E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g30f128g-e-qfn64

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 11.1. CMU Overview

11.3.1 System Clocks

11.3.1.1 HFCLK - High Frequency Clock

HFCLK is the selected High Frequency Clock. This clock is used by the CMU and drives the two prescalers that generate HFCORECLK and HFPERCLK. The HFCLK can be driven by a high-frequency

Bit	Name	Reset	Acces	ss Description
	Value	Mode		Description
	1	PCNT0S0		External pin PCNT0_S0 is clocking PCNT0.
0	PCNT0CLKEN	0	RW	PCNT0 Clock Enable
	This bit enables/di	sables the clock to the PCN	IT.	
	Value	Description		
	0	PCNT0 is disabled.		
	1	PCNT0 is enabled.		

11.5.26 CMU_LCDCTRL - LCD Control Register

Offset															Bi	t Po	ositi	on														
0x07C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	5	10	6	8	7	9	5	4	з	2	٦	0
Reset																									,		0x2		0		0×0	
Access																											RW		RW		RW	
Name																											VBFDIV		VBOOSTEN		FDIV	

Bit	Name	Reset	Access	B Description
31:7	Reserved	To ensure o	compatibility with	n future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:4	VBFDIV	0x2	RW	Voltage Boost Frequency Division
	These bits cont	ol the voltage boost upda	ate frequency di	vision.
	Value	Mode	1	Description
	0	DIV1	Y	/oltage Boost update Frequency = LFACLK.
	1	DIV2	Y	/oltage Boost update Frequency = LFACLK/2.
	2	DIV4	Y	/oltage Boost update Frequency = LFACLK/4.
	3	DIV8	,	/oltage Boost update Frequency = LFACLK/8.
	4	DIV16	Y	/oltage Boost update Frequency = LFACLK/16.
	5	DIV32	Y	/oltage Boost update Frequency = LFACLK/32.
	6	DIV64	,	/oltage Boost update Frequency = LFACLK/64.
	7	DIV128	Y	/oltage Boost update Frequency = LFACLK/128.
3	VBOOSTEN	0	RW	Voltage Boost Enable
	This bit enables	/disables the VBOOST fu	unction.	
2:0	FDIV	0x0	RW	Frame Rate Control
	These bits contr the LCD bit in C	ols the framerate accordi	ng to this formu to 1.	a: LFACLK _{LCD} = LFACLK _{LCDpre} / (1 + FDIV). Do not change this value while

11.5.27 CMU_ROUTE - I/O Routing Register

Offset															Bi	t Po	ositi	on														
0x080	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	თ	8	7	9	5	4	e	7	-	0
Reset																														0	0	0
Access																														RW	RW	RW
Name																														LOCATION	CLKOUT1PEN	CLKOUTOPEN

12.3.1 Clock Source

Three clock sources are available for use with the watchdog, through the CLKSEL field in WDOG_CTRL. The corresponding clocks must be enabled in the CMU. The SWOSCBLOCK bit in WDOG_CTRL can be written to prevent accidental disabling of the selected clocks. Also, setting this bit will automatically start the selected oscillator source when the watchdog is enabled. The PERSEL field in WDOG_CTRL is used to divide the selected watchdog clock, and the timeout for the watchdog timer can be calculated like this:

WDOG Timeout Equation

$$T_{\text{TIMFOUT}} = (2^{3 + \text{PERSEL}} + 1)/f,$$
 (12.1)

where f is the frequency of the selected clock.

It is recommended to clear the watchdog first, if PERSEL is changed while the watchdog is enabled.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKEN0, in addition to the module clock.

12.3.2 Debug Functionality

The watchdog timer can either keep running or be frozen when the device is halted by a debugger. This configuration is done through the DEBUGRUN bit in WDOG_CTRL. When code execution is resumed, the watchdog will continue counting where it left off.

12.3.3 Energy Mode Handling

The watchdog timer can be configured to either keep on running or freeze when entering EM2 or EM3. The configuration is done individually for each energy mode in the EM2RUN and EM3RUN bits in WDOG_CTRL. When the watchdog has been frozen and is re-entering an energy mode where it is running, the watchdog timer will continue counting where it left off. For the watchdog there is no difference between EM0 and EM1. The watchdog does not run in EM4, and if EM4BLOCK in WDOG_CTRL is set, the CPU is prevented from entering EM4.

Note

If the WDOG is clocked by the LFXO or LFRCO, writing the SWOSCBLOCK bit will effectively prevent the CPU from entering EM3. When running from the ULFRCO, writing the SWOSCBLOCK bit will prevent the CPU from entering EM4.

12.3.4 Register access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Please refer to Section 5.3 (p. 20) for a description on how to perform register accesses to Low Energy Peripherals. note that clearing the EN bit in WDOG_CTRL will reset the WDOG module, which will halt any ongoing register synchronization.

Note

Never write to the WDOG registers when it is disabled, except to enable it by setting the EN bitfield in WDOG_CTRL. Make sure that the enable is registered (i.e. WDOG_SYNCBUSY_CTRL goes low), before writing other registers.

EFM[®]32

Bit	Name	Reset	Access	Description
7:2	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
1:0	RDSETUP	0x3	RW	Read Setup Time

Sets the number of cycles the address setup before REn is asserted.

