

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32g30f128g-e-qfn64r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

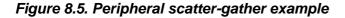
• Data retention of the entire memory in EM0 to EM3

5.6 Device Information (DI) Page

The DI page contains calibration values, a unique identification number and other useful data. See the table below for a complete overview.

Table 5.4. Device Information Page Contents

DI Address	Register	Description
0x0FE08020	CMU_LFRCOCTRL	Register reset value.
0x0FE08028	CMU_HFRCOCTRL	Register reset value.
0x0FE08030	CMU_AUXHFRCOCTRL	Register reset value.
0x0FE08040	ADC0_CAL	Register reset value.
0x0FE08048	ADC0_BIASPROG	Register reset value.
0x0FE08050	DAC0_CAL	Register reset value.
0x0FE08058	DAC0_BIASPROG	Register reset value.
0x0FE08060	ACMP0_CTRL	Register reset value.
0x0FE08068	ACMP1_CTRL	Register reset value.
0x0FE08078	CMU_LCDCTRL	Register reset value.
0x0FE081B0	DI_CRC	[15:0]: DI data CRC-16.
0x0FE081B2	CAL_TEMP_0	[7:0] Calibration temperature (°C).
0x0FE081B4	ADC0_CAL_1V25	[14:8]: Gain for 1V25 reference, [6:0]: Offset for 1V25 reference.
0x0FE081B6	ADC0_CAL_2V5	[14:8]: Gain for 2V5 reference, [6:0]: Offset for 2V5 reference.
0x0FE081B8	ADC0_CAL_VDD	[14:8]: Gain for VDD reference, [6:0]: Offset for VDD reference.
0x0FE081BA	ADC0_CAL_5VDIFF	[14:8]: Gain for 5VDIFF reference, [6:0]: Offset for 5VDIFF reference.
0x0FE081BC	ADC0_CAL_2XVDD	[14:8]: Reserved (gain for this reference cannot be calibrated), [6:0]: Offset for 2XVDD reference.
0x0FE081BE	ADC0_TEMP_0_READ_1V25	[15:4] Temperature reading at 1V25 reference, [3:0] Reserved.
0x0FE081C8	DAC0_CAL_1V25	[22:16]: Gain for 1V25 reference, [13:8]: Channel 1 offset for 1V25 reference, [5:0]: Channel 0 offset for 1V25 reference.
0x0FE081CC	DAC0_CAL_2V5	[22:16]: Gain for 2V5 reference, [13:8]: Channel 1 offset for 2V5 reference, [5:0]: Channel 0 offset for 2V5 reference.
0x0FE081D0	DAC0_CAL_VDD	[22:16]: Reserved (gain for this reference cannot be calibrated), [13:8]: Channel 1 offset for VDD reference, [5:0]: Channel 0 offset for VDD reference.
0x0FE081D4	RESERVED	[31:0] Reserved
0x0FE081D8	RESERVED	[31:0] Reserved
0x0FE081DC	HFRCO_CALIB_BAND_1	[7:0]: Tuning for the 1.2 MHZ HFRCO band.
0x0FE081DD	HFRCO_CALIB_BAND_7	[7:0]: Tuning for the 6.6 MHZ HFRCO band.
0x0FE081DE	HFRCO_CALIB_BAND_11	[7:0]: Tuning for the 11 MHZ HFRCO band.


EFM[®]32

Bit	Field	Value	Description
[20:18]	src_prot_ctrl	-	Configures the state of HPROT when the controller reads the source data
[13:4]	n_minus_1	N ¹	Configures the controller to perform N DMA transfers, where N is a multiple of four
[3]	next_useburst	-	When set to 1, the controller sets the chnl_useburst_set [C] bit to 1 after the alternate transfer completes

¹Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times that you must configure the alternate data structure.

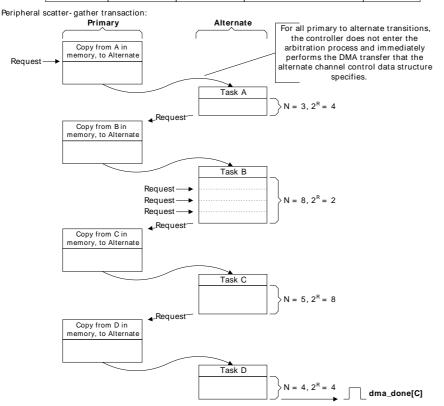

See Section 8.4.3.3 (p. 56) for more information.

Figure 8.5 (p. 52) shows a peripheral scatter-gather example.

Initialization:1. Configure primary to enable the copy A, B, C, and D operations: cycle_ctrl = b110, 2^R = 4, N = 16. 2. Write the primary source data in memory, using the structure shown in the following table.

2. Write the p	2. Write the primary source data in memory, daing the structure shown in the following table.										
	src_data_end_ptr	dst_data_end_ptr	channel_cfg	Unused							
Data for Task A	0x0A00000	0x0AE00000	cycle_ctrl = b111, 2 ^R = 4, N = 3	0xXXXXXXXX							
Data for Task B	0x0B000000	0x0BE00000	cycle_ctrl = b111, 2 ^R = 2, N = 8	0xXXXXXXXX							
Data for Task C	0x0C000000	0x0CE00000	cycle_ctrl = b111, 2 ^R = 8, N = 5	0xXXXXXXXX							
Data for Task D	0x0D000000	0x0DE00000	$cycle_ctrl = b001, 2^{R} = 4, N = 4$	0xXXXXXXXX							

In Figure 8.5 (p. 52) :

Initialization

- 1. The host processor configures the primary data structure to operate in peripheral scatter-gather mode by setting cycle_ctrl to b110. Because a data structure for a single channel consists of four words then you must set 2^R to 4. In this example, there are four tasks and therefore N is set to 16.
- 2. The host processor writes the data structure for tasks A, B, C, and D to the memory locations that the primary src_data_end_ptr specifies.
- 3. The host processor enables the channel.

