

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Last Time Buy
Core Processor	R32C/100
Core Size	16/32-Bit
Speed	50MHz
Connectivity	CANbus, EBI/EMI, I ² C, IEBus, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	84
Program Memory Size	640KB (640K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f64177pfb-ub

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Unit	Function	Explanation			
Timer	Timer A	 16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse-width modulation (PWM) mode Two-phase pulse signal processing in event counter mode (two-phase encoder input) × 3 			
	Timer B	 16-bit timer × 6 Timer mode, event counter mode, pulse frequency measurement mode, pulse-width measurement mode 			
	Three-phase motor control timer	Three-phase motor control timer × 1 (timers A1, A2, A4, and B2 used) 8-bit programmable dead time timer			
		Asynchronous/synchronous serial interface × 9 channels • I ² C-bus (UART0 to UART6) • Special mode 2 (UART0 to UART6) • IEBus (optional ⁽¹⁾) (UART0 to UART6)			
A/D Converter		10-bit resolution × 34 channels Sample and hold functionality integrated			
D/A Converter		8-bit resolution × 2			
CRC Calculato	r	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1)			
X-Y Converter		16 bits × 16 bits			
Intelligent I/O		Time measurement (input capture): 16 bits × 16 Waveform generation (output compare): 16 bits × 24 Serial interface: Variable-length synchronous serial I/O mode, IEBus mode (optional ⁽¹⁾)			
Multi-master I ²	C-bus Interface	1 channel			
CAN Module		1 channel CAN functionality compliant with ISO 11898-1 32 mailboxes			
Flash Memory		Programming and erasure supply voltage: VCC = 3.0 to 5.5 V Minimum endurance: 1,000 program/erase cycles Security protection: ROM code protect, ID code protect Debugging: On-chip debug, on-board flash programming			
Operating Frequency/Supply Voltage		64 MHz (high speed version)/VCC = 3.0 to 5.5 V 50 MHz (normal speed version)/VCC = 3.0 to 5.5 V			
Operating Temperature		-20°C to 85°C (N version) -40°C to 85°C (D version) -40°C to 85°C (P version)			
Current Consu	mption	45 mA (VCC = 5.0 V, f(CPU) = 64 MHz) 35 mA (VCC = 5.0 V, f(CPU) = 50 MHz) 8 μA (VCC = 3.3 V, f(XCIN) = 32.768 kHz, in wait mode)			
Package		144-pin plastic molded LQFP (PLQP0144KA-A)			

Table 1.2 Performance Overview for the 144-pin Package (2/2)

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Part Number		Package Code (1)	ROM Capacity (2)	RAM Capacity	Remarks
R5F6417BHNFB	(P)				-20°C to 85°C (N version)
R5F6417BHDFB		PLQP0100KB-A	128 Kbytes + 8 Kbytes		-40°C to 85°C (D version)
R5F6417BHPFB			1 0 Royles	20 Khutaa	-40°C to 85°C (P version)
R5F6417AHNFB	(P)			20 Kbytes	-20°C to 85°C (N version)
R5F6417AHDFB		PLQP0100KB-A	256 Kbytes + 8 Kbytes		-40°C to 85°C (D version)
R5F6417AHPFB			· o hoytes		-40°C to 85°C (P version)
R5F64175HNFD	(P)				-20°C to 85°C (N version)
R5F64175HDFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F64175HPFD			384 Kbytes		-40°C to 85°C (P version)
R5F64175HNFB	(P)		+ 8 Kbytes		-20°C to 85°C (N version)
R5F64175HDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F64175HPFB				40 Kbytes	-40°C to 85°C (P version)
R5F64176HNFD	(P)			40 Royles	-20°C to 85°C (N version)
R5F64176HDFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F64176HPFD			512 Kbytes		-40°C to 85°C (P version)
R5F64176HNFB	(P)		+ 8 Kbytes		-20°C to 85°C (N version)
R5F64176HDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F64176HPFB					-40°C to 85°C (P version)
R5F64177HNFD	(P)				-20°C to 85°C (N version)
R5F64177HDFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F64177HPFD			640 Kbytes	48 Kbytes	-40°C to 85°C (P version)
R5F64177HNFB	(P)		+ 8 Kbytes	40 Royles	-20°C to 85°C (N version)
R5F64177HDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F64177HPFB					-40°C to 85°C (P version)
R5F64178HNFD	(P)				-20°C to 85°C (N version)
R5F64178HDFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F64178HPFD			768 Kbytes		-40°C to 85°C (P version)
R5F64178HNFB	(P)		+ 8 Kbytes		-20°C to 85°C (N version)
R5F64178HDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F64178HPFB				63 Kbytes	-40°C to 85°C (P version)
R5F64179HNFD	(P)			00 NUYIES	-20°C to 85°C (N version)
R5F64179HDFD		PLQP0144KA-A			-40°C to 85°C (D version)
R5F64179HPFD			1 Mbyte		-40°C to 85°C (P version)
R5F64179HNFB	(P)		+ 8 Kbytes		-20°C to 85°C (N version)
R5F64179HDFB		PLQP0100KB-A			-40°C to 85°C (D version)
R5F64179HPFB					-40°C to 85°C (P version)

