

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN
Supplier Device Package	20-UFQFPN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s903f3u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Table 5. 1350F20/3020/0FQFFN20 pill descriptions (continued)													
	0	0			Input	t		Ou	tput		ç o	nate	~ 운포	
TSSOP20	UFQFPN20	Pin name	Type	floating	ndw	Ext.	High sink ⁽¹⁾	Speed	ao	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]	
19	16	PD2/AIN3/ [TIM5_CH3]	I/O	x	х	х	HS	O3	х	х	Port D2	-	Analog input 3 [AFR2] Timer 52 - channel 3 [AFR1]	
20	17	PD3/ AIN4/ TIM5_CH2/ ADC_ETR	I/O	x	x	x	HS	O3	x	x	Port D3	Analog input 4 Timer 52 - channel 2/ADC external trigger	-	
1	18	PD4/ TIM5_CH1/ BEEP [UART1_CK]	I/O	x	х	х	HS	O3	х	х	Port D4	Timer 5 - channel 1/BEEP output	UART clock [AFR2]	
2	19	PD5/ AIN5/ UART1_TX	I/O	x	х	х	HS	O3	х	х	Port D5	Analog input 5/ UART1 data transmit	-	
3	20	PD6/ AIN6/ UART1_RX	I/O	x	х	х	HS	O3	х	х	Port D6	Analog input 6/ UART1 data receive	-	

Table 5. 1350F20/3020/0FQFFN20 pill descriptions (continued)	Table 5	. TSSOP20/SO20/UFQFPN20	pin descri	ptions	(continued)
--	---------	-------------------------	------------	--------	-------------

1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings (see *Section 10.2: Absolute maximum ratings*).

2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if Halt/Active-halt is used in the application.

3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented)

4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.

	32				Input	t		Out	put		E	ate	ion	
SDIP32	LQFP/ UFQFP:	Pin name	Type	floating	ndw	Ext. interrupt	High sink ⁽¹⁾	Speed	ao	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]	
4	31	PD6/ AIN6/ UART1_RX	I/O	x	х	х	HS	О3	х	х	Port D6	Analog input 6/ UART1 data receive	-	
5	32	PD7/ TLI [TIM1_CH4]	I/O	x	х	х	HS	O3	х	х	Port D7	Top level interrupt	Timer 1 - channel 4 [AFR6]	

Table 6. STM8S903K3 UFQFPN32/LQFP32/SDIP32 pin descriptions (continued)

1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings (see Section 10: Electrical characteristics).

2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if Halt/Active-halt is used in the application.

3. In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to V_{DD} are not implemented).

4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.

7 Interrupt vector mapping

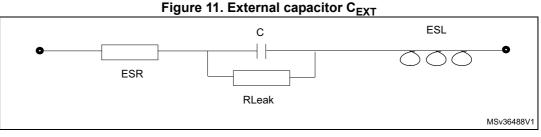

IRQ no.	Source block	Description	Wakeup from halt mode	Wakeup from active-halt mode	Vector address
-	RESET	Reset	Yes	Yes	0x00 8000
-	TRAP	Software interrupt	-	-	0x00 8004
0	TLI	External top level interrupt	-	-	0x00 8008
1	AWU	Auto wake up from halt	-	Yes	0x00 800C
2	CLK	Clock controller	-	-	0x00 8010
3	EXTI0	Port A external interrupts	Yes ⁽¹⁾	Yes ⁽¹⁾	0x00 8014
4	EXTI1	Port B external interrupts	Yes	Yes	0x00 8018
5	EXTI2	Port C external interrupts	Yes	Yes	0x00 801C
6	EXTI3	Port D external interrupts	Yes	Yes	0x00 8020
7	EXTI4	Port E external interrupts	Yes	Yes	0x00 8024
8	EXTI5	Port F external interrupts	-	-	0x00 8028
9	Reserved	-	-	-	0x00 802C
10	SPI	End of transfer	Yes	Yes	0x00 8030
11	TIM1	TIM1 update/ overflow/ underflow/ trigger/ break	-	-	0x00 8034
12	TIM1	TIM1 capture/ compare	-	-	0x00 8038
13	TIM5	TIM5 update/ overflow/trigger	-	-	0x00 803C
14	TIM5	TIM5 capture/ compare	-	-	0x00 8040
15	Reserved	-	-	-	0x00 8044
16	Reserved	-	-	-	0x00 8048
17	UART1	Tx complete	-	-	0x00 804C
18	UART1	Receive register DATA FULL	_	-	0x00 8050
19	I2C	I2C interrupt	Yes	Yes	0x00 8054

Table 10. Interrupt mapping

10.3.1 VCAP external capacitor

The stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 21*. Care should be taken to limit the series inductance to less than 15 nH.

1. ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as illustrated in Figure 9: Pin input voltage.

Total supply current consumption in run mode

The MCU is placed under the following conditions:

- All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled (clock stopped by peripheral clock gating registers) except if explicitly mentioned.

Subject to general operating conditions for V_{DD} and T_A.

Table 23. Total current consumption with code execution in run mode at V_{DD} = 5 V	ent consumption with code execution in r	run mode at V _{DD} = 5 V
---	--	-----------------------------------

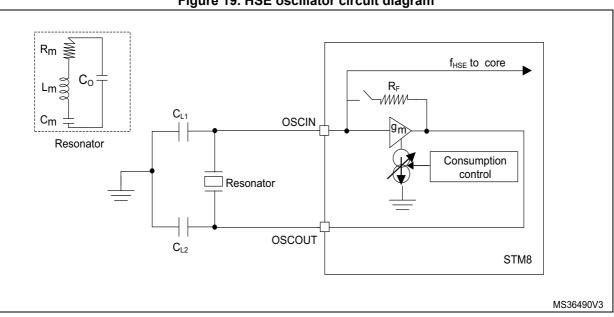
Symbol	Parameter	Conditi	ons	Тур	Max ⁽¹⁾	Unit
			HSE crystal osc. (16 MHz)	2.3	-	
		f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2	2.35	
	Supply current in Run mode, code		HSI RC osc. (16 MHz)	1.7	2	
I _{DD(RUN)}		$f_{CPU} = f_{MASTER} / 128 = 125 \text{ kHz}$	HSE user ext. clock (16 MHz)	0.86	-	mA
	executed from RAM		HSI RC osc. (16 MHz)	0.7	0.87	
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.46	0.58	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.41	0.55	

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

					1	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE}	External high speed oscillator frequency	-	1	-	16	MHz
R _F	Feedback resistor	-	-	220	-	kΩ
C ⁽¹⁾	Recommended load capacitance ⁽²⁾	-	-	-	20	pF
	HSE oscillator power	C = 20 pF f _{OSC} = 16 MHz	-	-	6 (start up) 1.6 (stabilized) ⁽³⁾	mA
I _{DD(HSE)}	consumption	C = 10 pF f _{OSC} = 16 MHz	-	-	6 (start up) 1.2 (stabilized) ⁽³⁾	
9 _m	Oscillator transconductance	-	5	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	ms

Table	35	HSF	oscillator	characteristics
Table	55.		Uscillator	


1. C is approximately equivalent to 2 x crystal Cload.

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value. Refer to crystal manufacturer for more details

3. Guaranteed by characterization results.

 t_{SU(HSE)} is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 19. HSE oscillator circuit diagram

HSE oscillator critical g_m equation

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

 R_m : Notional resistance (see crystal specification) L_m : Notional inductance (see crystal specification) C_m : Notional capacitance (see crystal specification) Co: Shunt capacitance (see crystal specification) $C_{L1} = C_{L2} = C$: Grounded external capacitance $g_m \gg g_{mcrit}$

Low speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency	-	110	128	150	kHz
t _{su(LSI)}	LSI oscillator wakeup time	-	-	-	7	μs
IDD(LSI)	LSI oscillator power consumption	-	-	5	-	μA

25°C 85°C -125°C 5.00% -45'C 4.00% 3.00% 2.00% % accuracy 1.00% 0.00% -1.00% -2.00% -3.00% -4.00% -5.00% 3.5 2 2.5 3 4 4.5 5 5.5 6 $V_{pp}(V)$