The peripheral scatter-gather transaction commences when the controller receives a request on $dma_req[$]. The transaction continues as follows:

Table 8.11 (p. 60) lists the destination addresses for a DMA transfer of 12 bytes using a halfword increment.

Table 8.11. DN	IA cycle of 1	2 bytes using a	halfword increment
----------------	---------------	-----------------	--------------------

h = h01 n minus 1 -			
= 501, 11_111103_1 -	= b1011, cy	cle_ctrl = 1, R_po	wer = b11
End Pointer	Count	Difference ¹	Address
0x5E7	11	0x16	0x5D1
0x5E7	10	0x14	0x5D3
0x5E7	9	0x12	0x5D5
0x5E7	8	0x10	0x5D7
0x5E7	7	0xE	0x5D9
0x5E7	6	0xC	0x5DB
0x5E7	5	0xA	0x5DD
0x5E7	4	0x8	0x5DF
after 2 ^R DMA transf	ers		
= b01, n_minus_1 =	= b011, cycl	e_ctrl = 1, R_pov	ver = b11
End Pointer	Count	Difference	Address
0x5E7	3	0x6	0x5E1
0x5E7	2	0x4	0x5E3
0x5E7	1	0x2	0x5E5
0x5E7	0	0x0	0x5E7
	$ \begin{array}{r} 0x5E7 \\ after 2R DMA transfer 2R DMA transfer $	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	

src_size = b00, dst_inc = b01, n_minus_1 = 0, cycle_ctrl = 0², R_power = b11

¹This value is the result of count being shifted left by the value of dst_inc.

²After the controller completes the DMA cycle it invalidates the channel_cfg memory location by clearing the cycle_ctrl field.

8.4.4 Interaction with the EMU

The DMA interacts with the Energy Management Unit (EMU) to allow transfers from , e.g., the LEUART to occur in EM2. The EMU can wake up the DMA sufficiently long to allow data transfers to occur. See section "DMA Support" in the LEUART documentation.

8.4.5 Interrupts

The PL230 dma_done[n:0] signals (one for each channel) as well as the dma_err signal, are available as interrupts to the Cortex-M3 core. They are combined into one interrupt vector, DMA_INT. If the interrupt for the DMA is enabled in the ARM Cortex-M3 core, an interrupt will be made if one or more of the interrupt flags in DMA_IF and their corresponding bits in DMA_IEN are set.

8.5 Examples

A basic example of how to program the DMA for transferring 42 bytes from the USART1 to memory location 0x20003420. Assumes that the channel 0 is currently disabled, and that the DMA_ALTCTRLBASE register has already been configured.

Example 8.1. DMA Transfer

- 1. Configure the channel select for using USART1 with DMA channel 0 a. Write SOURCESEL=0b001101 and SIGSEL=XX to DMA CHCTRL0
- 2. Configure the primary channel descriptor for DMA channel 0
 - a. Write XX (read address of USART1) to src_data_end_ptr
 - b. Write 0x20003420 + 40 to dst_data_end_ptr c
 - c. Write these values to channel_cfg for channel 0:
 - i. dst_inc=b01 (destination halfword address increment)
 - ii. dst_size=b01 (halfword transfer size)
 - iii. src_inc=b11 (no address increment for source)
 - iv. src_size=01 (halfword transfer size)
 - v. dst_prot_ctrl=000 (no cache/buffer/privilege)
 - vi.src_prot_ctrl=000 (no cache/buffer/privilege)
 - vii.R_power=b0000 (arbitrate after each DMA transfer)
 - viiin_minus_1=d20 (transfer 21 halfwords)
 - ix.next_useburst=b0 (not applicable)
 - x. cycle_ctrl=b001 (basic operating mode)
- 3. Enable the DMA
 - a. Write EN=1 to DMA_CONFIG
- 4. Disable the single requests for channel 0 (i.e., do not react to data available, wait for buffer full) a. Write DMA_CHUSEBURSTS[0]=1
- 5. Enable buffer-full requests for channel 0 a. Write DMA_CHREQMASKC[0]=1
- 6. Use the primary data structure for channel 0
 - a. Write DMA_CHALTC[0]=1
- 7. Enable channel 0
 - a. Write DMA_CHENS[0]=1