Table 1.6	R32C/117 Group Product List for High Speed Version (2/2)	As of February, 2013
		, <u> </u>

(P): On planning phase

Notes:

- 1. The old package codes are as follows:
 - PLQP0100KB-A: 100P6Q-A; PLQP0144KA-A: 144P6Q-A
- 2. "8 Kbytes" in the ROM capacity indicates the data flash memory capacity.

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
37		P7_0		TA0OUT	TXD2/SDA2/SRXD2/ MSDA	IIO1_6/OUTC2_0/ ISTXD2/IEOUT		
38		P6_7			TXD1/SDA1/SRXD1			
39	VCC							
40		P6_6			RXD1/SCL1/STXD1			
41	VSS							
42		P6_5			CLK1			
43		P6_4			CTS1/RTS1/SS1	OUTC2_1/ISCLK2		
44		P6_3			TXD0/SDA0/SRXD0			
45		P6_2		TB2IN	RXD0/SCL0/STXD0			
46		P6_1		TB1IN	CLK0			
47		P6_0		TB0IN	CTS0/RTS0/SS0			
48		P13_7				OUTC2_7		D31
49		P13_6				OUTC2_1/ISCLK2		D30
50		P13_5				OUTC2_2/ISRXD2/ IEIN		D29
51		P13_4				OUTC2_0/ISTXD2/ IEOUT		D28
52		P5_7			CTS7/RTS7			RDY/CS3
53		P5_6			RXD7			ALE/CS2
54		P5_5			CLK7			HOLD
55		P5_4			TXD7			HLDA/CS1
56		P13_3				OUTC2_3		D27
57	VSS							
58		P13_2				OUTC2_6		D26
59	VCC							
60		P13_1				OUTC2_5		D25
61		P13_0				OUTC2_4		D24
62		P5_3						CLKOUT/ BCLK
63		P5_2						RD
64		P5_1						WR1/BC1
65		P5_0						WR0/WR
66		P12_7						D23
67		P12_6					1	D22
68		P12_5						D21
69		P4_7			TXD6/SDA6/SRXD6			CS0/A23
70		P4_6			RXD6/SCL6/STXD6			CS1/A22
71		P4_5			CLK6			CS2/A21
72		P4_4			CTS6/RTS6/SS6			CS3/A20
73		P4_3			TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		A19
74	VCC							

