

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	R32C/100
Core Size	16/32-Bit
Speed	50MHz
Connectivity	CANbus, EBI/EMI, I ² C, IEBus, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	84
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f64175dfb-ub

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Unit	Function	Explanation	
Timer	Timer A	16-bit timer × 5	
		Timer mode, event counter mode, one-shot timer mode, pulse-width	
		modulation (PWM) mode	
		Two-phase pulse signal processing in event counter mode (two-	
		phase encoder input) × 3	
	Timer B	16-bit timer × 6	
		Timer mode, event counter mode, pulse frequency measurement mode, pulse-width measurement mode	
	Three-phase	Three-phase motor control timer × 1 (timers A1, A2, A4, and B2 used)	
	motor control	8-bit programmable dead time timer	
	timer		
Serial	UART0 to UART8	Asynchronous/synchronous serial interface × 9 channels	
Interface		I ² C-bus (UART0 to UART6)	
		 Special mode 2 (UART0 to UART6) 	
		 IEBus (optional ⁽¹⁾) (UART0 to UART6) 	
A/D Converter		10-bit resolution × 34 channels	
		Sample and hold functionality integrated	
D/A Converter		8-bit resolution × 2	
CRC Calculator	r	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1)	
X-Y Converter		16 bits × 16 bits	
Intelligent I/O		Time measurement (input capture): 16 bits × 16	
		Waveform generation (output compare): 16 bits × 24	
		Serial interface: Variable-length synchronous serial I/O mode, IEBus	
		mode (optional ⁽¹⁾)	
Multi-master I ² 0	C-bus Interface	1 channel	
CAN Module		1 channel	
		CAN functionality compliant with ISO 11898-1	
		32 mailboxes	
Flash Memory		Programming and erasure supply voltage: VCC = 3.0 to 5.5 V	
		Minimum endurance: 1,000 program/erase cycles	
		Security protection: ROM code protect, ID code protect	
		Debugging: On-chip debug, on-board flash programming	
Operating Freq	uency/Supply	64 MHz (high speed version)/VCC = 3.0 to 5.5 V	
Voltage		50 MHz (normal speed version)/VCC = 3.0 to 5.5 V	
Operating Temp	perature	-20°C to 85°C (N version)	
		-40°C to 85°C (D version)	
		-40°C to 85°C (P version)	
Current Consur	nption	45 mA (VCC = 5.0 V, f(CPU) = 64 MHz)	
		35 mA (VCC = 5.0 V, f(CPU) = 50 MHz)	
		8 μA (VCC = 3.3 V, f(XCIN) = 32.768 kHz, in wait mode)	
Package		144-pin plastic molded LQFP (PLQP0144KA-A)	

Table 1.2 Performance Overview for the 144-pin Package (2/2)

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Part Number		Package Code (1)	ROM Capacity (2)	RAM Capacity	Remarks
R5F6417BHNFB	(P)				-20°C to 85°C (N version)
R5F6417BHDFB		PLQP0100KB-A	128 Kbytes + 8 Kbytes		-40°C to 85°C (D version)
R5F6417BHPFB				20 Khyton	-40°C to 85°C (P version)
R5F6417AHNFB	(P)		256 Kbytes	20 KDytes	-20°C to 85°C (N version)
R5F6417AHDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F6417AHPFB					-40°C to 85°C (P version)
R5F64175HNFD	(P)				-20°C to 85°C (N version)
R5F64175HDFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F64175HPFD			384 Kbytes		-40°C to 85°C (P version)
R5F64175HNFB	(P)		+ 8 Kbytes		-20°C to 85°C (N version)
R5F64175HDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F64175HPFB				40 Khytos	-40°C to 85°C (P version)
R5F64176HNFD	(P)			40 Kbytes	-20°C to 85°C (N version)
R5F64176HDFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F64176HPFD			512 Kbytes		-40°C to 85°C (P version)
R5F64176HNFB	(P)		+ 8 Kbytes		-20°C to 85°C (N version)
R5F64176HDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F64176HPFB					-40°C to 85°C (P version)
R5F64177HNFD	(P)			48 Khutos	-20°C to 85°C (N version)
R5F64177HDFD		PLQP0144KA-A	640 Kbytes		-40°C to 85°C (D version)
R5F64177HPFD					-40°C to 85°C (P version)
R5F64177HNFB	(P)		+ 8 Kbytes	40 NDytes	-20°C to 85°C (N version)
R5F64177HDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F64177HPFB					-40°C to 85°C (P version)
R5F64178HNFD	(P)				-20°C to 85°C (N version)
R5F64178HDFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F64178HPFD			768 Kbytes		-40°C to 85°C (P version)
R5F64178HNFB	(P)		+ 8 Kbytes		-20°C to 85°C (N version)
R5F64178HDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F64178HPFB				62 Khyton	-40°C to 85°C (P version)
R5F64179HNFD	(P)			03 KDytes	-20°C to 85°C (N version)
R5F64179HDFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F64179HPFD			1 Mbyte		-40°C to 85°C (P version)
R5F64179HNFB	(P)		+ 8 Kbytes		-20°C to 85°C (N version)
R5F64179HDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F64179HPFB					-40°C to 85°C (P version)

