
STMicroelectronics - STM8S903K3U3TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	28
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s903k3u3tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	11.2	UFQFPN32 package information
	11.3	UFQFPN20 package information
	11.4	SDIP32 package information
	11.5	TSSOP20 package information
	11.6	SO20 package information 104
	11.7	UFQFPN recommended footprint 105
12	Ther	mal characteristics
	12.1	Reference document
	12.2	Selecting the product temperature range
13	Orde	ring information
	13.1	STM8S903K3/F3 FASTROM microcontroller option list
14	STM	3 development tools 115
	14.1	Emulation and in-circuit debugging tools
		14.1.1 STice key features 115
	14.2	Software tools
		14.2.1 STM8 toolset
		14.2.2 C and assembly toolchains
	14.3	Programming tools
15	Revis	sion history

4.5 Clock controller

The clock controller distributes the system clock (fMASTER) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.

Features

- Clock prescaler: to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **Master clock sources:** four different clock sources can be used to drive the master clock:
 - 1-16 MHz high-speed external crystal (HSE)
 - Up to 16 MHz high-speed user-external clock (HSE user-ext)
 - 16 MHz high-speed internal RC oscillator (HSI)
 - 128 kHz low-speed internal RC (LSI)
- **Startup clock:** After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): This feature can be enabled by software. If an HSE clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated.
- **Configurable main clock output (CCO):** This outputs an external clock for use by the application.

Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock
PCKEN17	TIM1	PCKEN13	UART1	PCKEN27	Reserved	PCKEN23	ADC
PCKEN16	TIM5	PCKEN12	Reserved	PCKEN26	Reserved	PCKEN22	AWU
PCKEN15	Reserved	PCKEN11	SPI	PCKEN25	Reserved	PCKEN21	Reserved
PCKEN14	TIM6	PCKEN10	12C	PCKEN24	Reserved	PCKEN20	Reserved

Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers

Asynchronous communication (UART mode)

- Full duplex communication NRZ standard format (mark/space)
- Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable of following any standard baud rate regardless of the input frequency
- Separate enable bits for transmitter and receiver
 - Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line (interrupt)
- Transmission error detection with interrupt generation
- Parity control

Synchronous communication

- Full duplex synchronous transfers
- SPI master operation
- 8-bit data communication
- Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16)

LIN master mode

- Emission: Generates 13-bit synch. break frame
- Reception: Detects 11-bit break frame

4.14.2 SPI

- Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave/master selection input pin

4.14.3 I²C

- I²C master features:
 - Clock generation
 - Start and stop generation
- I²C slave features:
 - Programmable I2C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
- Supports different communication speeds:
 - Standard speed (up to 100 kHz)
 - Fast speed (up to 400 kHz)

		Table 5. 1550F20/5020/0FQFFN20 pill descriptions (continued)											
	0	0			Input	t		Ou	tput		ç o	nate	~ 운포
TSSOP20	UFQFPN20	Pin name	Type	floating	ndw	Ext.	High sink ⁽¹⁾	Speed	ao	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
19	16	PD2/AIN3/ [TIM5_CH3]	I/O	x	х	х	HS	O3	х	х	Port D2	-	Analog input 3 [AFR2] Timer 52 - channel 3 [AFR1]
20	17	PD3/ AIN4/ TIM5_CH2/ ADC_ETR	I/O	x	x	x	HS	O3	x	x	Port D3	Analog input 4 Timer 52 - channel 2/ADC external trigger	-
1	18	PD4/ TIM5_CH1/ BEEP [UART1_CK]	I/O	x	х	х	HS	O3	х	х	Port D4	Timer 5 - channel 1/BEEP output	UART clock [AFR2]
2	19	PD5/ AIN5/ UART1_TX	I/O	x	х	х	HS	O3	х	х	Port D5	Analog input 5/ UART1 data transmit	-
3	20	PD6/ AIN6/ UART1_RX	I/O	x	х	х	HS	O3	х	х	Port D6	Analog input 6/ UART1 data receive	-

Table 5. 1350F20/3020/0FQFFN20 pill descriptions (continued)	Table 5	. TSSOP20/SO20/UFQFPN20	pin descri	ptions	(continued)
--	---------	-------------------------	------------	--------	-------------

1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings (see *Section 10.2: Absolute maximum ratings*).