8.7 Register Description

8.7.1 DMA_STATUS - DMA Status Registers

Offset			_													it Po	1	1														
0x000	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	റ	8	~	- 4	2 C	4	ო	7	-	(
Reset														0×07													0x0					
Access														2													R	_				6
																												_				-
Name														CHNUM													STATE					i
Bit	Nar	ne						Re	eset			A	١cc	ess	;	De	scr	iptio	on													
31:21	Res	erve	d					Тс	ens	ure d	comp	atib	ility	with	n futu	ire d	evice	es, a	lway	ys n	rite	bits	to 0.	Мог	e ir	nfori	natio	on in	Sect	tion 2	2.1 (j	р.
20:16	CHN	IUM						0x(07			R	2			Ch	anne	el Nu	umb	ber												
	Number of available DMA channels minus one.																															
15:8	Res	erve	d					Тс	ens	ure (comp	atib	oility	with	n futu	ire d	evice	es, a	lwaj	ys n	rite	bits	to 0.	Мог	e ir	nfori	natio	on in	Sect	tion 2	2.1 (J	р.
7:4	STATE 0x0 R Control Current State State can be one of the following. Higher values (11-15) are undefined.																															
	State	e ca	n be	e on	e of	the	follo	owin	g. Hi	ghei	· valu	ies ((11-	15)	are	unde	fined	d.														
	Value Mode											[Descr	iptior	1																	
	0				10	DLE								1	dle																	
	1				R	DCH	НСТ	RLD	ATA					F	Readi	ing cł	nanne	el cor	ntroll	er da	ata											
	2				R	DSF	RCE	NDP	TR					F	Readi	ing so	ource	data	end	l poi	nter											
	3				R	DDS	STEI	NDP	TR					F	Readi	ing de	estina	tion	data	end	poir	nter										
	4				R	DSF	RCD	ATA						F	Readi	ing so	ource	data	I													
	5				V	RD	STD	ATA						١	Vritin	g des	stinati	on d	ata													
	6				V	AIT	REC		2					١	Vaitir	ng for	DMA	req	uest	to c	ear											
	7				v	/RC	нст	RLD	ATA					١	Vritin	g cha	nnel	cont	rolle	r dat	а											
	8				S	TAL	LED)						5	Stalle	d																
	9				D	ON	E							[Done																	
	10				PERSCATTRANS									F	Periph	neral	scatt	er-ga	ther	tran	sitio	n										
3:1	Res	erve	d					Тс	ens	ure d	comp	atib	oility	with	n futu	ire d	evice	es, a	lway	ys n	rite	bits	to 0.	Мог	e ir	nfori	natio	on in	Sect	tion 2	2.1 (p	p. :
0	EN							0				R	1			DN	AE	nabl	le S	tatu	s											

8.7.2 DWA_CONFIG - DWA CONTIGURATION REGISTER

Offset			В	it Position								
0x004	31 33 33 30 33 30 228 228 228 226 226 226 226 226 226 226	24 23 21 21	20 19 17	16 1	Ω 4 m 0 c	0						
Reset					0	0						
Access					>	≥						
Name					CHPROT	EN						
Bit	Name	Reset	Access	Description								
31:6	Reserved	To ensure comp	To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p.									
5	CHPROT	0	W	Channel Protection Control								

Bit	Name	Reset	Access	Description	
3:2	LFB	0x1	RW	Clock Select for LFE	3
	Selects the clo	ck source for LFBCLK.			
	LFB	LFBE		Mode	Description
	0	0		Disabled	LFBCLK is disabled
	1	0		LFRCO	LFRCO selected as LFBCLK
	2	0		LFXO	LFXO selected as LFBCLK
	3	0		HFCORECLKLEDIV2	HFCORECLK _{LE} divided by two is selected as LFBCLK
	0	1		ULFRCO	ULFRCO selected as LFBCLK

 1:0
 LFA
 0x1
 RW
 Clock Select for LFA

Selects the clock source for LFACLK.

LFA	LFAE	Mode	Description
0	0	Disabled	LFACLK is disabled
1	0	LFRCO	LFRCO selected as LFACLK
2	0	LFXO	LFXO selected as LFACLK
3	0	HFCORECLKLEDIV2	$HFCORECLK_LE$ divided by two is selected as $LFACLK$
0	1	ULFRCO	ULFRCO selected as LFACLK

11.5.12 CMU_STATUS - Status Register

Offset		Bit Position																														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	ი	8	7	9	5	4	e	2	-	0
Reset				·			î								·	·	·	0	0	0	0	-	0	0	0	0	0	0	0	0	-	-
Access																		Ж	ъ	ĸ	ĸ	ĸ	ĸ	Ж	ĸ	ĸ	Ъ	ĸ	ĸ	ĸ	ĸ	2
Name																		CALBSY	LFXOSEL	LFRCOSEL	HFXOSEL	HFRCOSEL	LFXORDY	LFXOENS	LFRCORDY	LFRCOENS	AUXHFRCORDY	AUXHFRCOENS	HFXORDY	HFXOENS	HFRCORDY	HFRCOENS

Bit	Name	Reset	Access	Description					
31:15	15 Reserved To ensure compatibility with			h future devices, always write bits to 0. More information in Section 2.1 (p. 3)					
14	CALBSY	0	R	Calibration Busy					
	Calibration is on-go	ping.							
13	LFXOSEL	0	R	LFXO Selected					
	LFXO is selected a	s HFCLK clock source).						
12	LFRCOSEL	0	R	LFRCO Selected					
	LFRCO is selected	as HFCLK clock source	ce.						
11	HFXOSEL	0	R	HFXO Selected					
	HFXO is selected a	as HFCLK clock source	9.						
10	HFRCOSEL	1	R	HFRCO Selected					
	HFRCO is selected	l as HFCLK clock sour	ce.						
9	LFXORDY	0	R	LFXO Ready					
	LFXO is enabled ar	nd start-up time has e	ceeded.						
8	LFXOENS	0	R	LFXO Enable Status					
	LFXO is enabled.								
7	LFRCORDY	0	R	LFRCO Ready					

