E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s903f3p6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	STM8S903K3/F3 block diagram 1	1
Figure 2.	Flash memory organization	4
Figure 3.	STM8S903F3 TSSOP20/SO20 pinout	21
Figure 4.	STM8S903F3 UFQFPN20 pinout	22
Figure 5.	STM8S903K3 UFQFPN32/LQFP32 pinout	25
Figure 6.	STM8S903K3 SDIP32 pinout	26
Figure 7.	Memory map	31
Figure 8.	Pin loading conditions	51
Figure 9.	Pin input voltage	52
Figure 10.	f _{CPUmax} versus V _{DD}	54
Figure 11.	External capacitor C _{FXT}	56
Figure 12.	Typ $I_{DD(RUN)}$ vs. V_{DD} HSE user external clock, f_{CPU} = 16 MHz	32
Figure 13.	Typ $I_{DD(RUN)}$ vs. f_{CPU} HSE user external clock, V_{DD} = 5 V	32
Figure 14.	Typ $I_{DD(RUN)}$ vs. V_{DD} HSI RC osc, f_{CPU} = 16 MHz	33
Figure 15.	Typ $I_{DD(WEI)}$ vs. V_{DD} HSE external clock, f_{CPU} = 16 MHz	33
Figure 16.	Typ $I_{DD(WEI)}$ vs. f_{CPU} HSE external clock, V_{DD} = 5 V	34
Figure 17.	Typ $I_{DD(WEI)}$ vs. V_{DD} HSI RC osc., $f_{CPU} = 16$ MHz	34
Figure 18.	HSE external clock source	35
Figure 19.	HSE oscillator circuit diagram	37
Figure 20.	Typical HSI frequency variation vs V _{DD} @ 4 temperatures	38
Figure 21.	Typical LSI frequency variation vs V_{DD} 4 temperatures	39
Figure 22.	Typical V _{II} and V _{IH} vs V _{DD} @ 4 temperatures	'2
Figure 23.	Typical pull-up current vs V _{DD} @ 4 temperatures	'2
Figure 24.	Typical pull-up resistance vs VDD @ 4 temperatures	'2
Figure 25.	Typ. V_{OI} @ V_{DD} = 3.3 V (standard ports)	'3
Figure 26.	Typ. V_{OI} @ V_{DD} = 5.0 V (standard ports)	'3
Figure 27.	Typ. V_{OI} @ V_{DD} = 3.3 V (true open drain ports)	' 4
Figure 28.	Typ. $V_{OI} @ V_{DD} = 5.0 V$ (true open drain ports)	' 4
Figure 29.	Typ. $V_{OI} @ V_{DD} = 3.3 V$ (high sink ports)	74
Figure 30.	Typ. $V_{OI} @ V_{DD} = 5.0 V$ (high sink ports)	74
Figure 31.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 3.3 V$ (standard ports)	'5
Figure 32.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 5.0 V$ (standard ports)	'5
Figure 33.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 3.3 V$ (high sink ports)	'5
Figure 34.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 5.0 V$ (high sink ports)	'5
Figure 35.	Typical NRST V _{II} and V _{IH} vs V _{DD} @ 4 temperatures	'6
Figure 36.	Typical NRST pull-up resistance R_{PII} vs V_{DD} @ 4 temperatures	7
Figure 37.	Typical NRST pull-up current I_{nu} vs V_{DD} @ 4 temperatures	77
Figure 38.	Recommended reset pin protection	'8
Figure 39.	SPI timing diagram where slave mode and CPHA = 0	30
Figure 40.	SPI timing diagram where slave mode and CPHA = 1	30
Figure 41.	SPI timing diagram - master mode	31
Figure 42.	Typical application with I ² C bus and timing diagram	32
Figure 43.	ADC accuracy characteristics	35
Figure 44.	Typical application with ADC	36
Figure 45	LQFP32 - 32-pin. 7 x 7 mm low-profile guad flat package outline	90
Figure 46	LQFP32 - 32-pin, 7 x 7 mm low-profile guad flat package recommended footprint)1
Figure 47	LQFP32 marking example (package top view))2
Figure 48	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch guad flat	

2 Description

The STM8S903K3/F3 access line 8-bit microcontrollers offer 8 Kbyte Flash program memory, plus integrated true data EEPROM. The STM8S microcontroller family reference manual (RM0016) refers to devices in this family as low-density. They provide the following benefits: performance, robustness, and reduced system cost.