14.5.17 EBI_WRTIMING3 - Write Timing Register 3

Offset															Bi	t Po	ositi	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	5		10	ი	œ	7	9	5	4	e	2	-	0
Reset			0	0											6.40	CY0					0x3F										520	cXU
Access			RW	RW											Ma						RW										Md	2 2 2
Name		-	WBUFDIS	HALFWE																	WRSTRB										WPSETHD	ערסביטר
Bit	Na	me						Re	set			ļ	4c0	cess	;	De	escr	iptio	on													
31:30	Res	serve	əd					То	ensi	ure d	comp	patib	oility	y witł	n futu	re d	levice	es, a	lways	write	ə bi	its to	0. N	/lore	e info	orm	atior	n in l	Secti	on 2	.1 (p	n. 3)
29	WB	UFC	DIS					0				R	RW			Wr	ite B	luffe	er Disa	ble												
	Ena	ables	s or c	disab	oles	the v	write	e bu	ffer.																							
28	HA	LFW	Έ					0				R	RW			На	lf Cy	cle	WEn S	Stro	be	Dur	atio	n E	nab	le						
	Ena	ables	s or c	disab	oles	half	cyc	le di	uratio	on o	f the	WE	En s	strob	e in t	he la	ast V	VRS ⁻	TRB c	ycle												
27:18	Re	serve	ed					То	ensi	ure (comp	oatib	oility	y with	n futu	re d	levice	es, a	lways	write	ə bi	its to	0. N	Логе	e info	orm	atior	n in l	Secti	on 2	.1 (p	<i>. 3)</i>
17:16	WR	RHOL	D					0x3	3			R	RW			Wr	ite H	lold	Time													
	Set	s the	e nur	nber	r of c	cycle	es C	Sn i	s he	ld a	ctive	afte	er th	he W	En is	s dea	asse	rted.														
15:14	Res	serve	əd					То	ensi	ure (comp	patib	oility	y with	n futu	re d	levice	es, a	lways	write	ə bi	its to	0. N	Логе	e info	orm	atior	n in S	Secti	on 2	.1 (p	n. 3)
13:8	WR	STR	RB					0x3	ßF			R	RW			Wr	ite S	trob	e Tim	е												
	Set	s the	e nur	nber	r of c	cycle	es th	ie W	/En i	s he	eld ad	ctive	e. If	set f	o 0, ⁻	1 cy	cle is	s ins	erted k	by H	W.											
7:2	Res	Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)																														
1:0	WR	SET	ŪΡ					0x3	3			R	RW			Wr	ite S	etup	o Time	•												
	Set	s the	e nur	nber	r of c	cycle	es th	ie ad	ddre	ss s	etup	befo	ore	WE	n is a	isse	rted.															

14.5.18 EBI_POLARITY3 - Polarity Register 3

Offset															В	it Po	ositi	ion														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	ი	8	2	9	5	4	ю	7	-	0
Reset																											0	0	0	0	0	0
Access																											RW	RW	RW	RW	RW	RW
Name																											BLPOL	ARDYPOL	ALEPOL	WEPOL	REPOL	CSPOL
Bit	Na	me						Re	set			Α	00	ess	;	De	escr	ipt	ion													
31:6	Res	serve	ed					То	ensu	re c	comp	atibi	lity	with	n fut	ure d	evic	es,	alwa	ays ı	vrite	bits	to 0.	Mor	e inf	orm	natio	n in S	Secti	ion 2	.1 (p	. 3)
5	BLF	POL						0				R١	W			BL	Pol	arit	y													
	Set	s the	e pol	arity	of th	ne El	BI_I	BLn	lines																							

14.5.25 EBI_TFTSTATUS - TFT Status Register

Offset															Bi	t Po	ositi	on									•					
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	3	2	-	0
Reset											0x000										,						0×000					
Access					_						ĸ										_		_				R					
Name											VCNT																HCNT					

Bit	Name	Reset	Access	Description
31:27	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
26:16	VCNT	0x000	R	Vertical Count
	Contains the current line po	osition within a fram	e (initial line in	vertical back porch has VCNT = 0).
15:11	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:0	HCNT	0x000	R	Horizontal Count
	Contains the current pixel p	osition within a line	e (initial pixel in	horizontal backporch has HCNT = 0).

14.5.26 EBI_TFTFRAMEBASE - TFT Frame Base Register

Offset															Bi	t Pc	ositi	on														
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	ю	2	-	0
Reset																																
Access																			RW													
Name																			RAMEBASE													

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
27:0	FRAMEBASE	0x0000000	RW	Frame Base Address
	Sets the frame base addres	S.		

Table 15.3. I²C Clock Mode

HFPERCLK frequency (MHz)	Clock Low High Ratio (CLHR)	Sm max frequency (kHz)	Fm max frequency (kHz)	Fm+ max frequency (kHz)			
32	0	93	400	1000			
	1	82	400	969			
	2	72	400	842			
28	0	92	400	1000			
	1	81	400	848			
	2	71	400	736			
21	0	93	400	1000			
	1	83	400	954			
	2	72	368	552			
14	0	92	400	999			
	1	81	400	636			
	2	68	368	608			
11	0	91	400	785			
	1	81	333	733			
	2	71	289	478			
6.6	0	91	400	471			
	1	81	299	439			
	2	64	286	286			
1.2	0	59	85	85			
	1	54	79	79			
	2	52	52	52			

15.3.5 Arbitration

Arbitration is enabled by default, but can be disabled by setting the ARBDIS bit in I2Cn_CTRL. When arbitration is enabled, the value on SDA is sensed every time the I^2C module attempts to change its value. If the sensed value is different than the value the I^2C module tried to output, it is interpreted as a simultaneous transmission by another device, and that the I^2C module has lost arbitration.