14.5.31 EBI_TFTTIMING - TFT Timing Register

	-i																																
Offset																Bit	Pos	sitio	on														
0x078	31	30	29	28	27	26	25	24	23	22	21	20	10	18	7	2	16	15	14	13	12	11	10	6	8	7	9	5	4	ю	2	-	0
Reset			c.	0X0			0	0X0								nnn nn												000X0					
Access				≷ Y			Ì	≷ Ƴ							DW													RW					
Name				IFIHOLD				IFISEIUP							TETCTADT													DCLKPERIOD					
Bit	N	ame						Re	eset				Ac	ces	s		Des	cri	ptio	on													
31:30	R	eserv	ed					То	ens	ure	com	oati	bility	y wit	h fu	iture	e dei	vice	es, a	lwa	ys v	vrite	bits	to 0.	Mor	e int	orm	natio	n in S	Sect	ion 2	.1 (p	o. 3)
29:28	TF	тно	LD					0x0)			I	RW			-	TFT	Но	ld T	ïme	e												
	Se	ets the	e nui	mber	r of i	ntei	rnal	cloc	k cyo	cles	the	RGI	B da	ata i	s he	eld a	after	the	act	ive	edg	e of	EBI	_DC	LK.								
27:26	R	eserv	ed					То	ens	ure	com	oati	bility	y wit	th fu	iture	e dei	vice	es, a	lwa	ys v	vrite	bits	to 0.	Mor	e int	orm	natio	n in S	Sect	ion 2	.1 (p	o. 3)
25:24	TF	TSE	TUP					0x0)			I	RW			-	TFT	Set	up	Tim	ne												
	Se	ets the	e nui	mber	r of i	ntei	rnal	cloc	k cyc	cles	the	RGI	B da	ata i	s dr	river	n bei	fore	the	ac	tive	edg	e of	EBI_	DCI	_K.							
23	R	eserv	ed					То	ens	ure	com	pati	bility	y wit	h fu	iture	e dei	vice	es, a	lwa	ys v	vrite	bits	to 0.	Mor	e int	orm	natio	n in S	Sect	ion 2	.1 (p	o. 3)
22:12	TF	TST	ART					0x0	000			1	RW			-	TFT	Dir	ect	Dri	ve T	ran	sact	ion	Star	t							
	Se	ets the	e sta	arting	pos	itio	n of	the	Exte	rna	l Dire	ect D	Drive	e Tra	ans	acti	on re	elat	ive 1	to th	ne D	CLK	(ina	ctive	edg	je.							
11	R	eserv	ed					То	ens	ure	com	oati	bility	y wit	th fu	iture	e dei	vice	es, a	lwa	ys v	vrite	bits	to 0.	Mor	e int	orm	natio	n in S	Sect	ion 2	.1 (p	o. 3)
10:0	D	CLKP	ERI	OD				0x0	000				RW			-	TFT	Dir	ect	Dri	ve T	ran	sact	ion	(EBI	_DC	LK) Pei	riod				
	Se	ets th	e Dir	ect D	Drive	e tra	insa	ctior	ו (EE	BI_C	DCLK	() pe	erio	d in	inte	erna	I сус	les	. Se	t to	req	uirea	d cyo	cle c	ount	min	us 1	۱.					

14.5.32 EBI_TFTPOLARITY - TFT Polarity Register

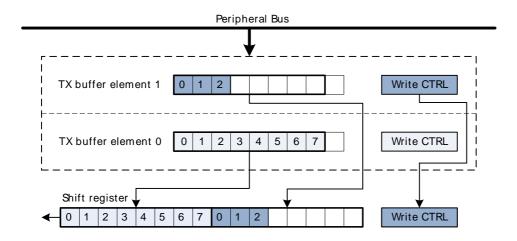
Offset						•									Bi	t Po	siti	on														
0x07C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	e	7	-	0
Reset			•																		•	•						0	0	0	0	0
Access																												RW	RW	RW	RW	RW
Name																												VSYNCPOL	HSYNCPOL	DATAENPOL	DCLKPOL	CSPOL

Access Description 31:5 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

4	VSYNCPOL	0	RW	VSYNC Polarity
---	----------	---	----	----------------

Sets the polarity of the EBI_VSYNC line.

Value	Mode		Description
0	ACTIVELOW		VSYNC is active low.
1	ACTIVEHIGH		VSYNC is active high.
HSYNCPOL	0	RW	Address Latch Polarity


3	HSYNCPOL	0	RW	Address Latch Pola

Sets the polarity of the EBI_HSYNC line.

Value	Mode	Description
0	ACTIVELOW	HSYNC is active low.

Figure 16.9. USART Transmission of Large Frames

As shown in Figure 16.9 (p. 220), frame transmission control bits are taken from the second element in FIFO.

The two buffer elements can be written at the same time using the USARTn_TXDOUBLE or USARTn_TXDOUBLEX register. The TXDATAX0 bitfield then refers to buffer element 0, and TXDATAX1 refers to buffer element 1.

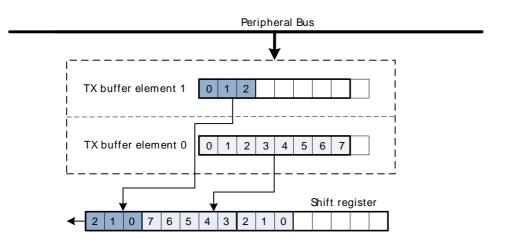


Figure 16.10 (p. 220) illustrates the order of the transmitted bits when an 11 bit frame is transmitted with MSBF set. If MSBF is set and the frame is smaller than 10 bits, only the contents of transmit buffer 0 will be transmitted.

When receiving a large frame, BYTESWAP in USARTn_CTRL determines the order the way the large frame is split into the two buffer elements. If BYTESWAP is cleared, the least significant 8 bits of the received frame are loaded into the first element of the receive buffer, and the remaining bits are loaded into the second element, as shown in Figure 16.11 (p. 221). The first byte read from the buffer thus contains the 8 least significant bits. Set BYTESWAP to reverse the order.

The status bits are loaded into both elements of the receive buffer. The frame is not moved from the receive shift register before there are two free spaces in the receive buffer.

Description 7:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

RW

3:0

DATABITS

Data-Bit Mode

0x5 This register sets the number of data bits in a USART frame.

