
14	PERRP	0	R	Receive Data Parity Error Peek					
	Set if data in buffer has a parity error.								

...the world's most energy friendly microcontrollers

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	0	RISING		Rising edges detected
	1	FALLING		Falling edges detected
	2	вотн		Both edges detected
	3	NONE		No edge detection, signal is left as it is
23:22	Reserved	To ensure co	ompatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
21	FILT	0	RW	Digital Filter
	Enable digital fi	ter.		
	Value	Mode		Description
	0	DISABLE		Digital filter disabled
	1	ENABLE		Digital filter enabled
20	INSEL	0	RW	Input Selection
	Select Compare	e/Capture channel input.		
	Value	Mode		Description
	0	PIN		TIMERnCCx pin is selected
	1	PRS		PRS input (selected by PRSSEL) is selected
19	Reserved	To ensure co	ompatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
18:16	PRSSEL	0x0	RW	Compare/Capture Channel PRS Input Channel Selection
	Select PRS inpu	ut channel for Compare/Ca	opture chann	
	Value	Mode		
	0	PRSCHU		PRS Channel U selected as input
	1	PRSCH1		PRS Channel 1 selected as input
	2	PRSCH2		PRS Channel 2 selected as input
	3			PRS Channel 4 selected as input
	5	PRSCH5		PRS Channel 5 selected as input
	6	PRSCH6		PRS Channel 6 selected as input
	7	PRSCH7		PRS Channel 7 selected as input
15:14	Reserved	To ensure co	ompatibilitv w	ith future devices, always write bits to 0, More information in Section 2.1 (p. 3)
13.12	CUEOA	ΟχΟ	RW	Counter Underflow Output Action
10.12	Select output a	ction on counter underflow.		
	Value	Mode		Description
	0	NONE		No action on counter underflow
	1	TOGGLE		Togale output on counter underflow
	2	CLEAR		Clear output on counter underflow
	3	SET		Set output on counter underflow
11:10	COFOA	0x0	RW	Counter Overflow Output Action
11.10	Select output a	ction on counter overflow		
				11
	Value	Mode		Description
	0	NONE		No action on counter overflow
	1			loggle output on counter overflow
	2			Clear output on counter overflow
	3	321		
9:8	CMOA Select output ad	0x0 ction on compare match.	RW	Compare Match Output Action
	Value	Mode		Description
		NONE		No action on compare match
				Togalo autaut an compare match
		TUGGLE		

21.3.5.2 Continuous Output Generation

Example 21.2. LETIMER Continuous Output Generation

In some scenarios, it might be desired to make LETIMER generate a continuous waveform. Very simple constant waveforms can be generated without the repeat counter as shown in Figure 21.6 (p. 327), but to generate changing waveforms, using the repeat counter and buffer registers can prove advantageous.

For the example in Figure 21.10 (p. 329), the goal is to produce a pulse train consisting of 3 sequences with the following properties:

- 3 pulses with periods of 3 cycles
- 4 pulses with periods of 2 cycles
- 2 pulses with periods of 3 cycles

The first two sequences are loaded into the LETIMER before the timer is started.

LETIMERn_COMP0 is set to 2 (cycles – 1), and LETIMERn_REP0 is set to 3 for the first sequence, and the second sequence is loaded into the buffer registers, i.e. COMP1 is set to 1 and LETIMERn_REP1 is set to 4.

The LETIMER is set to trigger an interrupt when LETIMERn_REP0 is done by setting REP0 in LETIMERn_IEN. This interrupt is a good place to update the values of the buffers. Last but not least REPMODE in LETIMERn_CTRL is set to buffered mode, and the timer is started.

In the interrupt routine the buffers are updated with the values for the third sequence. If this had not been done, the timer would have stopped after the second sequence.

The final result is shown in Figure 21.10 (p. 329). The pulse output is grouped to show which sequence generated which output. Toggle output is also shown in the figure. Note that the toggle output is not aligned with the pulse outputs. **Note**

23.3.2 Response Time

EFM³2

There is a delay from when the actual input voltage changes polarity, to when the output toggles. This period is called the response time and can be altered by increasing or decreasing the bias current to the comparator through the BIASPROG, FULLBIASPROG and HALFBIAS fields in the ACMPn_CTRL register, as illustrated in Table 23.1 (p. 356) Setting the HALFBIAS bit in ACMPn_CTRL effectively halves the current. Setting a lower bias current will result in lower power consumption, but a longer response time.

If the FULLBIAS bit is set, the highest hysteresis level should be used to avoid glitches on the output.