Whenever arbitration is lost, the ARBLOST interrupt flag in I2Cn_IF is set, any lines held are released, and the I^2C device goes idle. If an I^2C master loses arbitration during the transmission of an address, another master may be trying to address it. The master therefore receives the rest of the address, and if the address matches the slave address of the master, the master goes into either slave transmitter or slave receiver mode.

Note

Arbitration can be lost both when operating as a master and when operating as a slave.

15.3.6 Buffers

15.3.6.1 Transmit Buffer and Shift Register

The I²C transmitter is double buffered through the transmit buffer and transmit shift register as shown in Figure 15.1 (p. 174). A byte is loaded into the transmit buffer by writing to I2Cn_TXDATA. When the

Many slave-only devices operating on an I²C-bus are not capable of driving SCL low, but in the rare case that SCL is stuck LOW, the advice is to apply a hardware reset signal to the slaves on the bus. If this does not work, cycle the power to the devices in order to make them release SCL.

When SDA is stuck low and SCL is free, a master should send 9 clock pulses on SCL while tristating the SDA. This procedure is performed in the GPIO module after clearing the I2C_ROUTE register and disabling the I2C module. The device that held the bus low should release it sometime within those 9 clocks. If not, use the same approach as for when SCL is stuck, resetting and possibly cycling power to the slaves.

Lockup of SDA can be detected by keeping count of the number of continuous arbitration losses during address transmission. If arbitration is also lost during the transmission of a general call address, i.e. during the transmission of the STOP condition, which should never happen during normal operation, this is a good indication of SDA lockup.

Detection of SCL lockups can be done using the timeout functionality defined in Section 15.3.12.6 (p. 193)

15.3.12.5 Bus Idle Timeout

When SCL has been high for a significant amount of time, this is a good indication of that the bus is idle. On an SMBus system, the bus is only allowed to be in this state for a maximum of 50 μ s before the bus is considered idle.

The bus idle timeout BITO in I2Cn_CTRL can be used to detect situations where the bus goes idle in the middle of a transmission. The timeout can be configured in BITO, and when the bus has been idle for the given amount of time, the BITO interrupt flag in I2Cn_IF is set. The bus can also be set idle automatically on a bus idle timeout. This is enabled by setting GIBITO in I2Cn_CTRL.

When the bus idle timer times out, it wraps around and continues counting as long as its condition is true. If the bus is not set idle using GIBITO or the ABORT command in I2Cn_CMD, this will result in periodic timeouts.

Note

This timeout will be generated even if SDA is held low.

The bus idle timeout is active as long as the bus is busy, i.e. BUSY in I2Cn_STATUS is set. The timeout can be used to get the I^2C module out of the busy-state it enters when reset, see Section 15.3.7.3 (p. 183).

15.3.12.6 Clock Low Timeout

The clock timeout, which can be configured in CLTO in I2Cn_CTRL, starts counting whenever SCL goes low, and times out if SCL does not go high within the configured timeout. A clock low timeout results in CLTOIF in I2Cn_IF being set, allowing software to take action.

When the timer times out, it wraps around and continues counting as long as SCL is low. An SCL lockup will thus result in periodic clock low timeouts as long as SCL is low.

15.3.13 DMA Support

The I^2C module has full DMA support. The DMA controller can write to the transmit buffer using the I2Cn_TXDATA register, and it can read from the receive buffer using the RXDATA register. A request for the DMA controller to read from the I^2C receive buffer can come from the following source:

• Data available in the receive buffer

A write request can come from one of the following sources:

ы	Name	Reset	Access	Description
	When set, the	bus automatically goes idle	on a bus idle tir	meout, allowing new transfers to be initiated.
	Value	Description		
	0	A bus idle timeou	t has no effect on	the bus state.
	1	A bus idle timeou	t tells the I ² C mod	dule that the bus is idle, allowing new transfers to be initiated.
14	Reserved	To ensure co	mpatibility with	future devices, always write bits to 0. More information in Section 2.1 (p.
13:12	BITO	0x0	RW	Bus Idle Timeout
	bus transactio by BITO, it se idle timeout is STOP conditi a START con	on, i.e. the BUSY flag is set, ts the BITO interrupt flag. The s active as long as BUSY is on is detected and when the dition is detected.	a timer is start he BITO interru set. It is thus s ABORT comm	ted whenever SCL goes high. When the timer reaches the value define opt flag will then be set periodically as long as SCL remains high. The b stopped automatically on a timeout if GIBITO is set. It is also stopped and is issued. The timeout is activated whenever the bus goes BUSY, is
	Value	Mode	De	escription
	0	OFF	Ti	imeout disabled
	1	40PCC	Tila	imeout after 40 prescaled clock cycles. In standard mode at 100 kHz, this results 50us timeout.
	2	80PCC	Tii a	imeout after 80 prescaled clock cycles. In standard mode at 100 kHz, this results 100us timeout.
	3	160PCC	Tii in	imeout after 160 prescaled clock cycles. In standard mode at 100 kHz, this resul a 200us timeout.
11:10	Reserved	To ensure co	mpatibility with	future devices, always write bits to 0. More information in Section 2.1 (p.
9:8	CLHR	0x0	RW	Clock Low High Ratio
	Determines th	e ratio between the low and	high parts of th	e clock signal generated on SCL as master.
	Value	Mode	Df	escription
		WIGGO		
	0	STANDARD	Th	he ratio between low period and high period counters $(N_{low}:N_{high})$ is 4:4
	0	STANDARD ASYMMETRIC	Tr Tr	he ratio between low period and high period counters (N_{low} : N_{high}) is 4:4 he ratio between low period and high period counters (N_{low} : N_{high}) is 6:3
	0 1 2	STANDARD ASYMMETRIC FAST	Tr Tr Tr	he ratio between low period and high period counters (N_{low} : N_{high}) is 4:4 he ratio between low period and high period counters (N_{low} : N_{high}) is 6:3 he ratio between low period and high period counters (N_{low} : N_{high}) is 11:6
7	0 1 2 Reserved	STANDARD ASYMMETRIC FAST To ensure co	Tł Tł Tł mpatibility with	he ratio between low period and high period counters (N _{low} :N _{high}) is 4:4 he ratio between low period and high period counters (N _{low} :N _{high}) is 6:3 he ratio between low period and high period counters (N _{low} :N _{high}) is 11:6 <i>future devices, always write bits to 0. More information in Section 2.1 (p.</i>
7 6	0 1 2 Reserved GCAMEN	STANDARD ASYMMETRIC FAST To ensure co 0	Tł Tł mpatibility with RW	he ratio between low period and high period counters (N _{low} :N _{high}) is 4:4 he ratio between low period and high period counters (N _{low} :N _{high}) is 6:3 he ratio between low period and high period counters (N _{low} :N _{high}) is 11:6 <i>future devices, always write bits to 0. More information in Section 2.1 (p.</i> General Call Address Match Enable
7 6	0 1 2 <i>Reserved</i> GCAMEN Set to enable	STANDARD ASYMMETRIC FAST To ensure co 0 address match on general c	Th Th In Th In Th Th RW all in addition to	he ratio between low period and high period counters (N _{low} :N _{high}) is 4:4 he ratio between low period and high period counters (N _{low} :N _{high}) is 6:3 he ratio between low period and high period counters (N _{low} :N _{high}) is 11:6 <i>future devices, always write bits to 0. More information in Section 2.1 (p.</i> General Call Address Match Enable o the programmed slave address.
7 6	0 1 2 Reserved GCAMEN Set to enable Value	STANDARD ASYMMETRIC FAST To ensure co 0 address match on general c Description	Th Th Th Th Th Th Th Th Th Th Th Th Th T	he ratio between low period and high period counters (N _{low} :N _{high}) is 4:4 he ratio between low period and high period counters (N _{low} :N _{high}) is 6:3 he ratio between low period and high period counters (N _{low} :N _{high}) is 11:6 <i>future devices, always write bits to 0. More information in Section 2.1 (p.</i> General Call Address Match Enable o the programmed slave address.
7 6	0 1 2 Reserved GCAMEN Set to enable Value 0	STANDARD ASYMMETRIC FAST To ensure co 0 address match on general c Description General call addr	Tr Tr Tr Tr RW all in addition to ess will be NACK'	he ratio between low period and high period counters (N _{low} :N _{high}) is 4:4 he ratio between low period and high period counters (N _{low} :N _{high}) is 6:3 he ratio between low period and high period counters (N _{low} :N _{high}) is 11:6 <i>future devices, always write bits to 0. More information in Section 2.1 (p.</i> General Call Address Match Enable b the programmed slave address. 'ed if it is not included by the slave address and address mask.
7 6	0 1 2 Reserved GCAMEN Set to enable Value 0 1	STANDARD STANDARD ASYMMETRIC FAST To ensure co 0 address match on general c Description General call addr When a general c	Th Th Th Th Th Th Th Th Th Th Th Th Th T	he ratio between low period and high period counters (N _{low} :N _{high}) is 4:4 he ratio between low period and high period counters (N _{low} :N _{high}) is 6:3 he ratio between low period and high period counters (N _{low} :N _{high}) is 11:6 <i>future devices, always write bits to 0. More information in Section 2.1 (p.</i> General Call Address Match Enable b the programmed slave address. 'ed if it is not included by the slave address and address mask. eived, a software response is required.

AUTOSN	0	RW	Automatic STOP on NACK
1	When a device loses a	rbitration, the AR	B interrupt flag is set, but communication proceeds.
0	When a device loses a	rbitration, the AR	B interrupt flag is set and the bus is released.
Value	Description		

Write to 1 to make a master transmitter send a STOP when a NACK is received from a slave.

Value	Description
0	Stop is not automatically sent if a NACK is received from a slave.
1	The master automatically sends a STOP if a NACK is received from a slave.

3 AUTOSE

4

Automatic STOP when Empty 0 RW

Write to 1 to make a master transmitter send a STOP when no more data is available for transmission.

2	AUTOACK	0	RW	Automatic Acknowledge
	1	The master automatica	ally sends a STO	P when no more data is available for transmission.
	0	A stop must be sent ma	anually when no	more data is to be transmitted.
	Value	Description		

Set to enable automatic acknowledges.