Table 1.6	R32C/117 Group Product List for High Speed Version (2/2)	As of February, 2013
		, <u> </u>

(P): On planning phase

Notes:

- 1. The old package codes are as follows:
 - PLQP0100KB-A: 100P6Q-A; PLQP0144KA-A: 144P6Q-A
- 2. "8 Kbytes" in the ROM capacity indicates the data flash memory capacity.

1.5 Pin Definitions and Functions

Tables 1.14 to 1.18 list the pin definitions and functions.

Function	Symbol	I/O	Description
Power supply	VCC, VSS	I	Applicable as follows: VCC = 3.0 to 5.5 V, VSS = 0 V
Connecting pins for decoupling capacitor	VDC0, VDC1	_	A decoupling capacitor for internal voltage should be connected between VDC0 and VDC1
Analog power supply	AVCC, AVSS	I	Power supply for the A/D converter. AVCC and AVSS should be connected to VCC and VSS, respectively
Reset input	RESET	I	The MCU is reset when this pin is driven low
CNVSS	CNVSS	I	This pin should be connected to VSS via a resistor
Debug port	NSD	I/O	This pin is to communicate with a debugger. It should be connected to VCC via a resistor of 1 to 4.7 $k\Omega$
Main clock input	XIN	I	Input/output for the main clock oscillator. A crystal, or a ceramic resonator should be connected between pins XIN
Main clock output	XOUT	0	and XOUT. An external clock should be input at the XIN while leaving the XOUT open
Sub clock input	XCIN	I	Input/output for the sub clock oscillator. A crystal oscillator should be connected between pins XCIN and XCOUT. An
Sub clock output	XCOUT	0	external clock should be input at the XCIN while leaving the XCOUT open
BCLK output	BCLK	0	BCLK output
Clock output	CLKOUT	0	Output of the clock with the same frequency as low speed clocks, f8, or f32
External interrupt input	INTO to INT8 (1)	I	Input for external interrupts
NMI input	P8_5/NMI	I	Input for NMI
Key input interrupt	KIO to KI3	I	Input for the key input interrupt
Bus control pins	D0 to D7	I/O	Input/output of data (D0 to D7) while accessing an external memory space with a separate bus
	D8 to D15	I/O	Input/output of data (D8 to D15) while accessing an external memory space with 16-bit or 32-bit separate bus
	D16 to D31 ⁽²⁾	I/O	Input/output of data (D16 to D31) while accessing an external memory space with 32-bit separate bus
	A0 to A23	0	Output of address bits A0 to A23
	A0/D0 to A7/D7	I/O	Output of address bits (A0 to A7) and input/output of data (D0 to D7) by time-division while accessing an external memory space with multiplexed bus
	A8/D8 to A15/D15	I/O	Output of address bits (A8 to A15) and input/output of data (D8 to D15) by time-division while accessing an external memory space with 16-bit or 32-bit multiplexed bus

Table 1.14	Pin Definitions and Functions	(1/4)
------------	-------------------------------	-------

Notes:

1. Pins INT6 to INT8 are available in the 144-pin package only.

2. Pins D16 to D31 are available in the 144-pin package only.

3. Memory

Figure 3.1 shows the memory map of the R32C/117 Group.

The R32C/117 Group provides a 4-Gbyte address space from 00000000h to FFFFFFFh.

The internal ROM is mapped from address FFFFFFFh in the inferior direction. For example, the 1-Mbyte internal ROM is mapped from FFF00000h to FFFFFFFh.

The fixed interrupt vector table contains the start address of interrupt handlers and is mapped from FFFFFDCh to FFFFFFFh.