Table 1.8	Pin Characteristics for the 144-pin Package (2/4)
-----------	---

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
39		P5_5			CLK7			HOLD
40		P5_4			TXD7			HLDA/CS1
41		P5_3						CLKOUT/ BCLK
42		P5_2						RD
43		 P5_1						WR1/BC1
44		 P5_0						WR0/WR
45		 P4_7			TXD6/SDA6/SRXD6			CS0/A23
46		 P4_6			RXD6/SCL6/STXD6			CS1/A22
47		 P4_5			CLK6			CS2/A21
48		 P4_4			CTS6/RTS6/SS6			CS3/A20
49		P4_3			TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		A19
50		P4_2			RXD3/SCL3/STXD3	ISRXD2/IEIN		A18
51		P4_1			CLK3			A17
52		P4_0			CTS3/RTS3/SS3			A16
53		P3_7		TA4IN/U				A15(/D15)
54		P3_6		TA4OUT/U				A14(/D14)
55		P3_5		TA2IN/W				A13(/D13)
56		P3_4		TA2OUT/W				A12(/D12)
57		P3_3		TA1IN/V				A11(/D11)
58		P3_2		TA1OUT/V				A10(/D10)
59		P3_1		TA3OUT		UD0B/UD1B		A9(/D9)
60	VCC							
61		P3_0		TA0OUT		UD0A/UD1A		A8(/D8)
62	VSS							
63		P2_7					AN2_7	A7(/D7)
64		P2_6					AN2_6	A6(/D6)
65		P2_5					AN2_5	A5(/D5)
66		P2_4					AN2_4	A4(/D4)
67		P2_3					AN2_3	A3(/D3)
68		P2_2					AN2_2	A2(/D2)
69		P2_1					AN2_1	A1(/D1)
70		P2_0					AN2_0	A0(/D0)/ BC0(/D0)
71		P1_7	INT5			1100_7/1101_7		D15
72		P1_6	INT4			IIO0_6/IIO1_6		D14
73		P1_5	INT3			IIO0_5/IIO1_5		D13
74		P1_4				IIO0_4/IIO1_4		D12
75		P1_3				IIO0_3/IIO1_3		D11

 Table 1.12
 Pin Characteristics for the 100-pin Package (2/3)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
76		P1_2				1100_2/1101_2		D10
77		P1_1				IIO0_1/IIO1_1		D9
78		P1_0				IIO0_0/IIO1_0		D8
79		P0_7					AN0_7	D7
80		P0_6					AN0_6	D6
81		P0_5					AN0_5	D5
82		P0_4					AN0_4	D4
83		P0_3					AN0_3	D3
84		P0_2					AN0_2	D2
85		P0_1					AN0_1	D1
86		P0_0					AN0_0	D0
87		P10_7	KI3				AN_7	
88		P10_6	KI2				AN_6	
89		P10_5	KI1				AN_5	
90		P10_4	KI0				AN_4	
91		P10_3					AN_3	
92		P10_2					AN_2	
93		P10_1					AN_1	
94	AVSS							
95		P10_0					AN_0	
96	VREF							
97	AVCC							
98		P9_7			RXD4/SCL4/STXD4		ADTRG	
99		P9_6			TXD4/SDA4/SRXD4		ANEX1	
100		P9_5			CLK4		ANEX0	

 Table 1.13
 Pin Characteristics for the 100-pin Package (3/3)

Function	Symbol	I/O	Description
Bus control pins	BC0/D0, BC2/D1 (1)	I/O	Output of byte control ($\overline{BC0}$ and $\overline{BC2}$) and input/output of data (D0 and D1) by time-division while accessing an external memory space with multiplexed bus
	$\overline{CS0}$ to $\overline{CS3}$	0	
	CS0 to CS3 WR0/WR1/WR2/ WR3, WR/BC0/BC1/ BC2/BC3, RD ⁽¹⁾	0	 Chip select output Output of write, byte control, and read signals. Either WRx or WR and BCx can be selected by a program. Data is read when RD is low. When WR0, WR1, WR2, WR3, and RD are selected, data is written to the following address: 4n+0, when WR0 is low 4n+1, when WR1 is low 4n+2, when WR2 is low 4n+3, when WR3 is low on 32-bit external data bus or an even address, when WR0 is low an odd address, when WR1 is low or 16-bit external data bus When WR, BC0, BC1, BC2, BC3, and RD are selected, data is written, when WR is low and
	ALE HOLD	0	the following address is accessed: 4n+0, when BC0 is low 4n+1, when BC1 is low 4n+2, when BC2 is low 4n+3, when BC3 is low on 32-bit external data bus or an even address, when BC0 is low an odd address, when BC1 is low on 16-bit external data bus Latch enable signal in multiplexed bus format The MCU is in a hold state while this pin is held low
	HLDA	0	This pin is driven low while the MCU is held in a hold state
	RDY	Ι	Bus cycle is extended by the CPU if this pin is low on the falling edge of BCLK

Table 1.15 Pin Definitions and Functions (2/4)

Note:

1. Pins $\overline{BC2}/D1$, $\overline{WR2}$, $\overline{WR3}$, $\overline{BC2}$, and $\overline{BC3}$ are available in the 144-pin package only.