16.5.5 USARTn_STATUS - USART Status Register

Offset															Bi	t Pc	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	;	10	6	8	7	9	5	4	ю	2	-	0
Reset				·												·	·							0	0	-	0	0	0	0	0	0
Access																								ъ	۲	ъ	ъ	ĸ	ĸ	Ж	ъ	ĸ
Name																								RXFULL	RXDATAV	TXBL	TXC	TXTRI	RXBLOCK	MASTER	TXENS	RXENS

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure compa	atibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
8	RXFULL	0	R	RX FIFO Full
	Set when the RXFIFO is fu frame in the receive shift re	II. Cleared when th gister.	e receive buffe	er is no longer full. When this bit is set, there is still room for one more
7	RXDATAV	0	R	RX Data Valid
	Set when data is available i	n the receive buffe	r. Cleared whe	en the receive buffer is empty.
6	TXBL	1	R	TX Buffer Level
	Indicates the level of the tra TXBL is set whenever the t	ansmit buffer. If TXI ransmit buffer is ha	BIL is cleared, If-full or empty	TXBL is set whenever the transmit buffer is empty, and if TXBIL is set, .
5	TXC	0	R	TX Complete
	Set when a transmission hat is written to the transmit but	as completed and i	no more data i	s available in the transmit buffer and shift register. Cleared when data
4	TXTRI	0	R	Transmitter Tristated
	Set when the transmitter is is always read as 0.	tristated, and clea	red when trans	smitter output is enabled. If AUTOTRI in USARTn_CTRL is set this bit
3	RXBLOCK	0	R	Block Incoming Data
	When set, the receiver disc instant the frame has been	ards incoming fram completely receive	nes. An incomi d.	ng frame will not be loaded into the receive buffer if this bit is set at the
2	MASTER	0	R	SPI Master Mode
	Set when the USART operation	ates as a master. S	et using the M	ASTEREN command and clear using the MASTERDIS command.
1	TXENS	0	R	Transmitter Enable Status
	Set when the transmitter is	enabled.		
0	RXENS	0	R	Receiver Enable Status
	Set when the receiver is en	abled.		

16.5.6 USARTn_CLKDIV - Clock Control Register

Offset													Bit Position																			
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	6	5	4	с	2	-	0
Reset																			0x0000													
Access																			RW													
Name																			DIV													

Bit	Name	Reset	Access	Description
13:9	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	RXDATAP	0x000	R	RX Data Peek
	Use this register to	access data read from	the LEUART.	

18.5.10 LEUARTn_TXDATAX - Transmit Buffer Data Extended Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 20).

Offset															Ві	t Po	ositi	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	e	2	-	0
Reset																	0	0	0									0×000				
Access																	≥	3	≥									≥				
Name																	RXENAT	TXDISAT	TXBREAK									TXDATA				

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15	RXENAT	0	W	Enable RX After Transmission
	Set to enable rece	ption after transmission		
	Value	Description		
	0	-		
	1	The receiver is e	nabled, setting RXE	NS after the frame has been transmitted
14	TXDISAT	0	W	Disable TX After Transmission
	Set to disable trans	smitter directly after trar	nsmission has cor	npeted.
	Value	Description		
	0	-		
	1	The transmitter is	s disabled, clearing	TXENS after the frame has been transmitted
13	TXBREAK	0	W	Transmit Data As Break
	Set to send data a of TXDATA.	as a break. Recipient w	ill see a framing	error or a break condition depending on its configuration and the value
	Value	Description		
	0	The specified nur	mber of stop-bits are	e transmitted
	1	Instead of the ord allow the receive	dinary stop-bits, 0 is r to detect the start o	transmitted to generate a break. A single stop-bit is generated after the break to of the next frame
12:9	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	TXDATA	0x000	W	TX Data
	Use this register to	write data to the LEUA	RT. If the transm	itter is enabled, a transfer will be initiated at the first opportunity.

18.5.11 LEUARTn_TXDATA - Transmit Buffer Data Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 20).

Figure 21.2. LETIMER State Machine for Free-running Mode

Note that the CLEAR command bit in LETIMERn_CMD always has priority over other changes to LETIMERn_CNT. When the clear command is used, LETIMERn_CNT is set to 0 and an underflow event will not be generated when LETIMERn_CNT wraps around to the top value or 0xFFFF. Since no underflow event is generated, no output action is performed. LETIMERn_REP0, LETIMERn_REP1, LETIMERn_COMP0 and LETIMERn_COMP1 are also left untouched.

21.3.3.2.2 One-shot Mode

The one-shot repeat mode is the most basic repeat mode. In this mode, the repeat register LETIMERn_REP0 is decremented every time the timer underflows, and the timer stops when LETIMERn_REP0 goes from 1 to 0. In this mode, the timer counts down LETIMERn_REP0 times, i.e. the timer underflows LETIMERn_REP0 times.

Note

Note that write operations to LETIMERn_REP0 have priority over the decrementation operation. So if LETIMERn_REP0 is assigned a new value in the same cycle it was supposed to be decremented, it is assigned the new value instead of being decremented.

LETIMERn_REP0 can be written while the timer is running to allow the timer to run for longer periods at a time without stopping. Figure 21.3 (p. 323).

22 PCNT - Pulse Counter

Quick Facts

What?

The Pulse Counter (PCNT) decodes incoming pulses. The module has a quadrature mode which may be used to decode the speed and direction of a mechanical shaft. PCNT can operate in EM0-EM3.

Why?