The internal RAM is mapped from address 00000400h in the superior direction. For example, the 63-Kbyte internal RAM is mapped from 00000400h to 0000FFFFh. Besides being used for data storage, the internal RAM functions as a stack(s) for subroutine calls and/or interrupt handlers.

Special function registers (SFRs), which are control registers for peripheral functions, are mapped from 00000000h to 000003FFh, and from 00040000h to 0004FFFFh. Unoccupied SFR locations are reserved, and no access is allowed.

In memory expansion mode or microprocessor mode, some spaces are reserved for internal use and should not be accessed.

The watchdog timer interrupt shares a vector with the oscillator stop detection interrupt and low voltage detection interrupt.

RENESAS

Figure 3.1 Memory Map

4. Special Function Registers (SFRs)

SFRs are memory-mapped peripheral registers that control the operation of peripherals. Table 4.1 SFR List (1) to Table 4.39 SFR List (39) list the SFR details.

Address	Register	Symbol	Reset Value
000000h			
000001h			
000002h			
000003h			
000004h	Clock Control Register	CCR	0001 1000b
000005h			
000006h	Flash Memory Control Register	FMCR	0000 0001b
000007h	Protect Release Register	PRR	00h
000008h			
000009h			
00000Ah			
00000Bh			
00000Ch			
00000Dh			
00000Eh			
00000Fh			
000010h	External Bus Control Register 3/Flash Memory Rewrite Bus	EBC3/FEBC3	0000h
000011h	Control Register 3		
000012h	Chip Selects 2 and 3 Boundary Setting Register	CB23	00h
000013h			
000014h	External Bus Control Register 2	EBC2	0000h
000015h			
000016h	Chip Selects 1 and 2 Boundary Setting Register	CB12	00h
000017h			
000018h	External Bus Control Register 1	EBC1	0000h
000019h			
00001Ah	Chip Selects 0 and 1 Boundary Setting Register	CB01	00h
00001Bh			
00001Ch	External Bus Control Register 0/Flash Memory Rewrite Bus	EBC0/FEBC0	0000h
00001Dh	Control Register 0		
00001Eh	Peripheral Bus Control Register	PBC	0504h
00001Fh			
000020h to			
00005Fh			

Table 4.1 SFR List (1)

X: Undefined

Table 4.4	SFR List (4)
-----------	--------------

Address	Register	Symbol	Reset Value
0000B0h	Intelligent I/O Interrupt Enable Register 0	IIO0IE	00h
0000B1h	Intelligent I/O Interrupt Enable Register 1	IIO1IE	00h
0000B2h	Intelligent I/O Interrupt Enable Register 2	IIO2IE	00h
0000B3h	Intelligent I/O Interrupt Enable Register 3	IIO3IE	00h
0000B4h	Intelligent I/O Interrupt Enable Register 4	IIO4IE	00h
0000B5h	Intelligent I/O Interrupt Enable Register 5	IIO5IE	00h
0000B6h	Intelligent I/O Interrupt Enable Register 6	IIO6IE	00h
0000B7h	Intelligent I/O Interrupt Enable Register 7	IIO7IE	00h
0000B8h	Intelligent I/O Interrupt Enable Register 8	IIO8IE	00h
0000B9h	Intelligent I/O Interrupt Enable Register 9	IIO9IE	00h
0000BAh	Intelligent I/O Interrupt Enable Register 10	IIO10IE	00h
0000BBh	Intelligent I/O Interrupt Enable Register 11	IIO11IE	00h
0000BCh			
0000BDh			
0000BEh			
0000BFh			
0000C0h			
0000C1h	CAN0 Transmit Interrupt Control Register	COTIC	XXXX X000b
0000C2h			
0000C3h	CAN0 Error Interrupt Control Register	COEIC	XXXX X000b
0000C4h			
0000C5h			
0000C6h			
0000C7h			
0000C8h			
0000C9h			
0000CAh			
0000CBh			
0000CCh			
0000CDh			
0000CEh			
0000CFh			
0000D0h	CAN0 Transmit FIFO Interrupt Control Register	COFTIC	XXXX X000b
0000D1h			
0000D2h			
0000D3h			
0000D4h			
0000D5h			
0000D6h			
0000D7h			
0000D8h			
0000D9h			
0000DAh			
0000DBh			
0000DCh			
0000DDh	UART7 Transmit Interrupt Control Register	S7TIC	XXXX X000b
0000DEh	INT7 Interrupt Control Register	INT7IC	XX00 X000b
0000DFh	UART8 Transmit Interrupt Control Register	S8TIC	XXXX X000b