2.1.8.5 Register Bank Select Flag (B flag)

This flag selects a register bank. It indicates 0 when register bank 0 is selected, and 1 when register bank 1 is selected.

2.1.8.6 Overflow Flag (O flag)

This flag becomes 1 when the result of an operation overflows; otherwise it is 0.

2.1.8.7 Interrupt Enable Flag (I flag)

This flag enables maskable interrupts. To disable maskable interrupts, set this flag to 0. To enable them, set this flag to 1. When an interrupt is accepted, the flag becomes 0.

2.1.8.8 Stack Pointer Select Flag (U flag)

To select the interrupt stack pointer (ISP), set this flag to 0. To select the user stack pointer (USP), set this flag to 1.

It becomes 0 when a hardware interrupt is accepted or when an INT instruction designated by a software interrupt number from 0 to 127 is executed.

2.1.8.9 Floating-point Underflow Flag (FU flag)

This flag becomes 1 when an underflow occurs in a floating-point operation; otherwise it is 0. It also becomes 1 when the operand contains invalid numbers (subnormal numbers).

2.1.8.10 Floating-point Overflow Flag (FO flag)

This flag becomes 1 when an overflow occurs in a floating-point operation; otherwise it is 0. It also becomes 1 when the operand contains invalid numbers (subnormal numbers).

2.1.8.11 Processor Interrupt Priority Level (IPL)

The processor interrupt priority level (IPL), consisting of 3 bits, selects a processor interrupt priority level from level 0 to 7. An interrupt is enabled when the interrupt request level is higher than the selected IPL.

When the processor interrupt priority level (IPL) is set to 111b (level 7), all interrupts are disabled.

2.1.8.12 Fixed-point Radix Point Designation Bit (DP bit)

This bit designates the radix point. It also specifies which portion of the fixed-point multiplication result to extract. It is used for the MULX instruction.

2.1.8.13 Floating-point Rounding Mode (RND)

The 2-bit floating-point rounding mode selects a rounding mode for floating-point calculation results.

2.1.8.14 Reserved

Only set this bit to 0. The read value is undefined.

Table 4.9	SFR List (9)
-----------	--------------

Address	Register	Symbol	Reset Value
	Group 0 Base Timer Register	GOBT	XXXXh
0001A01			
	Group 0 Base Timer Control Register 0	G0BCR0	0000 0000b
	Group 0 Base Timer Control Register 0	G0BCR0 G0BCR1	0000 0000b
	Group 0 Time Measurement Prescaler Register 6	GOTPR6	0000 00000 00h
	Group 0 Time Measurement Prescaler Register 0	G0TPR7	00h
	Group 0 Function Enable Register	GOFE	00h
	Group 0 Function Enable Register	GOFE	00h
0001A7h		GUFS	0011
0001A8h			
0001A90			
0001ABh			
0001ACh			
0001ADh			
0001AEh			
0001AFh			
0001B0h			
0001B1h			
0001B2h			
0001B3h			
0001B4h			
0001B5h			
0001B6h			
0001B7h			
0001B8h			
0001B9h			
0001BAh			
0001BBh			
0001BCh			
0001BDh			
0001BEh			
0001BFh			
0001C0h			
0001C1h			
0001C2h			
0001C3h			
	UART5 Special Mode Register 4	U5SMR4	00h
	UART5 Special Mode Register 3	U5SMR3	00h
	UART5 Special Mode Register 2	U5SMR2	00h
	UART5 Special Mode Register	U5SMR	00h
	UART5 Transmit/Receive Mode Register	U5MR	00h
	UART5 Bit Rate Register	U5BRG	XXh
	UART5 Transmit Buffer Register	U5TB	XXXXh
0001CBh			
0001CCh	UART5 Transmit/Receive Control Register 0	U5C0	0000 1000b
0001CDh	UART5 Transmit/Receive Control Register 1	U5C1	0000 0010b
0001CEh	UART5 Receive Buffer Register	U5RB	XXXXh
0001CFh	1		
K: Undefine	d		