The PCNT generates an interrupt after a specific number of pulses (or rotations), eliminating the need for timing- or I/O interrupts and CPU processing to measure pulse widths, etc.

How?

PCNT uses the LFACLK or may be externally clocked from a pin. The module incorporates an 8-bit up/down-counter to keep track of incoming pulses or rotations.

22.1 Introduction

The Pulse Counter (PCNT) can be used for counting incoming pulses on a single input or to decode quadrature encoded inputs. It can run from the internal LFACLK (EM0-EM2) while counting pulses on the PCNTn_S0IN pin or using this pin as an external clock source (EM0-EM3) that runs both the PCNT counter and register access.

22.2 Features

- 8-bit counter with reload register
- Single input oversampling up/down counter mode (EM0-EM2)
- Externally clocked single input pulse up/down counter mode (EM0-EM3)
- Externally clocked quadrature decoder mode (EM0-EM3)
- · Interrupt on counter underflow and overflow
- Interrupt when a direction change is detected (quadrature decoder mode only)
- · Optional pulse width filter
- Optional input inversion/edge detect select

22.3 Functional Description

An overview of the PCNT module is shown in Figure 22.1 (p. 342) .

Bit	Name	Reset	Access	Description						
2	CNTDIR	0	RW	Non-Quadrature Mode Counter Direction Control						
	The direction as the direction	of the counter must be set in on is automatically detected.	the OVSSINGLE	and EXTCLKSINGLE modes. This bit is ignored in EXTCLKQUAD mode						
	Value	Mode	De	scription						
	0	UP	Up	counter mode.						
	1	DOWN	Do	wn counter mode.						
1:0	MODE	0x0	RW	Mode Select						
	Selects the m	node of operation. The corres	sponding clock so	ource must be selected from the CMU.						
	Value	Mode	De	scription						
	0	DISABLE	The	e module is disabled.						
	1	OVSSINGLE	Sir	Single input LFACLK oversampling mode (available in EM0-EM2).						
		OVCONVOLL								
	2	EXTCLKSINGLE	Ext	ternally clocked single input counter mode (available in EM0-EM3).						

22.5.2 PCNTn_CMD - Command Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 20).

Offset															Bi	t Po	ositi	on						•								
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ი	8	7	9	5	4	ю	2	٦	0
Reset				-	-			-				-			-		-					-						-			0	0
Access																															W1	٧1
Name																															LTOPBIM	LCNTIM

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	LTOPBIM	0	W1	Load TOPB Immediately
	This bit has no effect since T into PCNTn_TOP. Please s	OPB is not buffered ee the device data	d and it is loade sheet for a des	d directly into TOP. For EFM32G revisions A and B: Load PCNTn_TOPB scription on how to extract the chip revision.
0	LCNTIM	0	W1	Load CNT Immediately
	Load PCNTn_TOP into PC	NTn_CNT on the n	ext counter clo	nck cycle.

22.5.3 PCNTn_STATUS - Status Register

Offset					•				•						Bi	t Po	ositi	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	റ	8	7	9	5	4	e	2	-	0
Reset																							·				·					0
Access																																ĸ
Name																																DIR
Bit	Na	me						Re	set			A		ess		De	scr	iptio	on													
31:1	Res	serve	ed					То	ens	ure d	comp	oatib	ility	with	futu	re d	evice	es, a	alwa	ys n	/rite	bits t	o 0.	Mor	e inf	orm	natio	n in .	Sect	ion 2	.1 (p	. 3)

23.5.3 ACMPn_STATUS - Status Register

Offset	Bit Position			
0x008	31 32 33 33 33 33 33 34 35 36 37 38 39 31 31 32 33 34 35 36 37 37 38 39 31 31 32 33	2	-	0
Reset			0	0
Access			Ж	ĸ
Name			ACMPOUT	ACMPACT

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	ACMPOUT	0	R	Analog Comparator Output
	Analog comparator output v	alue.		
0	ACMPACT	0	R	Analog Comparator Active
	Analog comparator active s	tatus.		

23.5.4 ACMPn_IEN - Interrupt Enable Register

Offset					•										Bi	t Pc	ositi	on														•
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	ю	2	-	0
Reset				·																											0	0
Access																															RW	RW
Name																															WARMUP	EDGE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	WARMUP	0	RW	Warm-up Interrupt Enable
	Enable/disable interrupt on	finished warm-up.		
0	EDGE	0	RW	Edge Trigger Interrupt Enable
	Enable/disable edge trigger	ed interrupt.		

23.5.5 ACMPn_IF - Interrupt Flag Register

Offset															Bi	t Pc	ositi	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	5	4	з	2	-	0
Reset																															0	0
Access																															۲	۲
Name																															WARMUP	EDGE

0

27.5.7 AES_IFC - Interrupt Flag Clear Register

Offset															Bi	it Po	ositi	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	5	10	ი	8	7	9	5	4	ю	2	-	0
Reset																												·				0
Access																																W1
Name																																DONE
-																																
Bit	Na	me						Re	set			A	٩cc	ess	•	De	escr	ipti	on													
31:1	Res	serve	əd					То	ensi	ure d	comp	oatib	oility	with	n futu	ire d	evice	es, a	alwa	ivs n	vrite	bits	to 0.	Mor	e in	forn	natio	n in	Sect	ion 2	.1 (p	. 3)

 DONE
 0
 W1
 Encryption/Decryption Done Interrupt Flag Clear

Write to 1 to clear encryption/decryption done interrupt flag

27.5.8 AES_DATA - DATA Register

Offset															Bi	t Pc	ositi	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	5	10	6	8	7	9	5	4	3	2	-	0
Reset																	οχορορογία															
Access																	2 2 2															
Name											-					۲ ۲ ۷																
Bit	Na	me						Re	set			A		ess		De	scri	iptio	on													
31:0	DA	ТА						0x0	0000	0000)	R	W			Dat	ta A	cces	s													
	Acc	ess	data	thro	bugh	this	s reg	giste	r.																							