Value	Mode	Description
1	FOUR	Each frame contains 4 data bits
2	FIVE	Each frame contains 5 data bits
3	SIX	Each frame contains 6 data bits
4	SEVEN	Each frame contains 7 data bits
5	EIGHT	Each frame contains 8 data bits
6	NINE	Each frame contains 9 data bits
7	TEN	Each frame contains 10 data bits
8	ELEVEN	Each frame contains 11 data bits
9	TWELVE	Each frame contains 12 data bits
10	THIRTEEN	Each frame contains 13 data bits
11	FOURTEEN	Each frame contains 14 data bits
12	FIFTEEN	Each frame contains 15 data bits
13	SIXTEEN	Each frame contains 16 data bits

16.5.3 USARTn_TRIGCTRL - USART Trigger Control register

Offset	Bit Position				
0x008	33 33 33 33 33 33 33 33 33 33 33 33 33	5	4	ю	0 7 7
Reset		0	0		0×0
Access		RV	RW		RW
Name		TXTEN	RXTEN		TSEL

Bit				
ы	Name	Reset	Access	Description
31:6	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	TXTEN	0	RW	Transmit Trigger Enable
	When set, the	PRS channel selected by T	SEL sets TXEN,	enabling the transmitter on positive trigger edges.
4	RXTEN	0	RW	Receive Trigger Enable
	When set, the	PRS channel selected by T	SEL sets RXEN,	enabling the receiver on positive trigger edges.
3	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
	TOF!	0.0		
2:0	TSEL	0x0	RW	Trigger PRS Channel Select
2:0	-			nable RX and/or TX, depending on the setting of RXTEN and TXTEN.
2:0	-		PRS signal can er	
2:0	Select USART	PRS trigger channel. The I	PRS signal can er	nable RX and/or TX, depending on the setting of RXTEN and TXTEN.
2:0	Select USART	PRS trigger channel. The P	PRS signal can er Des PRS	nable RX and/or TX, depending on the setting of RXTEN and TXTEN.
2:0	Select USART	PRS trigger channel. The R Mode PRSCH0	PRS signal can er Des PRS PRS	nable RX and/or TX, depending on the setting of RXTEN and TXTEN. scription S Channel 0 selected
2:0	Select USART	PRS trigger channel. The P Mode PRSCH0 PRSCH1	PRS signal can er Des PRS PRS PRS	nable RX and/or TX, depending on the setting of RXTEN and TXTEN. scription S Channel 0 selected S Channel 1 selected
2:0	Select USART	PRS trigger channel. The P Mode PRSCH0 PRSCH1 PRSCH2	PRS signal can er Des PRS PRS PRS PRS	nable RX and/or TX, depending on the setting of RXTEN and TXTEN. cription S Channel 0 selected S Channel 1 selected S Channel 2 selected
2:0	Select USART Value 0 1 2 3	PRS trigger channel. The R Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3	PRS signal can er Des PRS PRS PRS PRS PRS	nable RX and/or TX, depending on the setting of RXTEN and TXTEN. scription S Channel 0 selected S Channel 1 selected S Channel 2 selected S Channel 3 selected
2:0	Select USART Value 0 1 2 3 4	PRS trigger channel. The R Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4	PRS signal can er Des PRS PRS PRS PRS PRS PRS	nable RX and/or TX, depending on the setting of RXTEN and TXTEN. scription S Channel 0 selected C Channel 1 selected C Channel 2 selected C Channel 3 selected C Channel 4 selected

Offset													E	Bit Po	ositi	on														
0x028	33 34	29	28	27	26	25	24	23	22	21	20	19 18	17	16	15	4	13	12	7	10	ი	ω	7	9	5	4	з	N	-	0
Reset																											0x00			
Access																											>			
Name																											IXDAIA			
Bit	Name	9					Re	set			Α	cces	SS	De	scri	iptio	on													
31:8	Reser	ved					Тое	ensu	ire c	отр	atibi	lity w	ith fu	ture d	evice	es, a	lwaj	ys n	rite	bits t	o 0.	More	e info	orm	atior	n in S	Secti	on 2.	1 (p.	3)
7:0	TXDA	TA					0x0	C			W			тх	Data	a														

This frame will be added to the transmit buffer. Only 8 LSB can be written using this register. 9th bit and control bits will be cleared.

18.5.12 LEUARTn_IF - Interrupt Flag Register

Offset					•										Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	თ	ω	7	6	5	4	ю	7	-	0
Reset			•	·								·				·	·	·				0	0	0	0	0	0	0	0	0	-	0
Access																						ĸ	ĸ	ĸ	ĸ	Я	Ъ	ĸ	ĸ	ĸ	ъ	ъ
Name																						SIGF	STARTF	MPAF	FERR	PERR	TXOF	RXUF	RXOF	RXDATAV	TXBL	TXC

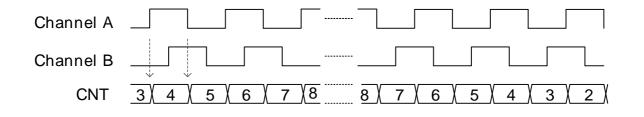
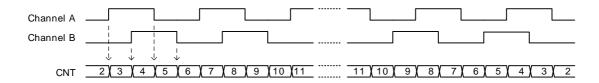

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure comp	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	SIGF	0	R	Signal Frame Interrupt Flag
	Set when a signal frame is	detected.		
9	STARTF	0	R	Start Frame Interrupt Flag
	Set when a start frame is d	letected.		
8	MPAF	0	R	Multi-Processor Address Frame Interrupt Flag
	Set when a multi-processo	r address frame is	detected.	
7	FERR	0	R	Framing Error Interrupt Flag
	Set when a frame with a fra	aming error is recei	ived while RXE	BLOCK is cleared.
6	PERR	0	R	Parity Error Interrupt Flag
	Set when a frame with a pa	arity error is receive	ed while RXBL	OCK is cleared.
5	TXOF	0	R	TX Overflow Interrupt Flag
	Set when a write is done to	the transmit buffe	r while it is full.	The data already in the transmit buffer is preserved.
4	RXUF	0	R	RX Underflow Interrupt Flag
	Set when trying to read from	m the receive buffe	er when it is en	npty.
3	RXOF	0	R	RX Overflow Interrupt Flag
	Set when data is incoming	while the receive s	hift register is	full. The data previously in shift register is overwritten by the new data.
2	RXDATAV	0	R	RX Data Valid Interrupt Flag
	Set when data becomes av	vailable in the recei	ve buffer.	
1	TXBL	1	R	TX Buffer Level Interrupt Flag
	Set when space becomes	available in the trar	nsmit buffer for	a new frame.