Table 4.9	SFR List (9)
-----------	--------------

Address	Register	Symbol	Reset Value
0001A0h	Group 0 Base Timer Register	G0BT	XXXXh
0001A1h			
0001A2h	Group 0 Base Timer Control Register 0	G0BCR0	0000 0000b
0001A3h	Group 0 Base Timer Control Register 1	G0BCR1	0000 0000b
0001A4h	Group 0 Time Measurement Prescaler Register 6	G0TPR6	00h
0001A5h	Group 0 Time Measurement Prescaler Register 7	G0TPR7	00h
0001A6h	Group 0 Function Enable Register	G0FE	00h
0001A7h	Group 0 Function Select Register	G0FS	00h
0001A8h	· · · · · · · · · · · · · · · · · · ·		
0001A9h			
0001AAh			
0001ABh			
0001ACh			
0001ADh			
0001AEh			
0001AFh			
0001B0h			
0001B1h			
0001B2h			
0001B3h			
0001B4h			
0001B5h			
0001B6h			
0001B7h			
0001B8h			
0001B9h			
0001BAh			
0001BBh			
0001BCh			
0001BDh			
0001BEh			<u> </u>
0001BEh			
0001C0h			<u> </u>
0001C1h			
0001C2h			<u> </u>
0001C2h			
0001C3h	IIART5 Special Mode Register 4	LI5SMR4	
0001C4h	UARTS Special Mode Register 3		00h
0001C5h	UARTS Special Mode Register 3		00h
0001C0h	UARTS Special Mode Register		00h
0001C71	UARTS Special Node Register		001
0001C81	UARTS Transmit/Receive Mode Register		
0001C91	UARTS DIL Rale Register		
		0310	
	UADTE Tropomit/Depoints Control Desister 0	11500	0000 10005
		0500	
0001CEh	UARIS RECEIVE BUTTER REGISTER	USKB	XXXXN
0001CFh			

Address	Register	Symbol	Reset Value
0003E0h			
0003E1h			
0003E2h			
0003E3h			
0003E4h			
0003E5h			
0003E6h			
0003E7h			
0003E8h			
0003E9h			
0003EAh			
0003EBh			
0003ECh			
0003EDh			
0003EEh			
0003EFh			
0003F0h	Pull-up Control Register 0	PUR0	0000 0000b
0003F1h	Pull-up Control Register 1	PUR1	XXXX X0XXb
0003F2h	Pull-up Control Register 2	PUR2	000X XXXXb
0003F3h	Pull-up Control Register 3	PUR3	0000 0000b
0003F4h	Pull-up Control Register 4	PUR4	XXXX 0000b
0003F5h			
0003F6h			
0003F7h			
0003F8h			
0003F9h			
0003FAh			
0003FBh			
0003FCh			
0003FDh			
0003FEh			
0003FFh	Port Control Register	PCR	0XXX XXX0b

Table 4.17 SFR List (17)

X: Undefined

Address	Register	Symbol	Reset Value
040030h to			
04003Fh			
040040h			
040041h			
040042h			
040043h			
040044h	Processor Mode Register 0 ⁽¹⁾	PM0	1000 0000b (CNVSS pin = Low) 0000 0011b (CNVSS pin = High)
040045h			
040046h	System Clock Control Register 0	CM0	0000 1000b
040047h	System Clock Control Register 1	CM1	0010 0000b
040048h	Processor Mode Register 3	PM3	00h
040049h			
04004Ah	Protect Register	PRCR	XXXX X000b
04004Bh			
04004Ch	Protect Register 3	PRCR3	0000 0000b
04004Dh	Oscillator Stop Detection Register	CM2	00h
04004Eh			
04004Fh			
040050h			
040051h			
040052h			
040053h	Processor Mode Register 2	PM2	00h
040054h	Chip Select Output Pin Setting Register 0	CSOP0	1000 XXXXb
040055h	Chip Select Output Pin Setting Register 1	CSOP1	01X0 XXXXb
040056h	Chip Select Output Pin Setting Register 2	CSOP2	XXXX 0000b
040057h			
040058h			
040059h			
04005Ab	Low Speed Mode Clock Control Register	CM3	
04005Bh			///////////////////////////////////////
04005Ch			
04005Dh			
04005Eb			
04005Eh			
0400605	Voltage Regulator Control Register	VRCP	0000 00005
0400615			
0400625	Low Voltage Detector Control Pegister		
0400625			
0400645	Detection Voltage Configuration Productor		
0400655	Delection vollage configuration Register		
0400665			
0400675			
0400930			

Blanks are reserved. No access is allowed.