X: Undefined

Table 4.11	SFR List (11)
------------	---------------

1 abie 4.11	SFR LIST (11)		
Address	Register	Symbol	Reset Value
000200h to			
0002BFh			
	X0 Register/Y0 Register	X0R/Y0R	XXXXh
0002C1h			
0002C2h	X1 Register/Y1 Register	X1R/Y1R	XXXXh
0002C3h			
0002C4h	X2 Register/Y2 Register	X2R/Y2R	XXXXh
0002C5h			
0002C6h	X3 Register/Y3 Register	X3R/Y3R	XXXXh
0002C7h			
0002C8h	X4 Register/Y4 Register	X4R/Y4R	XXXXh
0002C9h			
0002CAh	X5 Register/Y5 Register	X5R/Y5R	XXXXh
0002CBh			
0002CCh	X6 Register/Y6 Register	X6R/Y6R	XXXXh
0002CDh			
0002CEh	X7 Register/Y7 Register	X7R/Y7R	XXXXh
0002CFh			
0002D0h	X8 Register/Y8 Register	X8R/Y8R	XXXXh
0002D1h			
0002D2h	X9 Register/Y9 Register	X9R/Y9R	XXXXh
0002D3h			
0002D4h	X10 Register/Y10 Register	X10R/Y10R	XXXXh
0002D5h			
0002D6h	X11 Register/Y11 Register	X11R/Y11R	XXXXh
0002D7h			
	X12 Register/Y12 Register	X12R/Y12R	XXXXh
0002D9h			
	X13 Register/Y13 Register	X13R/Y13R	XXXXh
0002DBh			
0002DCh	X14 Register/Y14 Register	X14R/Y14R	XXXXh
0002DDh			
0002DEh	X15 Register/Y15 Register	X15R/Y15R	XXXXh
0002DFh			
0002E0h	X-Y Control Register	XYC	XXXX XX00b
0002E1h			
0002E2h			
0002E3h			
	UART1 Special Mode Register 4	U1SMR4	00h
	UART1 Special Mode Register 3	U1SMR3	00h
	UART1 Special Mode Register 2	U1SMR2	00h
	UART1 Special Mode Register	U1SMR	00h
	UART1 Transmit/Receive Mode Register	U1MR	00h
	UART1 Bit Rate Register	U1BRG	XXh
	UART1 Transmit Buffer Register	U1TB	XXXXh
0002EBh	1		
0002ECh	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
	UART1 Transmit/Receive Control Register 1	U1C1	0000 0010b
	UART1 Receive Buffer Register	U1RB	XXXXh
0002EFh			
K [.] Undefine			