Table 19.1. TIMER Counter Response in X2 Decoding Mode

Channel B	Chan	nel A
	Rising	Falling
0	Increment	Decrement
1	Decrement	Increment

Figure 19.8. TIMER X2 Decoding Mode


19.3.1.6.2 X4 Decoding Mode

In X4 Decoding mode, the counter increments or decrements on every edge of Channel A and Channel B, see Figure 19.9 (p. 280) and Table 19.2 (p. 280).

Table 19.2. TIMER Counter Response in X4 Decoding Mode

Opposite Channel	Chan	nel A	Chan	nel B
	Rising	Falling	Rising	Falling
Channel A = 0			Decrement	Increment
Channel A = 1			Increment	Decrement
Channel B = 0	Increment	Decrement		
Channel B = 1	Decrement	Increment		

Figure 19.9. TIMER X4 Decoding Mode

19.3.1.6.3 TIMER Rotational Position

To calculate a position Equation 19.1 (p. 280) can be used.

TIMER Rotational Position Equation

 $pos^{\circ} = (CNT/X \times N) \times 360^{\circ}$

(19.1)

where X = Encoding type and N = Number of pulses per revolution.

19.3.2 Compare/Capture Channels

The Timer contains 3 Compare/Capture channels, which can be configured in the following modes:

19.5 Register Description

19.5.1 TIMERn_CTRL - Control Register

Offset	Bit Position																															
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	ю	7	-	0
Reset							0X0														0.0	nxn	0.0	nxn	0	0	0	0	0		0.0	
Access							≷ צ						-		10/0						1010	2 Z	1010	≥ 2	RW	RW	RW	RW	RW		/// D	
Name							PRESC								טואטבו	CENSEL								RIDEA	DMACLRACT	DEBUGRUN	QDM	OSMEN	SYNC			

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure compat	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)

27:24 PRESC 0x0 RW **Prescaler Setting**

These bits select the prescaling factor.

Value	Mode	Description
0	DIV1	The HFPERCLK is undivided
1	DIV2	The HFPERCLK is divided by 2
2	DIV4	The HFPERCLK is divided by 4
3	DIV8	The HFPERCLK is divided by 8
4	DIV16	The HFPERCLK is divided by 16
5	DIV32	The HFPERCLK is divided by 32
6	DIV64	The HFPERCLK is divided by 64
7	DIV128	The HFPERCLK is divided by 128
8	DIV256	The HFPERCLK is divided by 256
9	DIV512	The HFPERCLK is divided by 512
10	DIV1024	The HFPERCLK is divided by 1024

Reserved 23:18

17:16

CLKSEL

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3) 0x0

0x0

0x0

Clock Source Select

These bits select the clock source for the timer.

Value	Mode	Description
0	PRESCHFPERCLK	Prescaled HFPERCLK
1	CC1	Compare/Capture Channel 1 Input
2	TIMEROUF	Timer is clocked by underflow(down-count) or overflow(up-count) in the lower numbered neighbor Timer

15:12	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
-------	----------	---

FALLA 11:10

Timer Falling Input Edge Action

Timer Rising Input Edge Action

These bits select the action taken in the counter when a falling edge occurs on the input.

RW

RW

Value	Mode	Description
0	NONE	No action
1	START	Start counter without reload
2	STOP	Stop counter without reload
3	RELOADSTART	Reload and start counter

9:8

RISEA

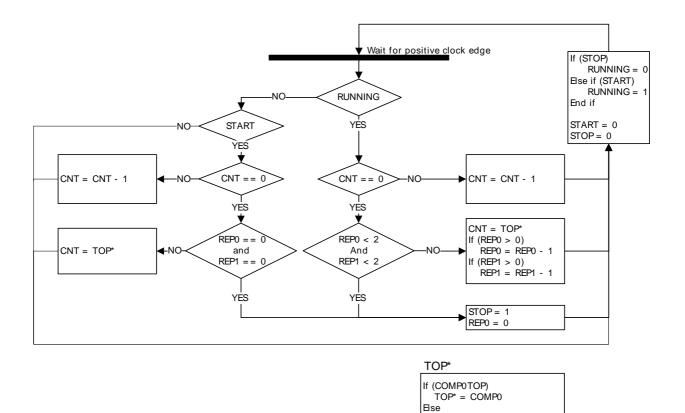
These bits select the action taken in the counter when a rising edge occurs on the input.

RW

Value	Mode	Description
0	NONE	No action
1	START	Start counter without reload
2	STOP	Stop counter without reload

Bit	Name	Reset	Access	Description						
1	DTPRS1FC	0	W1	DTI PRS1 Fault Clear						
	Write 1 to this bit to	clear PRS 1 fault.								
0	DTPRS0FC	0	W1	DTI PRS0 Fault Clear						
	Write 1 to this bit to clear PRS 0 fault.									

19.5.22 TIMERn_DTLOCK - DTI Configuration Lock Register


Offset		Bit Pos													sition																	
0x088	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	ю	2	-	0
Reset																								000010	nnnnxn							
Access																-									2 2 2							
Name																									LUCANET							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure com	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	LOCKKEY	0x0000	RW	DTI Lock Key

Write any other value than the unlock code to lock TIMER0_ROUTE, TIMER0_DTCTRL, TIMER0_DTTIME and TIMER0_DTFC from editing. Write the unlock code to unlock. When reading the register, bit 0 is set when the lock is enabled.