Note:

1. The value in the PM0 register is retained even after a software reset or watchdog timer reset.

Table 4 28	SFR List (28)	
Table 4.20	31 K LISt (20)	

Address	Register	Symbol	Reset Value
047C60h	CAN0 Mailbox 6: Message Identifier	C0MB6	XXXX XXXXh
047C61h			
047C62h			
047C63h			
047C64h			
047C65h	CAN0 Mailbox 6: Data Length		XXh
047C66h	CAN0 Mailbox 6: Data Field		XXXX XXXX
047C67h			XXXX XXXXh
047C68h			
047C69h			
047C6Ah			
047C6Bh			
047C6Ch			
047C6Dh			
047C6Eh	CAN0 Mailbox 6: Time Stamp		XXXXh
047C6Fh			
047C70h	CAN0 Mailbox 7: Message Identifier	C0MB7	XXXX XXXXh
047C71h			
047C72h			
047C73h			
047C74h			
047C75h	CAN0 Mailbox 7: Data Length		XXh
047C76h	CAN0 Mailbox 7: Data Field		XXXX XXXX
047C77h			XXXX XXXXh
047C78h			
047C79h			
047C7Ah			
047C7Bh			
047C7Ch			
047C7Dh			
047C7Eh	CAN0 Mailbox 7: Time Stamp		XXXXh
047C7Fh			
047C80h	CAN0 Mailbox 8: Message Identifier	C0MB8	XXXX XXXXh
047C81h			
047C82h			
047C83h			
047C84h			
047C85h	CAN0 Mailbox 8: Data Length		XXh
047C86h	CAN0 Mailbox 8: Data Field		XXXX XXXX
047C87h			XXXX XXXXh
047C88h			
047C89h			
047C8Ah			
047C8Bh			
047C8Ch			
047C8Dh			
047C8Eh	CAN0 Mailbox 8: Time Stamp		XXXXh
047C8Fh			

Reset Value

Symbol

		e j	
047C90h	CAN0 Mailbox 9: Message Identifier	C0MB9	XXXX XXXXh
047C91h			
047C92h			
047C93h			
047C94h			
047C95h	CAN0 Mailbox 9: Data Length		XXh
047C96h	CAN0 Mailbox 9: Data Field		XXXX XXXX
047C97h			XXXX XXXXh
047C98h			
047C99h			
047C9Ah			
047C9Bh			
047C9Ch			
047C9Dh			
047C9Eh	CAN0 Mailbox 9: Time Stamp		XXXXh
047C9Fh			
047CA0h	CAN0 Mailbox 10: Message Identifier	C0MB10	XXXX XXXXh
047CA1h			
047CA2h			
047CA3h			
047CA4h			
047CA5h	CAN0 Mailbox 10: Data Length		XXh
047CA6h	CAN0 Mailbox 10: Data Field		XXXX XXXX
047CA7h			XXXX XXXXh
047CA8h			
047CA9h			
047CAAh			
047CABh			
047CACh			
047CADh			
047CAEh	CAN0 Mailbox 10: Time Stamp		XXXXh
047CAFh			
047CB0h	CAN0 Mailbox 11: Message Identifier	C0MB11	XXXX XXXXh
047CB1h			
047CB2h			
047CB3h			
047CB4h			
047CB5h	CAN0 Mailbox 11: Data Length		XXh
047CB6h	CAN0 Mailbox 11: Data Field		XXXX XXXX
047CB7h			XXXX XXXXh
047CB8h			
047CB9h			
047CBAh			
047CBBh			
047CBCh			
047CBDh			

Register

Table 4.29SFR List (29)Address

047CBFh X: Undefined

Blanks are reserved. No access is allowed.