2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if Halt/Active-halt is used in the application.

3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented)

4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.

Address	Block	Register label	Register name	Reset status			
0x00 526A		TIM1_CCR3L	TIM1 capture/compare register 3 low	0x00			
0x00 526B		TIM1_CCR4H	TIM1 capture/compare register 4 high	0x00			
0x00 526C	TIM1	TIM1_CCR4L	TIM1 capture/compare register 4 low	0x00			
0x00 526D		TIM1_BKR	TIM1 break register	0x00			
0x00 526E		TIM1_DTR	TIM1 dead-time register	0x00			
0x00 526F		TIM1_OISR	TIM1 output idle state register	0x00			
0x00 5270 to 0x00 52FF		Reserved area (147 byte)					

Table 8. General hardware register map (continued)

Address Plack Perioter label Perioter roma Post status						
Address	Block	Register label	Register name	Reset status		
0x00 5400		ADC_CSR	ADC control/status register	0x00		
0x00 5401		ADC_CR1	ADC configuration register 1	0x00		
0x00 5402		ADC_CR2	ADC configuration register 2	0x00		
0x00 5403		ADC_CR3	ADC configuration register 3	0x00		
0x00 5404		ADC_DRH	ADC data register high	0xXX		
0x00 5405		ADC_DRL	ADC data register low	0xXX		
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00		
0x00 5407	ADC1 cont'd	ADC_TDRL	ADC Schmitt trigger disable register low	0x00		
0x00 5408		ADC_HTRH	ADC high threshold register high	0x03		
0x00 5409		ADC_HTRL	ADC high threshold register low	0xFF		
0x00 540A		ADC_LTRH	ADC low threshold register high	0x00		
0x00 540B		ADC_LTRL	ADC low threshold register low	0x00		
0x00 540C		ADC_AWSRH	ADC analog watchdog status register high	0x00		
0x00 540D		ADC_AWSRL	ADC analog watchdog status register low	0x00		
0x00 540E		ADC _AWCRH	ADC analog watchdog control register high	0x00		
0x00 540F		ADC_AWCRL	ADC analog watchdog control register low	0x00		
0x00 5410 to 0x00 57FF		Reserv	ved area (1008 byte)			

Table 8. General hardware register map (continued)

1. Depends on the previous reset source.

2. Write-only register.

7 Interrupt vector mapping

IRQ no. Source block		Description	Wakeup from halt mode	Wakeup from active-halt mode	Vector address
-	RESET	Reset	Yes	Yes	0x00 8000
-	TRAP	Software interrupt	-	-	0x00 8004
0	TLI	External top level interrupt	-	-	0x00 8008
1	AWU	Auto wake up from halt	-	Yes	0x00 800C
2	CLK	Clock controller	-	-	0x00 8010
3	EXTI0	Port A external interrupts	Yes ⁽¹⁾	Yes ⁽¹⁾	0x00 8014
4	EXTI1	Port B external interrupts	Yes	Yes	0x00 8018
5	EXTI2	Port C external interrupts	Yes	Yes	0x00 801C
6	EXTI3	Port D external interrupts	Yes	Yes	0x00 8020
7	EXTI4	Port E external interrupts	Yes	Yes	0x00 8024
8	EXTI5	Port F external interrupts	-	-	0x00 8028
9	Reserved	-	-	-	0x00 802C
10	SPI	End of transfer	Yes	Yes	0x00 8030
11	TIM1	TIM1 update/ overflow/ underflow/ trigger/ break	-	-	0x00 8034
12	TIM1	TIM1 capture/ compare	-	-	0x00 8038
13	TIM5	TIM5 update/ overflow/trigger	-	-	0x00 803C
14	TIM5	TIM5 capture/ compare	-	-	0x00 8040
15	Reserved	-	-	-	0x00 8044
16	Reserved	-	-	-	0x00 8048
17	UART1	Tx complete	-	-	0x00 804C
18	UART1	Receive register DATA FULL	_	-	0x00 8050
19	I2C	I2C interrupt	Yes	Yes	0x00 8054