27.5.9 AES_XORDATA - XORDATA Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	5	10	6	8	7	9	5	4	3	2	٢	0
Reset																																
Access																Md																
Name																																

Bit	Name	Reset	Access	Description
31:0	XORDATA	0x0000000	RW	XOR Data Access
	Access data with XOR fun	ction through this r	egister.	

27.5.10 AES_KEYLA - KEY Low Register

Offset															Bi	t Po	ositi	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	e	7	-	0
Reset				1					<u> </u>		I		<u> </u>		1						I				1			1	I	I		
Access	<u>ک</u>																															
Name								-								KEVI A																
Bit	Na	me						Re	set			A	CC	ess		De	scr	iptic	on													
31:0	KE	YLA						0x0	0000	0000)	R	W			Key	y Lo	w Ao	cce	ss /	A											
	Acc	ess	the I	ow l	key v	vor	ds tł	nrou	gh thi	is re	giste	er.																				

27.5.11 AES_KEYLB - KEY Low Register

Offset															Bi	t Pc	ositi	on													
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	2 5	10	6	8	7	9	5	4	з	2	-	0
Reset	00000000000000000000000000000000000000																														
Access																															
Name																															

Bit	Name	Reset	Access	Description
31:0	KEYLB	0x00000000	RW	Key Low Access B
	Access the low key words the	rough this register		

28.5.9 GPIO_Px_PINLOCKN - Port Unlocked Pins Register

Offset															Bi	it Po	ositi	on														
0x020	31	30	29	28	27	26	25	24	23	22	2	20	19	18	17	16	15	14	13	12	5	10	6	8	7	9	5	4	ю	7	-	0
Reset																					-				UXFFFF							
Access																									א צ							
Name																									FINLOCKN							
Bit	Na	me						Re	set			A	١cc	ess	;	De	scr	iptio	on													
31:16	Re	serve	ed					То	ensi	ure c	comp	oatib	ility	with	n futu	ire d	evice	es, a	lwaj	ys n	rite /	bits t	to 0.	Mor	e inf	orm	atio	n in S	Sect	ion 2	.1 (p	. 3)
15:0	PIN	ILOC	CKN					0xF	FFF			R	W			Un	lock	ed F	Pins	;												

Shows unlocked pins in the port. To lock pin n, clear bit n. The pin is then locked until reset.

28.5.10 GPIO_EXTIPSELL - External Interrupt Port Select Low Register

Offset						· · · · ·									Bi	t Po	siti	on												·		
0x100	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	12	1	•	10	n a	,	7	5 0	-	, t	m	2	-	0
Reset			0×0				0×0				0x0				0×0	<u></u>			0×0			ç					2 2				0X0	I
Access			Ň				۲ ۲				M	-			N N N	-			N2 N2							1010	 ^				Ň	
Name			EXTIPSEL7				EXTIPSEL6				EXTIPSEL5				EXTIPSEL4				EXTIPSEL3												EXTIPSEL0	
Bit	Na	me						Re	set			A	CC	ess		De	scri	ptic	on													
31	Res	serve	d					То	ensi	ıre	comp	atib	ility	with	futu	ire de	evice	es, a	lways i	vrite	bi	ts to	0. Mc	ore	info	rmati	on i	n Se	ectio	on 2.	1 (p	o. 3)
30:28	EX	TIPS	EL7					0x0)			R	W			Ext	erna	ıl Int	terrup	7 P	or	t Sel	ect									
	Sel	ect ir	put	port	for e	exte	rnal	inte	errup	t 7.																						
	Val	ue			M	ode								C	escri	iption																
	0				P	ORT	A							F	ort A	pin 7	/ sele	ected	for exte	ernal	inte	errup	7									
	1				P	ORT	В							F	ort B	pin 7	/ sele	ected	for exte	ernal	inte	errup	7									
	2				P	ORT	С							F	ort C	; pin 7	7 sele	ected	for exte	ernal	int	errup	7									
	3				P	ORT	D							F	ort D) pin 7	7 sele	ected	for exte	ernal	int	errup	7									
	4				P	ORT	E							F	ort E	pin 7	/ sele	ected	for exte	ernal	inte	errup	7									
	5				P	ORT	F							F	ort F	pin 7	' sele	cted	for exte	ernal i	inte	errup	7									
27	Res	serve	d					То	ensi	ıre	comp	atib	ility	with	futu	re de	evice	es, a	lways i	vrite	bi	ts to	0. Mo	ore	info	rmati	on i	n Se	ectio	on 2.	1 (p	o. 3)
26:24	EX	TIPS	EL6					0x0)			R	W			Ext	erna	ul Int	terrup	6 P	or	t Sel	ect									
	Sel	ect ir	put	port	for e	exte	rnal	inte	errup	t 6.																						
	Val	ue			M	ode								C	escri	iption																
	0				P	ORT	A							F	ort A	pin 6	6 sele	ected	for exte	ernal	inte	errup	6									
	1				P	ORT	в							F	ort B	pin 6	6 sele	ected	for exte	ernal	inte	errup	6									
	2				P	ORT	С							F	ort C	; pin 6	S sele	ected	for exte	ernal	int	errup	6									