BIASPROG	Bias Current (μΑ), HYSTSEL=0								
	FULLBIAS=0, HALFBIAS=1	FULLBIAS=0, HALFBIAS=0	FULLBIAS=1, HALFBIAS=1	FULLBIAS=1, HALFBIAS=0					
060000	0.05	0.1	3.3	6.5					
0b0001	0.1	0.2	6.5	13					
0b0010	0.2	0.4	13	26					
0b0011	0.3	0.6	20	39					
0b0100	0.4	0.8	26	52					
0b0101	0.5	1.0	33	65					
0b0110	0.6	1.2	39	78					
0b0111	0.7	1.4	46	91					
0b1000	1.0	2.0	65	130					
0b1001	1.1	2.2	72	143					
0b1010	1.2	2.4	78	156					
0b1011	1.3	2.6	85	169					
0b1100	1.4	2.8	91	182					
0b1101	1.5	3.0	98	195					
0b1110	1.6	3.2	104	208					
0b1111	1.7	3.4	111	221					

Table 23.1. Bias Configuration

23.3.3 Hysteresis

In the analog comparator, hysteresis can be configured to 8 different levels, including off which is level 0, through the HYSTSEL field in ACMPn_CTRL. When the hysteresis level is set above 0, the digital output will not toggle until the positive input voltage is at a voltage equal to the hysteresis level above or below the negative input voltage (see Figure 23.2 (p. 357)). This feature can be used to filter out uninteresting input fluctuations around zero and only show changes that are big enough to breach the hysteresis threshold. Note that the ACMP current consumption will be influenced by the selected hysteresis level and in general decrease with increasing HYSTSEL values.

...the world's most energy friendly microcontrollers

Bit	Name	Reset Acce	ss Description
	Value	Mode	Description
	7	128CYCLES	128 ADC_CLK cycles acquisition time for single sample
	8	256CYCLES	256 ADC_CLK cycles acquisition time for single sample
19	Reserved	To ensure compatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
18:16	REF	0x0 RW	Single Sample Reference Selection

Select reference to ADC single sample mode.

0x0

Value	Mode	Description				
0	1V25	Internal 1.25 V reference				
1	2V5	Internal 2.5 V reference				
2	VDD	Buffered VDD				
3	5VDIFF	Internal differential 5 V reference				
4	EXTSINGLE	Single ended external reference from pin 6				
5	2XEXTDIFF	Differential external reference, 2x(pin 6 - pin 7)				
6	2XVDD	Unbuffered 2xVDD				
Reserved	Reserved To ensure compatibility with future devices, always write bits to 0, More information in Section 2.1 (p. 3)					

15:12

INPUTSEL

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

11:8

Single Sample Input Selection

Select input to ADC single sample mode in either single ended mode or differential mode.

RW

DIFF = 0		
Mode	Value	Description
CH0	0	ADCn_CH0
CH1	1	ADCn_CH1
CH2	2	ADCn_CH2
CH3	3	ADCn_CH3
CH4	4	ADCn_CH4
CH5	5	ADCn_CH5
CH6	6	ADCn_CH6
CH7	7	ADCn_CH7
TEMP	8	Temperature reference
VDDDIV3	9	VDD/3
VDD	10	VDD
VSS	11	VSS
VREFDIV2	12	VREF/2
DAC0OUT0	13	DAC0 output 0
DAC0OUT1	14	DAC0 output 1
DIFF = 1		
Mode	Value	Description
CH0CH1	0	Positive input: ADCn_CH0 Negative input: ADCn_CH1
CH2CH3	1	Positive input: ADCn_CH2 Negative input: ADCn_CH3
CH4CH5	2	Positive input: ADCn_CH4 Negative input: ADCn_CH5
CH6CH7	3	Positive input: ADCn_CH6 Negative input: ADCn_CH7
DIFF0	4	Differential 0 (Short between positive and negative inputs)

7:6 5:4

3

Reserved

RES

Single Sample Resolution Select

Select single sample conversion resolution.

0x0

Valu	ue	Mode	Description
0		12BIT	12-bit resolution
1		8BIT	8-bit resolution
2		6BIT	6-bit resolution
3		OVS	Oversampling enabled. Oversampling rate is set in OVSRSEL
Res	served	To ensure compatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)

RW

Figure 29.31. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1

1/3 bias and triplex multiplexing - LCD_SEG0-LCD_COM2

- DC voltage = 0 (over one frame)
- V_{RMS} = 0.33 × V_{LCD_OUT}
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM2 will be OFF with this waveform

Figure 29.32. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM2

29.3.3.6 Waveforms with 1/3 Bias and Quadruplex Multiplexing

In this mode, each frame is divided into 8 periods. All COM lines can be multiplexed with all segment lines. Figures show 1/3 bias and quadruplex multiplexing (waveforms show two frames).