Device performance and robustness are ensured by advanced core and peripherals made in a state-of-the art technology, a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source, and a clock security system.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog and brown-out reset.

Full documentation is offered as well as a wide choice of development tools.

Device	STM8S903K3	STM8S903F3	
Pin count	32	20	
Maximum number of GPIOs (I/Os)	28 ⁽¹⁾	16 ⁽²⁾	
Ext. interrupt pins	28	16	
Timer CAPCOM channels	7		
Timer complementary outputs	3	2	
A/D converter channels	7	5	
High sink I/Os	21	12	
Low density Flash program memory (bytes)	8К		
Data EEPROM (bytes)	640 ⁽³⁾		
RAM (bytes)	1К		
Peripheral set	Multipurpose timer (TIM1), independent WDG, ADC, PWI	SPI, I2C, UART window WDG, M timer (TIM5), 8-bit timer (TIM6)	

Table 1.	STM8S903K3/F3	access	line features
----------	---------------	--------	---------------

1. Including 21 high-sink outputs

2. Including 12 high-sink outputs

3. No read-while-write (RWW) capability.

4.2 Single wire interface module (SWIM) and debug module (DM)

The single wire interface module and debug module permits non-intrusive, real-time incircuit debugging and fast memory programming.

SWIM

Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms.

Debug module

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers.

- R/W to RAM and peripheral registers in real-time
- R/W access to all resources by stalling the CPU
- Breakpoints on all program-memory instructions (software breakpoints)
- Two advanced breakpoints, 23 predefined configurations

4.3 Interrupt controller

- Nested interrupts with three software priority levels,
- 32 interrupt vectors with hardware priority,
- Up to 28 external interrupts on 7 vectors including TLI,
- Trap and reset interrupts

4.4 Flash program and data EEPROM memory

- 8 Kbyte of Flash program single voltage Flash memory,
- 640 byte true data EEPROM,
- User option byte area.

Write protection (WP)

Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction.

There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes.

To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to write to data EEPROM, modify the contents of main program memory or the device option bytes.

A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to the figure below.

The size of the UBC is programmable through the UBC option byte, in increments of 1 page (64-byte block) by programming the UBC option byte in ICP mode.

							- 	e v					
	0	0			Inpu	t		Ou	tput		u Đ	nat	· 승규
TSSOP20	UFQFPN2	Pin name	Type	floating	ndw	Ext.	High sink ⁽¹⁾	Speed	QD	dd	Main functi (after rese	Default alter function	Alternate function after rema [option bi
19	16	PD2/AIN3/ [TIM5_CH3]	I/O	x	x	x	HS	O3	х	х	Port D2	-	Analog input 3 [AFR2] Timer 52 - channel 3 [AFR1]
20	17	PD3/ AIN4/ TIM5_CH2/ ADC_ETR	I/O	x	x	x	HS	O3	x	x	Port D3	Analog input 4 Timer 52 - channel 2/ADC external trigger	-
1	18	PD4/ TIM5_CH1/ BEEP [UART1_CK]	I/O	x	x	x	HS	O3	х	х	Port D4	Timer 5 - channel 1/BEEP output	UART clock [AFR2]
2	19	PD5/ AIN5/ UART1_TX	I/O	x	x	x	HS	O3	х	x	Port D5	Analog input 5/ UART1 data transmit	-
3	20	PD6/ AIN6/ UART1_RX	I/O	x	x	x	HS	O3	x	x	Port D6	Analog input 6/ UART1 data receive	-

Table 5. TSSOP20/SO20/UFQFPN20 pi	in descriptions ((continued)
-----------------------------------	-------------------	-------------

1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings (see *Section 10.2: Absolute maximum ratings*).

2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if Halt/Active-halt is used in the application.