PORTD

PORTE

PORTF

3

4

5

Port D pin 6 selected for external interrupt 6

Port E pin 6 selected for external interrupt 6

Port F pin 6 selected for external interrupt 6

Figure 29.10. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM1

29.3.3.3 Waveforms with 1/3 Bias and Duplex Multiplexing

In this mode, each frame is divided into 4 periods. LCD_COM[1:0] lines can be multiplexed with all segment lines. Figures show 1/3 bias and duplex multiplexing (waveforms show two frames).

Figure 29.11. LCD 1/3 Bias and Duplex Multiplexing - LCD_COM0

Figure 29.12. LCD 1/3 Bias and Duplex Multiplexing - LCD_COM1

1/3 bias and duplex multiplexing - LCD_SEG0

The LCD_SEG0 waveform on the left is just an example to illustrate how different segment waveforms can be multiplexed with the COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this waveform will turn ON pixels connected to LCD_COM0, while pixels connected to LCD_COM1 will be turned OFF.

Figure 29.41. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM2

1/3 bias and quadruplex multiplexing - LCD_SEG0-LCD_COM2

- DC voltage = 0 (over one frame)
- V_{RMS} = 0.33 × V_{LCD_OUT}
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM3 will be OFF with this waveform

Figure 29.42. LCD 1/3 Bias and Quadruplex Multiplexing- LCD_SEG0-LCD_COM3

29.3.4 LCD Contrast

Different LCD panels have different characteristics and also temperature may affect the characteristics of the LCD panels. To compensate for such variations, the LCD driver has a programmable contrast that adjusts the V_{LCD_OUT} . The contrast is set by CONLEV in LCD_DISPCTRL, and can be adjusted relative to either V_{DD} (V_{LCD}) or Ground using CONCONF in LCD_DISPCTRL. See Table 29.4 (p. 460) and Table 29.5 (p. 461), Table 29.5 (p. 461) and Table 29.6 (p. 461).

BIAS	CONLEV	Equation	Range
00	00000-11111	V _{LCD_OUT} = V _{LCD} x (0.61 x (1 + CONLEV/(2 ⁵ - 1)))	$CONLEV = 0 \Rightarrow V_{LCD_OUT} = 0.61V_{LCD}$
			$CONLEV = 31 \Rightarrow V_{LCD_{OUT}} = V_{LCD}$
01	00000-11111	V _{LCD_OUT} = V _{LCD} x (0.53 x (1 + CONLEV/(2 ⁵ - 1)))	$CONLEV = 0 \Rightarrow V_{LCD_OUT} = 0.53V_{LCD}$
			$CONLEV = 31 \Rightarrow V_{LCD_{OUT}} = V_{LCD}$
10	00000-11111	V _{LCD_OUT} = V _{LCD} x (0.61 x (1 + CONLEV/(2 ⁵ - 1)))	$CONLEV = 0 \Rightarrow V_{LCD_OUT} = 0.61V_{LCD}$
			$CONLEV = 31 \Rightarrow V_{LCD_OUT} = V_{LCD}$

Table 29.4. LCD Contrast

Note

Reset value is maximum contrast

Bit	Name	Reset	Access	Description	
	Set when Frame Counter is	s zero.			

29.5.9 LCD_IFS - Interrupt Flag Set Register

Offset					. <u> </u>										Bi	it Po	ositi	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	ю	7	-	0
Reset																																0
Access																																W1
Name																																Ð
Bit	Na	ıme						Re	set			Α	CCe	ess		De	scr	ipti	on													
31:1	Re	serve	ed					То	ensi	ure c	comp	atibi	ility	with	futu	ire d	evice	es, a	alwa	ys и	vrite	bits i	to 0.	Mor	e inf	orm	natio	n in	Sect	ion 2	.1 (p	. 3)
0	FC							0				W	/1			Fra	me	Cou	inte	r Int	terru	ipt F	lag	Set								
	Wr	ite to	1 to	set	FC i	inter	rrup	t flag] .																							

29.5.10 LCD_IFC - Interrupt Flag Clear Register

Offset									·						Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	;	10	6	ω	7	9	5	4	e	2	-	0
Reset																									-							0
Access																																W1
Name																																FC
Bit	Na	me						Re	set			А	VCC6	ess		De	scri	iptic	on													
31:1	Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p														. 3)																	
0	FC							0				W	/1			Fra	me	Cou	nte	r Int	erru	pt F	lag	Clea	r							

Write to 1 to clear FC interrupt flag.

29.5.11 LCD_IEN - Interrupt Enable Register

Offset															Bi	t Po	ositi	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	ю	2	~	0
Reset																						-										0
Access																																RW
Name																																FC
Bit	Na	me						Re	sat					000		De	scr	inti	on													
DIC	ING	me						Ne	Sel					633		De	501	ipu														
31:1	Re	serv	ed					То	ens	ure c	comp	batib	ility	with	futu	ire d	evice	es, a	alwa	ys v	vrite	bits i	o 0.	Mor	e in	forn	natio	n in	Sect	ion 2	.1 (p	. 3)