Figure 21. Typical LSI frequency variation vs $V_{\text{DD}} @$ 4 temperatures

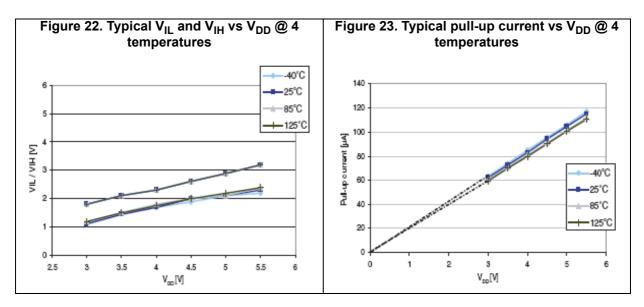
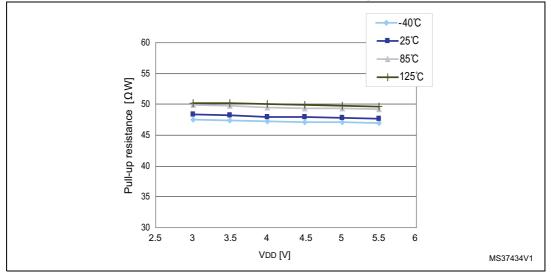
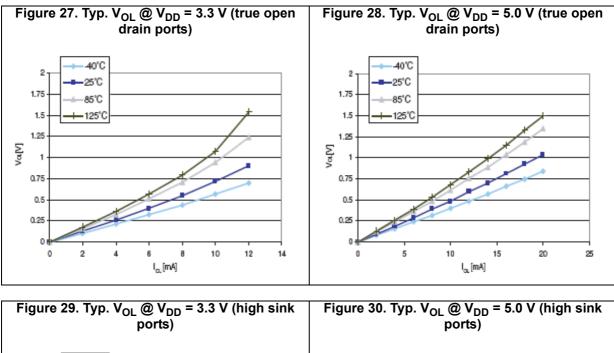
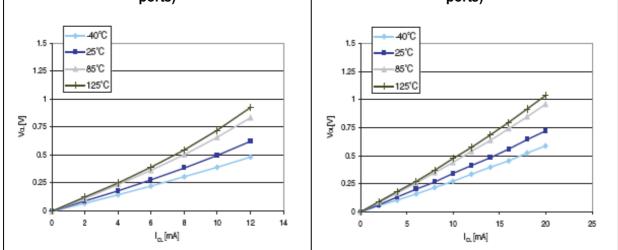



Figure 24. Typical pull-up resistance vs VDD @ 4 temperatures




Symbol	Parameter	Conditions	Min	Мах	Unit
N.	Output low level with 8 pins sunk	I _{IO} = 10 mA, V _{DD} = 5 V	-	2.0	
V _{OL}	Output low level with 4 pins sunk	I _{IO} = 4 mA, V _{DD} = 3.3 V	-	1.0 ⁽¹⁾	V
N	Output high level with 8 pins sourced	I _{IO} = 10 mA, V _{DD} = 5 V	2.8	-	V
V _{OH}	Output high level with 4 pins sourced	I _{IO} = 4 mA, V _{DD} = 3.3 V	2.1 ⁽¹⁾	-	

1. Guaranteed by characterization results

DocID15590 Rev 11

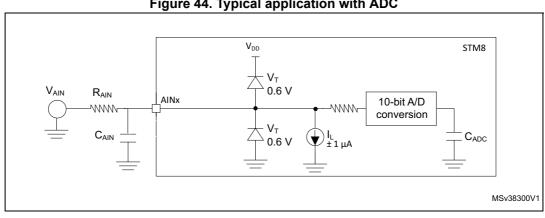


Figure 44. Typical application with ADC

1. Legend: R_{AIN} = external resistance, C_{AIN} = capacitors, C_{samp} = internal sample and hold capacitor.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾
		T _A = 25 °C	
LU	Static latch-up class	T _A = 85 °C	А
		T _A = 125 °C	

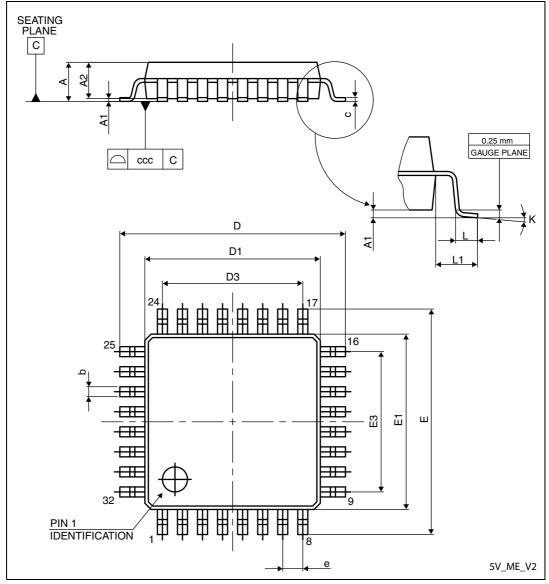
Table 53. Electrical sensitivities

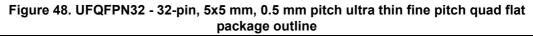
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