3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented)

4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.

5.6 Alternate function remapping

As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of the family reference manual, RM0016).

6.2.2 General hardware register map

Address	Block	Register label	Register name	Reset status	
0x00 501E to 0x00 5059		Reserv	ved area (60 byte)		
0x00 505A		FLASH_CR1	Flash control register 1	0x00	
0x00 505B		FLASH_CR2	Flash control register 2	0x00	
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF	
0x00 505D	Flash	FLASH_FPR	Flash protection register	0x00	
0x00 505E		FLASH_NFPR	Flash complementary protection register	0xFF	
0x00 505F		FLASH_IAPSR	Flash in-application programming status register	0x00	
0x00 5060 to 0x00 5061	Reserved area (2 byte)				
0x00 5062	Flash FLASH_PUKR		Flash program memory unprotection register	0x00	
0x00 5063	Reserved area (1 byte)				
0x00 5064	Flash	FLASH_DUKR	Data EEPROM unprotection register	0x00	
0x00 5065 to 0x00 509F		Reserv	ved area (59 byte)		
0x00 50A0	ITC	EXTI_CR1	External interrupt control register 1	0x00	
0x00 50A1	ne	EXTI_CR2	External interrupt control register 2	0x00	
0x00 50A2 to 0x00 50B2		Reser	ved area (17 byte)		
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹⁾	
0x00 50B4 to 0x00 50BF		Reser	ved area (12 byte)		
0x00 50C0	CLK	CLK_ICKR	Internal clock control register	0x01	
0x00 50C1	ULN	CLK_ECKR	External clock control register	0x00	
0x00 50C2	Reserved area (1 byte)				

Table 8. General hardware register map

Address	Block	Register label	Register name	Reset status	
0x00 5400		ADC_CSR	ADC control/status register	0x00	
0x00 5401		ADC_CR1	ADC configuration register 1	0x00	
0x00 5402		ADC_CR2	ADC configuration register 2	0x00	
0x00 5403		ADC_CR3	ADC configuration register 3	0x00	
0x00 5404		ADC_DRH	ADC data register high	0xXX	
0x00 5405		ADC_DRL	ADC data register low	0xXX	
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00	
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00	
0x00 5408		ADC_HTRH	ADC high threshold register high	0x03	
0x00 5409	cont'd	ADC_HTRL	ADC high threshold register low	0xFF	
0x00 540A		ADC_LTRH	ADC low threshold register high	0x00	
0x00 540B		ADC_LTRL	ADC low threshold register low	0x00	
0x00 540C		ADC_AWSRH	ADC analog watchdog status register high	0x00	
0x00 540D		ADC_AWSRL	ADC analog watchdog status register low	0x00	
0x00 540E		ADC _AWCRH	ADC analog watchdog control register high	0x00	
0x00 540F		ADC_AWCRL	ADC analog watchdog control register low	0x00	
0x00 5410 to 0x00 57FF	Reserved area (1008 byte)				

Table 8. General hardware register map (continued)

1. Depends on the previous reset source.

2. Write-only register.

IRQ no.	Source block	Description	Wakeup from halt mode	Wakeup from active-halt mode	Vector address
20	Reserved	-	-	-	0x00 8058
21	Reserved	-	-	-	0x00 805C
22	ADC1	ADC1 end of conversion/analog watchdog interrupt	-	-	0x00 8060
23	TIM6	TIM6 update/ overflow	-	-	0x00 8064
24	Flash	EOP/WR_PG_DIS	-	-	0x00 8068
	0x00 806C to 0x00 807C				

Table 10. Interrupt mapping (continued)

1. Except PA1.

2. Refer to STM8S903K3 pin descriptions.

Table 14. STM8S903F3 alternate function remapping bits [7:2] for 20-pin packages

Option byte no.	Description ⁽¹⁾					
	 AFR7 Alternate function remapping option 7 0: AFR7 remapping option inactive: Default alternate functions.⁽²⁾ 1: Port C3 alternate function = TIM1_CH1N; port C4 alternate function = TIM1_CH2N. AFR6 Alternate function remapping option 6 Reserved. 					
OPT2	 AFR5 Alternate function remapping option 5 Reserved. AFR4 Alternate function remapping option 4 0: AFR4 remapping option inactive: Default alternate functions.⁽²⁾ 1: Port B4 alternate function = ADC_ETR; port B5 alternate function = TIM1_BKIN. AFR3 Alternate function remapping option 3 0: AFR3 remapping option inactive: Default alternate function.⁽²⁾ 1: Port C3 alternate function = TLI. AFR2 Alternate function remapping option 2 Reserved. 					