Table 10. Interrupt mapping

Option byte no.	Description						
	EXTCLK: External clock selection						
	0: External crystal connected to OSCIN/OSCOUT						
	1: External clock signal on OSCIN						
	CKAWUSEL: Auto wake-up unit/clock						
OPT4	0: LSI clock source selected for AWU						
OF14	1: HSE clock with prescaler selected as clock source for AWU						
	PRSC[1:0] AWU clock prescaler						
	0x: 16 MHz to 128 kHz prescaler						
	10: 8 MHz to 128 kHz prescaler						
	11: 4 MHz to 128 kHz prescaler						
	HSECNT[7:0]: HSE crystal oscillator stabilization time						
	0x00: 2048 HSE cycles						
OPT5	0xB4: 128 HSE cycles						
	0xD2: 8 HSE cycles						
	0xE1: 0.5 HSE cycles						

8.1 Alternate function remapping bits

Table 13. STM8S903K3 alternate function remapping bits [7:2] for 32-pin packages

Option byte no.	Description ⁽¹⁾
OPT2	 AFR7 Alternate function remapping option 7 0: AFR7 remapping option inactive: Default alternate functions.⁽²⁾ 1: Port C3 alternate function = TIM1_CH1N; port C4 alternate function = TIM1_CH2N. AFR6 Alternate function remapping option 6 0: AFR6 remapping option inactive: Default alternate function.⁽²⁾ 1: Port D7 alternate function = TIM1_CH4. AFR5 Alternate function remapping option 5 0: AFR5 remapping option inactive: Default alternate function.⁽²⁾ 1: Port D0 alternate function = CLK_CCO. AFR4 Alternate function remapping option 4 0: AFR4 remapping option inactive: Default alternate functions.⁽²⁾ 1: Port B4 alternate function = ADC_ETR; port B5 alternate function = TIM1_BKIN. AFR3 Alternate function = TIM1_BKIN. AFR3 Alternate function = TLI. AFR2 Alternate function = TLI. AFR2 Alternate function = AIN2; port D2 alternate functions.⁽²⁾ 1: Port C4 alternate function = AIN2; port D2 alternate function = AIN3; port D4 alternate function = UART1 CK

1. Do not use more than one remapping option in the same port.

	· · · · · · · · · · · · · · · · · · ·				
Symbol	Symbol Ratings				
	Injected current on NRST pin	±4			
I _{INJ(PIN)} ^{(3) (4)}	Injected current on OSCIN pin	±4	mA		
	Injected current on any other pin ⁽⁵⁾	±4	ma		
$\Sigma I_{INJ(PIN)}^{(3)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±20			

Table 19. Current characteristics (continued)

1. Guaranteed by characterization results.

- 2. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external supply.
- 3. I_{INJ(PIN)} must never be exceeded. This condition is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true opendrain pads, there is no positive injection current allowed and the corresponding V_{IN} maximum must always be respected.
- 4. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣI_{INJ(PIN)} in the I/O port pin characteristics section does not affect the ADC accuracy.
- 5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with $\Sigma I_{INJ(PIN)}$ maximum current injection on four I/O port pins of the device.

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to 150	°C
TJ	Maximum junction temperature	150	C

10.3 Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CPU}	Internal CPU clock frequency	-	0	16	MHz
V _{DD/} V _{DDIO}	Standard operating voltage	-	2.95	5.5	V
	C _{EXT} : capacitance of external capacitor	-	470	3300	nF
V _{CAP} ⁽¹⁾	ESR of external capacitor	– at 1 MHz ⁽²⁾	-	0.3	Ω
	ESL of external capacitor		-	15	nH
	Power dissipation at T _A = 85 °C for suffix 6	TSSOP20	-	182	
		SO20W	-	1000	
P _D ⁽³⁾		UFQFPN20	-	198	m)//
PD		LQFP32	-	333	mW
		UFQFPN32	-	526	
		SDIP32	-	333	

DocID15590 Rev 11

10.3.5 Memory characteristics

RAM and hardware registers

Table 38. RAM and hardware registers

Symbol	Parameter	Conditions	Min	Unit
V_{RM}	Data retention mode ⁽¹⁾	Halt mode (or reset)	V _{IT-max} ⁽²⁾	V

1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.