Mode	Value	Description
Read Operation		
UNLOCKED	0	TIMER DTI registers are unlocked
LOCKED	1	TIMER DTI registers are locked
Write Operation		
LOCK	0	Lock TIMER DTI registers
UNLOCK	0xCE80	Unlock TIMER DTI registers

Figure 21.5. LETIMER Double Repeat State Machine

The LETIMER clock source and its prescaler value are defined in the Clock Management Unit (CMU). The LFACLK_{LETIMERn} has a frequency given by Equation 21.1 (p. 325).

LETIMER Clock Frequency

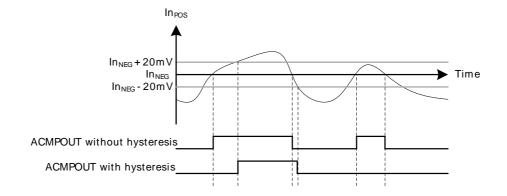
 $f_{LFACKL_LETIMERn} = 32.768/2^{LETIMERn}$ (21.1)

 $TOP^* = 0 \times FFFF$

where the exponent LETIMERn is a 4 bit value in the CMU_LFAPRESC0 register.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKEN0, in addition to the module clock.

21.3.3.4 RTC Trigger


The LETIMER can be configured to start on compare match events from the Real Time Counter (RTC). If RTCC0TEN in LETIMERn_CTRL is set, the LETIMER will start on a compare match on RTC compare channel 0. In the same way, RTCC1TEN in LETIMERn_CTRL enables the LETIMER to start on a compare match with RTC compare channel 1.

Note

The LETIMER can only use compare match events from the RTC if the LETIMER runs at a higher than or equal frequency than the RTC. Also, if the LETIMER runs at twice the frequency of the RTC, a compare match event in the RTC will trigger the LETIMER twice. Four times the frequency gives four consecutive triggers, etc. The LETIMER will only

Figure 23.2. 20 mV Hysteresis Selected

23.3.4 Input Selection

The POSSEL and NEGSEL fields in ACMPn_INPUTSEL controls which signals are connected to the two inputs of the comparator. 8 external pins are available for both the negative and positive input. For the negative input, 3 additional internal reference sources are available; 1.25 V bandgap, 2.5V bandgap and V_{DD} . The V_{DD} reference can be scaled by a configurable factor, which is set in VDDLEVEL (in ACMPn_INPUTSEL) according to the following formula:

V_{DD} Scaled

A low power reference mode can be enabled by setting the LPREF bit in ACMPn_INPUTSEL. In this mode, the power consumption in the reference buffer (V_{DD} and bandgap) is lowered at the cost of accuracy. Low power mode will only save power if V_{DD} with VDDLEVEL higher than 0 or a bandgap reference is selected.

Normally the analog comparator input mux is disabled when the EN (in ACMPn_CTRL) bit is set low. However if the MUXEN bit in ACMPn_CTRL is set, the mux is enabled regardless of the EN bit. This will minimize kickback noise on the mux inputs when the EN bit is toggled.

23.3.5 Capacitive Sense Mode

The analog comparator includes specialized hardware for capacitive sensing of passive push buttons. Such buttons are traces on PCB laid out in a way that creates a parasitic capacitor between the button and the ground node. Because a human finger will have a small intrinsic capacitance to ground, the capacitance of the button will increase when the button is touched. The capacitance is measured by including the capacitor in a free-running RC oscillator (see Figure 23.3 (p. 358)). The frequency produced will decrease when the button is touched compared to when it is not touched. By measuring the output frequency with a timer (e.g. through PRS), the change in capacitance can be calculated.

The analog comparator contains a complete feedback loop including an optional internal resistor. This resistor is enabled by setting the CSRESEN bit in ACMPn_INPUTSEL. The resistance can be set to one of four values by configuring the CSRESSEL bits in ACMPn_INPUTSEL. If the internal resistor is not enabled, the circuit will be open. The capacitive sense mode is enabled by setting the NEGSEL field in ACMPn_INPUTSEL to CAPSENSE. The input pin is selected through the POSSEL bits in ACMPn_INPUTSEL. The scaled V_{DD} in Figure 23.3 (p. 358) can be altered by configuring the VDDLEVEL in ACMPn_INPUTSEL. It is recommended to set the hysteresis (HYSTSEL in ACMPn_CTRL) higher than the lowest level when using the analog comparator in capacitive sense mode.

(23.1)

25.5.7 ADCn_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on												
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	 ; ;	2 o	8	7	9	5	4	3	2	-	0
Reset									-												0	0							0	0
Access																					۲	۲							Ж	22
Name																					SCANOF	SINGLEOF							SCAN	SINGLE

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure con	npatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
9	SCANOF	0	R	Scan Result Overflow Interrupt Flag
	Indicates scan result over	flow when this bit	is set.	
8	SINGLEOF	0	R	Single Result Overflow Interrupt Flag
	Indicates single result over	erflow when this bi	it is set.	
7:2	Reserved	To ensure con	npatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	SCAN	0	R	Scan Conversion Complete Interrupt Flag
	Indicates scan conversion	n complete when t	his bit is set.	
0	SINGLE	0	R	Single Conversion Complete Interrupt Flag
	Indicates single conversion	on complete when	this bit is set.	