1. Do not use more than one remapping option in the same port.

2. Refer to STM8S903K3 pin descriptions.

Table 15. STM8S903K3 alternate functior	remapping bits	[1:0] for 32-pin	packages
---	----------------	------------------	----------

AFR1 option bit value	AFR0 option bit value	I/O port	Alternate function mapping
0	0	AFR1 and AFR0 remap Default alternate functior	ping options inactive: ns ⁽¹⁾
0		PC5	TIM5_CH1
	1	PC6	TIM1_CH1
		PC7	TIM1_CH2
1	0	PA3	SPI_NSS
1	U	PD2	TIM5_CH3

Symbol	Parameter	Conditions			Max ⁽¹⁾	Unit
I _{DD(RUN)}			HSE crystal osc. (16 MHz)	4.5	-	
	Supply current in Run mode, code executed from Flash	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	4.3	4.75	
			HSI RC osc. (16 MHz)	3.7	4.5	
		f _{CPU} = f _{MASTER} = 2 MHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.84	1.05	mA
		f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	0.72	0.9	
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.46	0.58	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.42	0.57	

Table 23. Total current consumption with code execution in run mode at V_{DD} = 5 V (continued)

1. Guaranteed by characterization results. Guaranteed by characterization results.

2. Default clock configuration measured with all peripherals off.

Table 24. Total cur	ent consumption with	n code execution in ru	n mode at V _{DD} = 3.3 V
---------------------	----------------------	------------------------	-----------------------------------

Symbol	Parameter	Conditi	ons	Тур	Max ⁽¹⁾	Unit	
			HSE crystal osc. (16 MHz)	1.8	-		
		f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2	2.35		
	Supply		HSI RC osc. (16 MHz)	1.5	2		
I _{DD(RUN)}	Run mode, code	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSE user ext. clock (16 MHz)	0.81	-	mA	
	executed from RAM		HSI RC osc. (16 MHz)	0.7	0.87		
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.46	0.58		
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.41	0.55		
		f _{CPU} = f _{MASTER} = 16 MHz	HSE crystal osc. (16 MHz)	4	-		
	Supply		HSE user ext. clock (16 MHz)	3.9	4.7		
	current in		HSI RC osc. (16 MHz)	3.7	4.5	mA	
I _{DD(RUN)}	Run mode,	f _{CPU} = f _{MASTER} = 2 MHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.84	1.05		
	executed	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	0.72	0.9		
	from Flash	f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.46	0.58		
		f _{CPU} = f _{MASTER} = 128 kHz		LSI RC osc. (128 kHz)	0.42	0.57	

1. Guaranteed by characterization results.

2. Default clock configuration measured with all peripherals off.

- 2. Measured from interrupt event to interrupt vector fetch
- 3. $t_{WU(WFI)} = 2 \times 1/f_{master} + 67 \times 1/f_{CPU}$
- 4. Configured by the REGAH bit in the CLK_ICKR register.
- 5. Configured by the AHALT bit in the FLASH_CR1 register.
- 6. Plus 1 LSI clock depending on synchronization.

Total current consumption and timing in forced reset state

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit	
I _{DD(R)}	Supply current in reset	V_{DD} = 5 V	400	-		
	state ⁽²⁾	V _{DD} = 3.3 V	300	-	μΑ	
t _{RESETBL}	Reset pin release to vector fetch	-	-	150	μs	

Table 32. Total current consumption and timing in forced reset state

1. Guaranteed by design.

2. Characterized with all I/Os tied to V_{SS}.

Current consumption of on-chip peripherals

Subject to general operating conditions for V_{DD} and T_A .