2. Refer to Section 10.3: Operating conditions for the value of VIT-max.

Flash program memory/data EEPROM memory

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit	
V _{DD}	Operating voltage (all modes, execution/write/erase)	f _{CPU} ≤ 16 MHz	2.95	-	5.5	V	
t _{prog}	Standard programming time (including erase) for byte/word/block (1 byte/4 byte/64 byte)	-	-	6	6.6	ms	
prog	Fast programming time for 1 block (64 byte)	-	-	3	3.33		
t _{erase}	Erase time for 1 block (64 byte)	-	-	3	3.33		
+	Data retention (program and data memory) after 10k erase/write cycles at T _A = +55 °C	T _{RET} = 55 °C	20	-	-	- year	
t _{RET}	Data retention (data memory) after 300k erase/write cycles at T _A = +125°C	T _{RET} = 85 °C	1	-	-		
I _{DD}	Supply current (Flash programming or erasing for 1 to 128 byte)	-	-	2	-	mA	

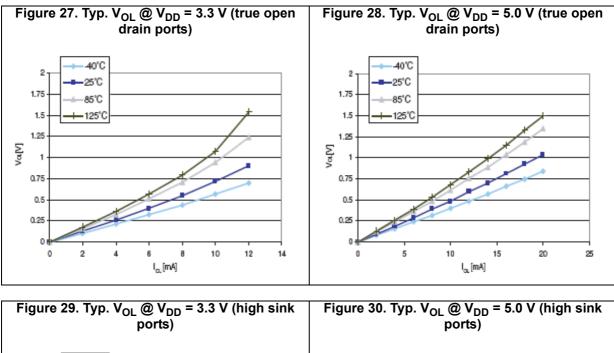
Table 39. Flash program memory/data EEPROM memory

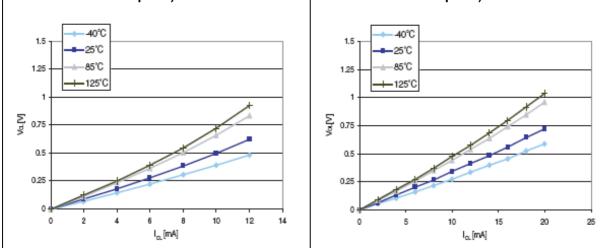
1. Guaranteed by characterization results.

10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage		-0.3 V	-	0.3 x V _{DD}	V
V _{IH}	Input high level voltage	V _{DD} = 5 V	0.7 x V _{DD}	-	V _{DD} + 0.3 V	v
V _{hys}	Hysteresis ⁽¹⁾		-	700	-	mV
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	30	55	80	kΩ
	Rise and fall time Fast I/Os Load = 50 pF		-	-	35 ⁽²⁾	20
^t R ^{, t} F (10% - 90%)		Standard and high sink I/Os Load = 50 pF	-	-	125 ⁽²⁾	ns
	Rise and fall time	Fast I/Os Load = 20 pF	-	-	20 ⁽²⁾	20
t _R , t _F	(10% - 90%)	Standard and high sink I/Os Load = 20 pF	-	-	50 ⁽²⁾	ns
I _{lkg}	Digital input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1 ⁽³⁾	μA
I _{lkg ana}	Analog input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±250 ⁽³⁾	nA
l _{lkg(inj)}	Leakage current in adjacent I/O	Injection current ±4 mA	-	-	±1 ⁽³⁾	μA