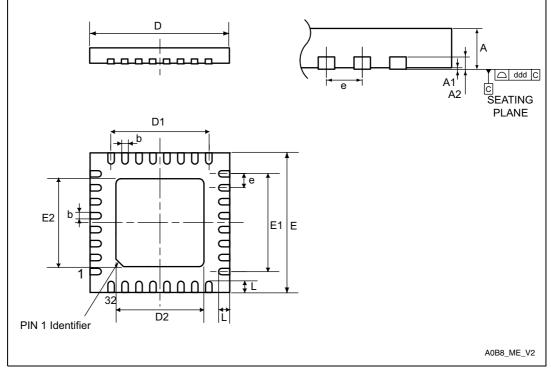
11 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

11.1 LQFP32 package information

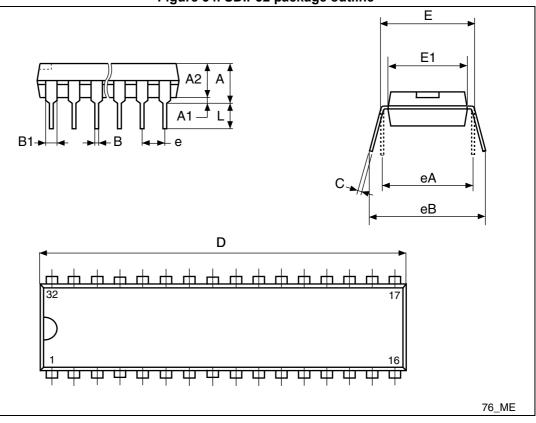



Figure 45. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline


1. Drawing is not to scale.

DocID15590 Rev 11

11.2 UFQFPN32 package information



1. Drawing is not to scale.

- 2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this backside pad to PCB ground.
- 4. Dimensions are in millimeters.

11.4 SDIP32 package information

Figure 54. SDIP32 package outline

Table 57. SDIP32 package mechanical data

Dim	mm			inches ⁽¹⁾		
Dim.	Min	Тур	Мах	Min	Тур	Max
А	3.556	3.759	5.080	0.1400	0.1480	0.2000
A1	0.508	-	-	0.0200	-	-
A2	3.048	3.556	4.572	0.1200	0.1400	0.1800
В	0.356	0.457	0.584	0.0140	0.0180	0.0230
B1	0.762	1.016	1.397	0.0300	0.0400	0.0550
С	0.203	0.254	0.356	0.0079	0.0100	0.0140
D	27.430	27.940	28.450	1.0799	1.1000	1.1201
E	9.906	10.410	11.050	0.3900	0.4098	0.4350
E1	7.620	8.890	9.398	0.3000	0.3500	0.3700
е	-	1.778	-	-	0.0700	-
eA	-	10.160	-	-	0.4000	-

11.6 SO20 package information

Table 59. SO20 mechanical data

Dim	mm			inches ⁽¹⁾		
Dim.	Min	Тур	Max	Min	Тур	Max
А	2.350	-	2.650	0.0925	-	0.1043
A1	0.100	-	0.300	0.0039	-	0.0118
В	0.330	-	0.510	0.013	-	0.0201
С	0.230	-	0.320	0.0091	-	0.0126
D	12.600	-	13.000	0.4961	-	0.5118
E	7.400	-	7.600	0.2913	-	0.2992
е	-	1.270	-	-	0.0500	-
Н	10.000	-	10.650	0.3937	-	0.4193
h	0.250	-	0.750	0.0098	-	0.0295
L	0.400	-	1.270	0.0157	-	0.0500
k	0.0°	-	8.0°	0.0°	-	8.0°
ddd	-	-	0.100	-	-	0.0039

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

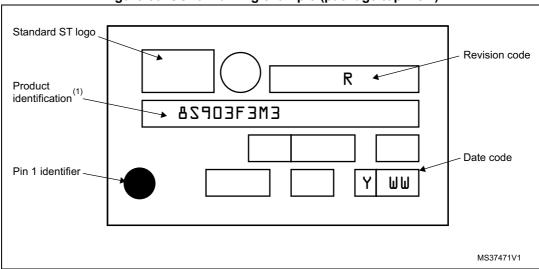
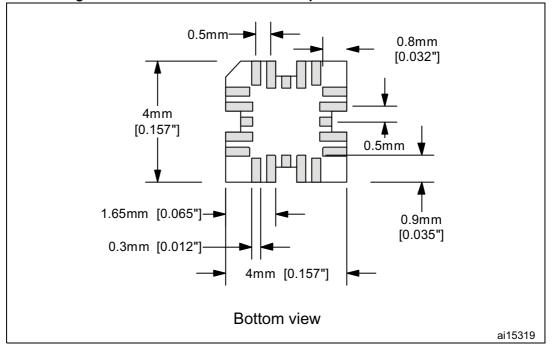
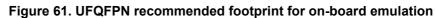




Figure 60. SO20 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

11.7 UFQFPN recommended footprint

OTP2 alternate function remapping for STM8S903K3

Do not use more than one remapping option in the same port.