HSI internal RC/f_{CPU}= f_{MASTER} = 16 MHz, V_{DD} = 5 V

Table 33	. Peripheral	current	consumption
----------	--------------	---------	-------------

Symbol	Parameter	Тур	Unit
I _{DD(TIM1)}	TIM1 supply current ⁽¹⁾	210	
I _{DD(TIM5)}	TIM5 supply current ⁽¹⁾	130	
I _{DD(TIM6)}	TIM6 supply current ⁽¹⁾	50	
I _{DD(UART1)}	UART1 supply current ⁽²⁾	120	
I _{DD(SPI)}	SPI supply current ⁽²⁾	45	μΑ
I _{DD(I2C)}	I2C supply current ⁽²⁾	65	
I _{DD(ADC1)}	ADC1 supply current when converting ⁽³⁾	1000	

1. Data based on a differential I_{DD} measurement between reset configuration and timer counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.

 Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production.

 Data based on a differential IDD measurement between reset configuration and continuous A/D conversions. Not tested in production.

Current consumption curves

The following figures show typical current consumption measured with code executing in RAM.

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE}	External high speed oscillator frequency	-	1	-	16	MHz
R _F	Feedback resistor	-	-	220	-	kΩ
C ⁽¹⁾	Recommended load capacitance ⁽²⁾	-	-	-	20	pF
I _{DD(HSE)}	HSE oscillator power	C = 20 pF f _{OSC} = 16 MHz	-	-	6 (start up) 1.6 (stabilized) ⁽³⁾	m۸
	consumption	C = 10 pF f _{OSC} = 16 MHz	-	-	6 (start up) 1.2 (stabilized) ⁽³⁾	mА
9 _m	Oscillator transconductance	_	5	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	ms

Tahle	35	HSE	oscillator	characteristics
lable	JJ.	IIOL	USCINALUI	Characteristics

1. C is approximately equivalent to 2 x crystal Cload.

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value. Refer to crystal manufacturer for more details

3. Guaranteed by characterization results.

 t_{SU(HSE)} is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 24. Typical pull-up resistance vs VDD @ 4 temperatures

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{OL}	Output low level with 8 pins sunk	I _{IO} = 10 mA, V _{DD} = 5 V	-	2.0	
	Output low level with 4 pins sunk	I _{IO} = 4 mA, V _{DD} = 3.3 V	-	1.0 ⁽¹⁾	V
V _{OH}	Output high level with 8 pins sourced	I _{IO} = 10 mA, V _{DD} = 5 V	2.8	-	v
	Output high level with 4 pins sourced	I _{IO} = 4 mA, V _{DD} = 3.3 V	2.1 ⁽¹⁾	-	

1. Guaranteed by characterization results

DocID15590 Rev 11

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{OL}	Output low level with 2 pins sunk	I _{IO} = 10 mA, V _{DD} = 5 V	-	1.0	
	Output low level with 2 pins sunk	I _{IO} = 10 mA, V _{DD} = 3.3 V	-	1.5 ⁽¹⁾	V
V _{OH}	Output high level with 2 pins sourced	I _{IO} = 10 mA, V _{DD} = 5 V	-	2.0 ⁽¹⁾	

Table 42.	Output	drivina	current	(true	open	drain	ports)
	output	anna	ourroite	(0.00	00011	anann	po: 00)

1. Guaranteed by characterization results

Symbol	Parameter	Conditions	Min	Max	Unit
Output low leve pins sunk V _{OL}	Output low level with 8 pins sunk	I _{IO} = 10 mA, V _{DD} = 5 V	-	0.8	
	Output low level with 4	I _{IO} = 10 mA, V _{DD} = 3.3 V	-	1.0 ⁽¹⁾	
	pins sunk	I _{IO} = 20 mA, V _{DD} = 5 V	-	1.5 ⁽¹⁾	V
	Output high level with 8 pins sourced	I _{IO} = 10 mA, V _{DD} = 5 V	4.0	-	v
V _{OH}	Output high level with 4 pins sourced	I _{IO} = 10 mA, V _{DD} = 3.3 V	2.1 ⁽¹⁾	-	
		I _{IO} = 20 mA, V _{DD} = 5 V	3.3 ⁽¹⁾	-	