1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

2. Data guaranteed by design.

3. Guaranteed by characterization results

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit
t _{r(SCK}) t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	25	
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 * t _{MASTER}	-	
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	70	-	
$ \begin{array}{c} t_{w(SCKH)}^{(2)} \\ t_{w(SCKL)}^{(2)} \end{array} \end{array} $	SCK high and low time	Master mode	t _{SCK} /2 - 15	t _{SCK} /2 + 15	
t _{su(MI)} ⁽²⁾	Data input setup time	Master mode	5	-	
t _{su(MI)} ⁽²⁾ t _{su(SI)} ⁽²⁾	Data input setup time	Slave mode	5	-	
$t_{h(MI)}^{(2)}$	Data input hold time	Master mode	7	-	
t _{h(MI)} ⁽²⁾ t _{h(SI)} ⁽²⁾	Data input hold time	Slave mode	10	-	ns
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3* t _{MASTER}	
$t_{dis(SO)}^{(2)(4)}$	Data output disable time	Slave mode	25	-	
t _{v(SO)} ⁽²⁾	Data output valid time	Slave mode (after enable edge)	-	65	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	30	
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode (after enable edge)	27	-	
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode (after enable edge)	11	-	

Table 45. SPI characteristics (continued)

1. Parameters are given by selecting 10 MHz I/O output frequency.

2. Values based on design simulation and/or characterization results, and not tested in production.

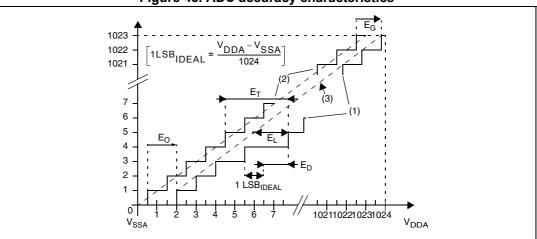
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
		f _{ADC} = 2 MHz	1.6	3.5	
E _T	Total unadjusted error ⁽²⁾	f _{ADC} = 4 MHz	2.2	4	
		f _{ADC} = 6 MHz	2.4	4.5	
		f _{ADC} = 2 MHz	1.1	2.5	
E _O	Offset error ⁽²⁾	f _{ADC} = 4 MHz	1.5	3	
		f _{ADC} = 6 MHz	1.8	3	
	Gain error ⁽²⁾	f _{ADC} = 2 MHz	1.5	3	
E _G		f _{ADC} = 4 MHz	2.1	3	LSB
		f _{ADC} = 6 MHz	2.2	4	
		f _{ADC} = 2 MHz	0.7	1.5	
E _D	Differential linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.7	1.5	
		f _{ADC} = 6 MHz	0.7	1.5	
		f _{ADC} = 2 MHz	0.6	1.5	
E _L	Integral linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.8	2	
		f _{ADC} = 6 MHz	0.8	2	

Table 48. ADC	accuracy	with R _{AIN} <	: 10 k Ω,	$V_{DD} = 5 V$
---------------	----------	-------------------------	------------------	----------------

1. Guaranteed by characterization results.

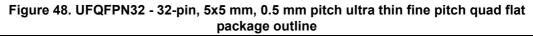

 ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 10.3.6 does not affect the ADC accuracy.

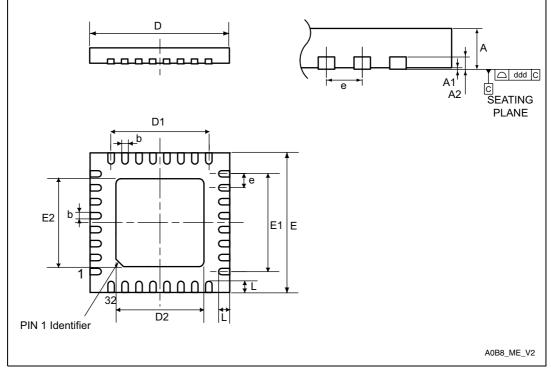
Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
	Total unadjusted error ⁽²⁾	f _{ADC} = 2 MHz	1.6	3.5	
E _T		f _{ADC} = 4 MHz	1.9	4	
E _O Offset error ⁽²⁾	f _{ADC} = 2 MHz	1	2.5		
		f _{ADC} = 4 MHz	1.5	2.5	
	Gain error ⁽²⁾	f _{ADC} = 2 MHz	1.3	3	LSB
E _G		f _{ADC} = 4 MHz	2	3	LOD
	Differential linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.7	1.0	
I⊏DI	E _D Differential linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.7	1.5	
	Integral linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.6	1.5	Ī
E _L		f _{ADC} = 4 MHz	0.8	2	

Guaranteed by characterization results. 1.

ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another 2. analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 10.3.6 does not affect the ADC accuracy.

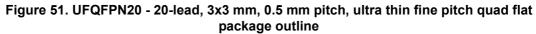
Figure 43. ADC accuracy characteristics

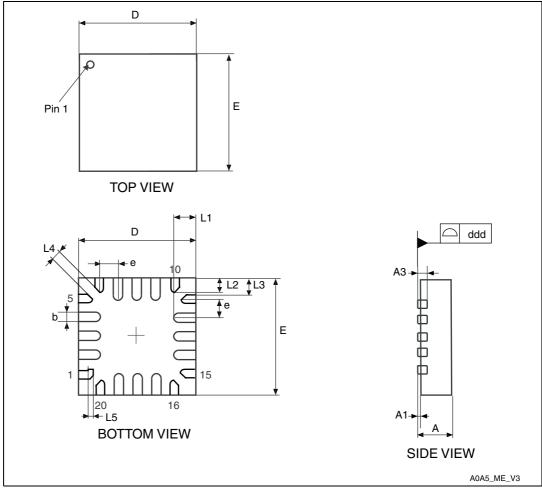

- 1. Example of an actual transfer curve
- The ideal transfer curve 2.
- End point correlation line 3.


 E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. E_O = Offset error: deviation between the first actual transition and the first ideal one. E_G = Gain error: deviation between the last ideal transition and the last actual one.

 $E_D = Differential linearity error: maximum deviation between any actual steps and the ideal one.$ $<math>E_L = Integral linearity error: maximum deviation between any actual transition and the end point correlation$ line.

11.2 UFQFPN32 package information




1. Drawing is not to scale.

- 2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this backside pad to PCB ground.
- 4. Dimensions are in millimeters.

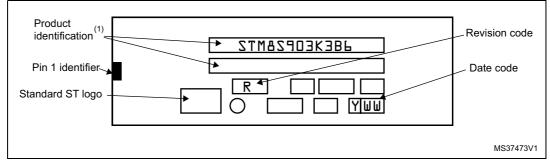
11.3 UFQFPN20 package information

1. Drawing is not to scale.

Table 56. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

Dim.	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
A	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.152	-	-	0.060	-
D	2.900	3.000	3.100	0.1142	0.1181	0.1220
E	2.900	3.000	3.100	0.1142	0.1181	0.1220
L1	0.500	0.550	0.600	0.0197	0.0217	0.0236
L2	0.300	0.350	0.400	0.0118	0.0138	0.0157

Table 07. Obn 02 package mechanical data (continued)						
Dim.	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
eB	-	-	12.700	-	-	0.5000
L	2.540	3.048	3.810	0.1000	0.1200	0.1500


Table 57. SDIP32 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 55. SDIP32 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

OPT4 watchdog

PRSC (check only one option)	[] for 16 MHz to 128 kHz prescaler [] for 8 MHz to 128 kHz prescaler [] for 4 MHz to 128 kHz prescaler
CKAWUSEL	[] LSI clock source selected for AWU
(check only one option)	[] HSE clock with prescaler selected as clock source for AWU
EXTCLK	[] External crystal connected to OSCIN/OSCOUT
(check only one option)	[] External signal on OSCIN

OPT5 crystal oscillator stabilization HSECNT (check only one option)

[] 2048 HSE cycles

[] 128 HSE cycles

[] 8 HSE cycles

[] 0.5 HSE cycles

OTP6 is reserved

Comments:	
Supply operating range in the application:	
Notes:	

14.3 **Programming tools**

During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on the application board via the SWIM protocol. Additional tools include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for the STM8 programming.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