	[] 00: Remapping options inactive. Default alternate functions
	used. Refer to pinout description.
	[] 01: Port C5 alternate function = TIM5_CH1, port C6 alternate function = TIM1_CH1, and port C7 alternate function = TIM1_CH2.
AFR1, AFR0	[] 10: Port A3 alternate function = SPI_NSS and port D2 alternate function = TIM5_CH3.
(check only one option)	[] 11: Port D2 alternate function = TIM5_CH3, port C5 alternate function = TIM5_CH1, port C6 alternate function = TIM1_CH1, port C7 alternate function = TIM1_CH2, port C2 alternate function = TIM1_CH3N, port C1 alternate function = TIM1_CH2N, port E5 alternate function = TIM1_CH1N, port A3 alternate function = UART1_TX, and port F4 alternate function = UART1_RX.
AFR2	[] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description.
(check only one option)	[] 1: Port C4 alternate function = AIN2, port D2 alternate function = AIN3, port D4 alternate function = UART1_CK.
AFR3	[] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description.
(check only one option)	[] 1: Port C3 alternate function = TLI.
AFR4	[] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description.
(check only one option)	[] 1: Port B4 alternate function = ADC_ETR, port B5 alternate function = TIM1_BKIN.
AFR5 (check only one option)	 [] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description. [] 1: Port D0 alternate function = CLK CCO.
	[] 0: Remapping option inactive. Default alternate functions
AFR6 (check only one option)	used. Refer to pinout description. [] 1: Port D7 alternate function = TIM1_CH4.
AFR7	[] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description.
(check only one option)	[] 1: Port C3 alternate function = TIM1_CH1N, port C4 alternate function = TIM1_CH2N.

14.3 **Programming tools**

During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on the application board via the SWIM protocol. Additional tools include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for the STM8 programming.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

Date	Revision	Changes
28-Jul-2011	6	 Added note for OPT1 option list. Updated OPT2 option list for STM8S903K3 and created OPT2 option list for STM8S903F3 in Section 13.1: STM8S903K3/F3 FASTROM microcontroller option list. Updated UART1 interrupt vector addresses in Table 10: Interrupt mapping. Updated note related to true open-drain outputs in Table 6: STM8S903K3 UFQFPN32/LQFP32/SDIP32 pin descriptions and Table 5: TSSOP20/SO20/UFQFPN20 pin descriptions. Added UFQFPN20 package. Removed CLK_CANCCR register from Table 8: General hardware register map. Added note for Px_IDR registers in Table 7: I/O port hardware register map. Updated the caption of Figure 63: STM8S903K3/F3 access line ordering information scheme⁽¹⁾. Removed Typical HSI accuracy curve in High speed internal RC oscillator (HSI) Updated the value of recommended external capacitor to 100 nF in Table 44: NRST pin characteristics. Updated the disclaimer.
04-Apr-2012	7	Renamed internal reference voltage as internal bandgap reference voltage.Updated notes related to VCAP in Table 21: General operating conditions.Added values of t _R /t _F for 50 pF load capacitance, and updated note in Table 40: I/O static characteristics.Updated typical and maximum values of RPU in Table 40: I/O static characteristics and Table 44: NRST pin characteristics.Changed SCK input to SCK output in Table 45: SPI characteristics.Modified Figure 51: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline.
13-Jun-2012	8	Restored Figure 44: Typical application with ADC. Modified Figure 51: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline.

Table 61. Document revision history (continued)

Date Revision		Changes
23-Feb-2015	9	 Updated: Section 11.5: TSSOP20 package information Section 11.3: UFQFPN20 package information. Added: Figure 46: LQFP32 recommended footprint Figure 47: LQFP32 marking example (package top view) Figure 50: UFQFPN32 marking example (package top view) Figure 53: UFQFPN20 marking example (package top view) Figure 55: SDIP32 marking example (package top view) Figure 57: TSSOP20 recommended package footprint Figure 58: TSSOP20 marking example (package top view) Figure 58: TSSOP20 marking example (package top view) Figure 60: SO20 marking example (package top view)