Table 43	Output	driving	current	(hiah	sink norts	١
1 aute 43.	Output	univiliu	CULLETIC	UIIMII		

1. Guaranteed by characterization results.

DocID15590 Rev 11

10.3.10 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MASTER}},\,\text{and}\,\,T_{\text{A}}\,\,\text{unless}$ otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f	ADC alook frequency	V_{DD} = 2.95 to 5.5 V	1	-	4		
IADC	ADC Clock frequency	V _{DD} = 4.5 to 5.5 V	1	-	6		
V _{AIN}	Conversion voltage range ⁽¹⁾	-	V_{SS}	-	V_{DD}	V	
V _{BGREF}	Internal bandgap reference voltage	V _{DD} = 2.95 to 5.5 V	1.19	1.22	1.25	V	
C _{ADC}	Internal sample and hold capacitor	-	-	3	-	pF	
+_(1)	Minimum sampling time	f _{ADC} = 4 MHz	-	0.75	-	116	
		f _{ADC} = 6 MHz	-	0.5	-	μο	
t _{STAB}	Wakeup time from standby	-	-	7.0	-	μs	
	Minimum total conversion time (including sampling time, 10-	f _{ADC} = 4 MHz	3.5		μs		
t _{CONV}		f _{ADC} = 6 MHz	2.33		μs		
	bit resolution)	-	14		1/f _{ADC}		

Table 47. ADC characteristics

 During the sample time, the sampling capacitance, C_{AIN} (3 pF max), can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

11.2 UFQFPN32 package information

1. Drawing is not to scale.

- 2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this backside pad to PCB ground.
- 4. Dimensions are in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

12 Thermal characteristics

The maximum junction temperature (T_{Jmax}) of the device must never exceed the values specified in *Table 21: General operating conditions*, otherwise the functionality of the device cannot be guaranteed.

The maximum junction temperature T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \; (\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) * \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit	
ΘJA	Thermal resistance junction-ambient TSSOP20 - 4.4mm	110		
	Thermal resistance junction-ambient SO20W (300 mils)	20	- °C/W	
	Thermal resistance junction-ambient UFQFPN20 - 3 x 3 mm	101		
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm	60		
	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm	38		
	Thermal resistance junction-ambient SDIP32 - 400 mils	60		

Table 60. 1	Thermal	character	istics ⁽¹⁾
-------------	---------	-----------	-----------------------

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

12.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

Date Revision	Changes
Date Revision 08-Sep-2010 5	ChangesRemoved VFQFPN32 package.Updated the definition for reset state in Table 4:Legend/abbreviations for pinout tablesUpdated pins 13/25/20, 14/26/21, 19/32/27, 1/2/29,2/3/30, and 3/4/31; added footnote to PD1/SWIM pin inTable 6: STM8S903K3 UFQFPN32/LQFP32/SDIP32 pindescriptions.Standardized all reset state values; updated the resetstate values of RST_SR, CLK_SWCR, CLK_HSITRIMR,CLK_SWIMCCR, IWDG_KR, and ADC_DRx registers inTable 8: General hardware register map.Changed the caption of Table 13: STM8S903K3alternate function remapping bits [7:2] for 32-pinpackages.Added Table 14: STM8S903F3 alternate functionremapping bits [7:2] for 20-pin packages.Changed the caption of Table 15: STM8S903K3alternate function remapping bits [1:0] for 32-pinpackages.Added Table 16: STM8S903F3 alternate functionremapping bits [1:0] for 20-pin packages.Replaced 0.01 µF with 0.1 µF in Figure 38:Recommended reset pin protection.Added Figure 42: Typical application with I ² C bus andtiming diagram.Updated footnote 1 in Table 48: ADC accuracy with $R_{AIN} < 10 k\Omega V_{DD} = 5. V and Table 49: ADC accuracy$

Table 61. Document revision history (continued)