047CBEh CAN0 Mailbox 11: Time Stamp

XXXXh

Address	Register	Symbol	Reset Value
047CF0h	CAN0 Mailbox 15: Message Identifier	C0MB15	XXXX XXXXh
047CF1h			
047CF2h			
047CF3h			
047CF4h			
047CF5h	CAN0 Mailbox 15: Data Length		XXh
047CF6h	CAN0 Mailbox 15: Data Field		XXXX XXXX
047CF7h			XXXX XXXXh
047CF8h			
047CF9h			
047CFAh			
047CFBh			
047CFCh			
047CFDh			
047CFEh	CAN0 Mailbox 15: Time Stamp		XXXXh
047CFFh			
047D00h	CAN0 Mailbox 16: Message Identifier	C0MB16	XXXX XXXXh
047D01h	,		
047D02h			
047D03h			
047D04h			
047D05h	CAN0 Mailbox 16: Data Length		XXh
047D06h	CANO Mailbox 16: Data Field		XXXX XXXX
047D07h			XXXX XXXXh
047D08h			
047D09h			
047D0Ah			
047D0Bh			
047D0Ch			
047D0Dh			
047D0Eh	CAN0 Mailbox 16: Time Stamp	_	XXXXh
047D0Fh	· · · · · · · · · · · · · · · · · · ·		
047D10h	CAN0 Mailbox 17: Message Identifier	C0MB17	XXXX XXXXh
047D11h			
047D12h			
047D13h			
047D14h		_	
047D15h	CAN0 Mailbox 17: Data Length	_	XXh
047D16h	CANO Mailbox 17: Data Field	_	XXXX XXXX
047D17h			XXXX XXXXh
047D18h			
047D19h			
047D1Ah			
047D1Bh			
047D1Ch			
047D1Dh			
047D1Eh	CAN0 Mailbox 17: Time Stamp	-	XXXXh
047D1Fh	p		

Table 4.31SFR List (31)

X: Undefined

Table 5.5Operating Conditions (4/5) $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ and } \text{T}_{a} = \text{T}_{opr}, \text{ unless otherwise noted})$ ⁽¹⁾

Symbol	Characteristic			Linit		
Symbol	Characteris	Characteristic			Max.	Unit
f _(XIN)	Main clock oscillator frequency		4		16	MHz
f _(XRef)	Reference clock frequency		2		4	MHz
f _(PLL)	PLL clock oscillator frequency		96		128	MHz
f _(Base)	Base clock frequency	High speed version			64	MHz
、		Normal speed version			50	MHz
t _{c(Base)}	Base clock cycle time	High speed version	15.625			ns
		Normal speed version	20			ns
f _(CPU)	CPU operating frequency	High speed version			64	MHz
		Normal speed version			50	MHz
t _{c(CPU)}	CPU clock cycle time	High speed version	15.625			ns
		Normal speed version	20			ns
f _(BCLK)	Peripheral bus clock operating	High speed version			32	MHz
	frequency	Normal speed version			25	MHz
t _{c(BCLK)}	Peripheral bus clock cycle time	High speed version	31.25			ns
		Normal speed version	40			ns
f _(PER)	Peripheral clock source frequency				32	MHz
f _(XCIN)	Sub clock oscillator frequency			32.768	62.5	kHz

Note:

1. The device is operationally guaranteed under these operating conditions.

Table 5.6Operating Conditions (5/5) $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ and } \text{T}_{a} = \text{T}_{opr}, \text{ unless otherwise noted})$ (1)

Symbol	Characteristic			Value			
Symbol	Symbol		Min.	Тур.	Max.	Unit	
V _{r(VCC)}	Allowable ripple voltage	V _{CC} = 5.0 V			0.5	Vp-р	
		V _{CC} = 3.0 V			0.3	Vp-р	
dV _{r(VCC)} /dt	Ripple voltage gradient	V _{CC} = 5.0 V			±0.3	V/ms	
		V _{CC} = 3.0 V			±0.3	V/ms	
f _{r(VCC)}	Allowable ripple frequency				10	kHz	

Note:

1. The device is operationally guaranteed under these operating conditions.

Figure 5.2 Ripple Waveform

V_{CC} = 5 V

Sumbol	Characterist	Maa			Value		
Symbol	ic	Meas	surement Condition	Min.	Тур.	Max.	Unit
I _{CC}	Power supply current	In single-chip mode, output pins are left open and others are connected to V _{SS}	$f_{(CPU)} = 64 \text{ MHz}, f_{(BCLK)} = 32 \text{ MHz},$ $f_{(XIN)} = 8 \text{ MHz},$ Active: XIN, PLL, Stopped: XCIN, OCO		45	60	mA
		XIN-XOUT Drive strength: low	$f_{(CPU)} = 50 \text{ MHz}, f_{(BCLK)} = 25 \text{ MHz},$ $f_{(XIN)} = 8 \text{ MHz},$ Active: XIN, PLL, Stopped: XCIN, OCO		35	50	mA
		Drive strength: low	f _(CPU) = f _{SO(PLL)} /24 MHz, Active: PLL (self-oscillation), Stopped: XIN, XCIN, OCO		12		mA
			$ f_{(CPU)} = f_{(BCLK)} = f_{(XIN)}/256 \text{ MHz}, $ $ f_{(XIN)} = 8 \text{ MHz}, $ $ Active: XIN, $ $ Stopped: PLL, XCIN, OCO $		1.2		mA
			f _(CPU) = f _(BCLK) = 32.768 kHz, Active: XCIN, Stopped: XIN, PLL, OCO, Main regulator: shutdown		220		μA
			f _(CPU) = f _(BCLK) = f _(OCO) /4 kHz, Active: OCO, Stopped: XIN, PLL, XCIN, Main regulator: shutdown		230		μA
			$\begin{array}{l} f_{(CPU)} = f_{(BCLK)} = f_{(XIN)}/256 \text{ MHz}, \\ f_{(XIN)} = 8 \text{ MHz}, \\ \text{Active: XIN,} \\ \text{Stopped: PLL, XCIN, OCO,} \\ T_a = 25^{\circ}\text{C, Wait mode} \end{array}$		960	1600	μA
			$f_{(CPU)} = f_{(BCLK)} = 32.768 \text{ kHz},$ Active: XCIN, Stopped: XIN, PLL, OCO, Main regulator: shutdown, T _a = 25°C, Wait mode		8	140	μΑ
			$f_{(CPU)} = f_{(BCLK)} = f_{(OCO)}/4 \text{ kHz},$ Active: OCO, Stopped: XIN, PLL, XCIN, Main regulator: shutdown, $T_a = 25^{\circ}C$, Wait mode		10	150	μA
			Stopped: all clocks, Main regulator: shutdown, T _a = 25°C		5	70	μA

Table 5.17Electrical Characteristics (3/3) $(V_{CC} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$

V_{CC} = 5 V

Table 5.18	A/D Conversion Characteristics ($V_{CC} = AV_{CC} = V_{REF} = 4.2$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V,
	T _a = T _{opr} , and f _(BCLK) = 32 MHz, unless otherwise noted)

Symbol	Characteristic Measurement Condition		Value			l Init	
Symbol	Characteristic	Weasureine		Min.	Тур.	Max.	Unit
	Resolution	V _{REF} = V _{CC}				10	Bits
_	Absolute error	V _{REF} = V _{CC} = 5 V	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, ANEX1 ⁽¹⁾			±3	LSB
			External op-amp connection mode			±7	LSB
INL	Integral non-linearity error	V _{REF} = V _{CC} = 5 V	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7, ANEX0, ANEX1 ⁽¹⁾			±3	LSB
			External op-amp connection mode			±7	LSB
DNL	Differential non-linearity error					±1	LSB
	Offset error					±3	LSB
—	Gain error					±3	LSB
R _{LADDER}	Resistor ladder	V _{REF} = V _{CC}		4		20	kΩ
t _{CONV}	Conversion time (10 bits)	φ _{AD} = 16 MHz, with s function	sample and hold	2.06			μs
		φ _{AD} = 16 MHz, witho function	ϕ_{AD} = 16 MHz, without sample and hold function				μs
t _{CONV}	Conversion time (8 bits)	ϕ_{AD} = 16 MHz, with s function	sample and hold	1.75			μs
		φ _{AD} = 16 MHz, witho function	ut sample and hold	3.06			μs
t _{SAMP}	Sampling time	$\phi_{AD} = 16 \text{ MHz}$		0.188			μs
V _{IA}	Analog input voltage			0		V_{REF}	V
фаd	Operating clock	Without sample and	hold function	0.25		16	MHz
	frequency	With sample and hold function				16	MHz

Note:

1. Pins AN15_0 to AN15_7 are available in the 144-pin package only.

V_{CC} = 3.3 V

Timing Requirements (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Symbol	Characteristic	Standar	d-mode	Fast-mod	le	Unit
		Min.	Max.	Min.	Max.	
t _{w(SCLH)}	MSCL input high level pulse width	600		600		ns
t _{w(SCLL)}	MSCL input low level pulse width	600		600		ns
t _{r(SCL)}	MSCL input rise time		1000		300	ns
t _{f(SCL)}	MSCL input fall time		300		300	ns
t _{r(SDA)}	MSDA input rise time		1000		300	ns
t _{f(SDA)}	MSDA input fall time		300		300	ns
t _{h(SDA-SCL)S}	MSCL high level hold time after START condition/repeated START condition	(1)		$2 \times t_{c(\phi IIC)} + 40$		ns
t _{su(SCL} -SDA)P	MSCL high level setup time for repeated START condition/STOP condition	(1)		$2 \times t_{c(\phi IIC)} + 40$		ns
t _{w(SDAH)} P	MSDA high level pulse width after STOP condition	(1)		$4 \times t_{c(\phi IIC)} + 40$		ns
t _{su(SDA-SCL)}	MSDA input setup time	100		100		ns
t _{h(SCL-SDA)}	MSDA input hold time	0		0		ns