25.5.8 ADCn_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	თ	8	7	9	5	4	3	2	-	0
Reset																						,	0	0							0	0
Access																							۲	M1							M1	W1
Name																							SCANOF	SINGLEOF							SCAN	SINGLE

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
9	SCANOF	0	W1	Scan Result Overflow Interrupt Flag Set
	Write to 1 to set scan resu	It overflow interrupt	flag	
8	SINGLEOF	0	W1	Single Result Overflow Interrupt Flag Set
	Write to 1 to set single res	ult overflow interrup	t flag.	
7:2	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	SCAN	0	W1	Scan Conversion Complete Interrupt Flag Set
	Write to 1 to set scan conv	version complete int	errupt flag.	
0	SINGLE	0	W1	Single Conversion Complete Interrupt Flag Set
	Write to 1 to set single cor	version complete in	nterrupt flag.	

26.5.5 DACn_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	ი	8	7	9	5	4	e	2	-	0
Reset													· · · ·														0	0			0	0
Access																											RW	RW			RW	RW
Name																											CH1UF	CHOUF			CH1	СНО

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	CH1UF	0	RW	Channel 1 Conversion Data Underflow Interrupt Enable
	Enable/disable char	nnel 1 data underflow	interrupt.	
4	CHOUF	0	RW	Channel 0 Conversion Data Underflow Interrupt Enable
	Enable/disable char	nnel 0 data underflow	interrupt.	
3:2	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	CH1	0	RW	Channel 1 Conversion Complete Interrupt Enable
	Enable/disable char	nnel 1 conversion com	nplete interrupt.	
0	CH0	0	RW	Channel 0 Conversion Complete Interrupt Enable
	Enable/disable char	nnel 0 conversion com	nplete interrupt.	

26.5.6 DACn_IF - Interrupt Flag Register

Offset		E	Bit Position			
0x014	31 30 29 27 26 25 25	24 23 22 21 22 21 18 19 19	6 7 88 9 10 11 12 13 14 15 16 17	ر ح	л 3	- 0
Reset				0		0 0
Access				ж ж		ж ж
Name				CH1UF CH0UF		CH1 CH0

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	CH1UF	0	R	Channel 1 Data Underflow Interrupt Flag
	Indicates channel 1	l data underflow.		
4	CHOUF	0	R	Channel 0 Data Underflow Interrupt Flag
	Indicates channel () data underflow.		
3:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	CH1	0	R	Channel 1 Conversion Complete Interrupt Flag
	Indicates channel 1	conversion complete	and that new data	can be written to the data register.
0	CH0	0	R	Channel 0 Conversion Complete Interrupt Flag
	Indicates channel () conversion complete	and that new data	can be written to the data register.

Bit	Name	Reset	Access	Description
31:0	XORDATA	0x00000000	RW	XOR Data Access
	Access data with XO	R function through this I	register.	

27.5.10 AES_KEYLA - KEY Low Register

Offset															Bi	t Po	ositi	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	ю	2	-	0
Reset													<u> </u>				000000000								·							
Access																																
Name		_																														
Bit	Na	ime						Re	eset			A	CCe	ess		De	scr	iptio	on													
31:0	KE	YLA						0x0	0000	0000)	R	W			Ke	y Lo	w A	cce	ess	Ą											
	Aco	cess	the	low	key	wor	ds t	hrou	gh th	is re	giste	er.																				

27.5.11 AES_KEYLB - KEY Low Register

Offset						••••••									Bi	t Po	siti	on					•									
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	ю	2	-	0
Reset																																
Access																Md																
Name																KEVI B																

Bit	Name	Reset	Access	Description	
31:0	KEYLB	0x0000000	RW	Key Low Access B	
	Access the low key words through this register.				

Abbreviation	Description
LEUART	Low Energy Universal Asynchronous Receiver Transmitter
LFRCO	Low Frequency RC Oscillator
LFXO	Low Frequency Crystal Oscillator
LS	Low-speed
MAC	Media Access Controller
NVIC	Nested Vector Interrupt Controller
OSR	Oversampling Ratio
OTG	On-the-go
PCNT	Pulse Counter
PHY	Physical Layer
PRS	Peripheral Reflex System
PWM	Pulse Width Modulation
RC	Resistance and Capacitance
RMU	Reset Management Unit
RTC	Real Time Clock
SAR	Successive Approximation Register
SOF	Start of Frame
SPI	Serial Peripheral Interface
SW	Software
UART	Universal Asynchronous Receiver Transmitter
USART	Universal Synchronous Asynchronous Receiver Transmitter
USB	Universal Serial Bus
VCMP	Voltage supply Comparator
WDOG	Watchdog timer
XTAL	Crystal

25.4. Register Map	384
25.5. Register Description	384
26. DAC - Digital to Analog Converter	397
26.1. Introduction	397
26.2. Features	397
26.3. Functional Description	398
26.4. Register Map	403
26.5. Register Description	403
27. AES - Advanced Encryption Standard Accelerator	412
27.1. Introduction	
27.2. Features	
27.3. Functional Description	412
27.4. Register Map	
27.5. Register Description	416
28. GPIO - General Purpose Input/Output	424
28.1. Introduction	
28.2. Features	
28.3. Functional Description	
28.4. Register Map	
28.5. Register Description	
29. LCD - Liquid Crystal Display Driver	446
29.1. Introduction	
29.2. Features	
29.3. Functional Description	
29.4. Register Map	
29.5. Register Description	
30. Revision History	
30.1. Revision 1.30	485
30.2. Revision 1.20	485
30.3. Revision 1.10	
30.4. Revision 1.00	
30.5. Revision 0.84	
30.6. Revision 0.83	
30.7. Revision 0.82	
30.8. Revision 0.81	
30.9. Revision 0.80	
A. Abbreviations	
A.1. Abbreviations	
B. Disclaimer and Trademarks	
B.1. Disclaimer	490
B.1. Disclaimer	
C. Contact Information	
C. Contact Information C.1.	
U.1.	+34