Table 5.60 Multi-master I²C-bus Interface

Note:

1. The value is calculated using the formulas below based on a value SSC set by bits SSC4 to SSC0 in the I2CSSCR register:

$$\begin{split} t_{h(\text{SDA-SCL})S} &= \text{SSC} \div 2 \times t_{c(\phi \text{IIC})} + 40 \text{ [ns]} \\ t_{su(\text{SCL-SDA})P} &= (\text{SSC} \div 2 + 1) \times t_{c(\phi \text{IIC})} + 40 \text{ [ns]} \\ t_{w(\text{SDAH})P} &= (\text{SSC} + 1) \times t_{c(\phi \text{IIC})} + 40 \text{ [ns]} \end{split}$$

V_{CC} = 3.3 V

Switching Characteristics (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Symbol	Characteristic	Measurement Condition	Value		Linit
			Min.	Max.	
t _{su(S-R)}	Chip-select setup time before read	Refer to Figure 5.6	(1)		ns
t _{h(R-S)}	Chip-select hold time after read		t _{c(Base)} - 15		ns
t _{su(A-R)}	Address setup time before read		(1)		ns
t _{h(R-A)}	Address hold time after read		t _{c(Base)} - 15		ns
t _{w(R)}	Read pulse width		(1)		ns
t _{su(S-W)}	Chip-select setup time before write		(1)		ns
t _{h(W-S)}	Chip-select hold time after write		1.5 × t _{c(Base)} - 15		ns
t _{su(A-W)}	Address setup time before write		(1)		ns
t _{h(W-A)}	Address hold time after write		1.5 × t _{c(Base)} - 15		ns
t _{w(W)}	Write pulse width		(1)		ns
t _{su(D-W)}	Data setup time before write		(1)		ns
t _{h(W-D)}	Data hold time after write		0		ns

Table 5.61 External Bus Timing (separate bus)

Note:

 The value is calculated using the formulas below based on the base clock cycles (t_{c(Base)}) and respective cycles of Tsu(A-R), Tw(R), Tsu(A-W), and Tw(W) set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to the User's manual.

$$\begin{split} t_{su(S-R)} &= t_{su(A-R)} = Tsu(A-R) \times t_{c(Base)} - 15 \text{ [ns]} \\ t_{w(R)} &= Tw(R) \times t_{c(Base)} - 10 \text{ [ns]} \\ t_{su(S-W)} &= t_{su(A-W)} = Tsu(A-W) \times t_{c(Base)} - 15 \text{ [ns]} \\ t_{w(W)} &= t_{su(D-W)} = Tw(W) \times t_{c(Base)} - 10 \text{ [ns]} \end{split}$$

Figure 5.10 Timing of Peripherals

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infingement of patents, copyrights, or other intellectual property rights of third patries by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

*Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please valuate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-8000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milload Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-116503-1327 Renesas Electronics (Shanghal) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-21-6577-1818, Fax: +86-21-08235-7679 Renesas Electronics (Shanghal) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazul Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-27-577-1818, Fax: +86-22-0887-7858 Renesas Electronics Thong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +86-2-817-5890, Fax: +865-2886-9022/9044 Renesas Electronics Simpapore Pte. Ltd. 80 Bendemeer Road, Unit #06-621 Hyliux Innovation Centre Singapore 339949 Tel: +66-21-759-9300, Fax: +665-26133-0300 Renesas Electronics Simpapore Pte. Ltd. 80 Bendemeer Road, Unit #06-621 Hyliux Innovation Centre Singapore 339949 Tel: +65-213-0200, Fax: +665-2613-0300 Renesas Electronics Kingayai Sch.Bhd. Unit 90, Block B, Menara Armcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petalling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-375-9390, Fax: +685-2637, Fax: +62-2-2865-9310, Fax: +685-2637, Fax: +60-375-955-9510