X: Undefined

Address	Register	Symbol	Reset Value
	Port P4_0 Function Select Register	P4_0S	X0XX X000b
	Port P5_0 Function Select Register	P5_0S	XXXX X000b
	Port P4_1 Function Select Register	P4_1S	X0XX X000b
	Port P5_1 Function Select Register	P5_1S	XXXX X000b
	Port P4_2 Function Select Register	P4_2S	X0XX X000b
	Port P5_2 Function Select Register	P5_2S	XXXX X000b
	Port P4_3 Function Select Register	P4_3S	X0XX X000b
	Port P5_3 Function Select Register	P5_3S	XXXX X000b
	Port P4_4 Function Select Register	P4_4S	X0XX X000b
0400C9h	Port P5_4 Function Select Register	P5_4S	X0XX X000b
0400CAh	Port P4_5 Function Select Register	P4_5S	X0XX X000b
0400CBh	Port P5_5 Function Select Register	P5_5S	X0XX X000b
0400CCh	Port P4_6 Function Select Register	P4_6S	X0XX X000b
0400CDh	Port P5_6 Function Select Register	P5_6S	X0XX X000b
0400CEh	Port P4_7 Function Select Register	P4_7S	X0XX X000b
0400CFh	Port P5_7 Function Select Register	P5_7S	X0XX X000b
0400D0h	Port P6_0 Function Select Register	P6_0S	X0XX X000b
0400D1h	Port P7_0 Function Select Register	P7_0S	X0XX X000b
0400D2h	Port P6_1 Function Select Register	P6_1S	X0XX X000b
0400D3h	Port P7_1 Function Select Register	P7_1S	X0XX X000b
0400D4h	Port P6_2 Function Select Register	P6_2S	X0XX X000b
	Port P7_2 Function Select Register	P7 2S	X0XX X000b
	Port P6 3 Function Select Register	P6_3S	X0XX X000b
0400D7h	Port P7_3 Function Select Register	P7_3S	X0XX X000b
	Port P6_4 Function Select Register	P6_4S	X0XX X000b
	Port P7_4 Function Select Register	 P7_4S	X0XX X000b
	Port P6_5 Function Select Register	P6_5S	X0XX X000b
	Port P7_5 Function Select Register	 P7_5S	X0XX X000b
	Port P6_6 Function Select Register	 P6_6S	X0XX X000b
	Port P7_6 Function Select Register	 P7_6S	X0XX X000b
	Port P6_7 Function Select Register	 P6_7S	X0XX X000b
	Port P7_7 Function Select Register	 P7_7S	X0XX X000b
	Port P8 0 Function Select Register	P8_0S	X0XX X000b
	Port P9_0 Function Select Register	P9_0S	X0XX X000b
	Port P8_1 Function Select Register	P8_1S	X0XX X000b
	Port P9_1 Function Select Register	P9 1S	X0XX X000b
	Port P8_2 Function Select Register	P8 2S	X0XX X000b
	Port P9_2 Function Select Register	P9 2S	X0XX X000b
	Port P8_3 Function Select Register	P8_3S	X0XX X000b
	Port P9_3 Function Select Register	P9_3S	00XX X000b
	Port P8_4 Function Select Register	P8_4S	XXXX X000b
	Port P9_4 Function Select Register	P9_4S	00XX X000b
0400EAh			
	Port P9_5 Function Select Register	P9_5S	00XX X000b
	Port P8_6 Function Select Register	P8_6S	XXXX X000b
	Port P9_6 Function Select Register	P9_6S	00XX X000b
	Port P8_7 Function Select Register	P8_7S	XXXX X000b
	Port P9_7 Function Select Register	P9_7S	X0XX X000b
Villadofinor		<u> </u>	

Table 4.21 SFR List (21)

X: Undefined

Reset Value

Symbol

I	Address	Register	Symbol	Reset Value
ľ	047C90h	CAN0 Mailbox 9: Message Identifier	C0MB9	XXXX XXXXh
Î	047C91h			
Î	047C92h			
Î	047C93h			
ľ	047C94h			
ľ		CAN0 Mailbox 9: Data Length		XXh
ľ	047C96h	CAN0 Mailbox 9: Data Field		XXXX XXXX
Î	047C97h			XXXX XXXXh
Î	047C98h			
Î	047C99h			
Î	047C9Ah			
Î	047C9Bh			
Î	047C9Ch			
Î	047C9Dh			
ľ	047C9Eh	CAN0 Mailbox 9: Time Stamp		XXXXh
Î	047C9Fh			
ľ	047CA0h	CAN0 Mailbox 10: Message Identifier	C0MB10	XXXX XXXXh
Ì	047CA1h			
Ì	047CA2h			
Ì	047CA3h			
ľ	047CA4h			
ľ	047CA5h	CAN0 Mailbox 10: Data Length		XXh
ľ		CAN0 Mailbox 10: Data Field		XXXX XXXX
Î	047CA7h			XXXX XXXXh
Î	047CA8h			
Î	047CA9h			
Î	047CAAh			
Î	047CABh			
Î	047CACh			
Î	047CADh			
ľ	047CAEh	CAN0 Mailbox 10: Time Stamp		XXXXh
Î	047CAFh			
İ		CAN0 Mailbox 11: Message Identifier	C0MB11	XXXX XXXXh
Í	047CB1h			
Í	047CB2h			
Í	047CB3h			
İ	047CB4h		1	
İ		CAN0 Mailbox 11: Data Length	1	XXh
İ		CAN0 Mailbox 11: Data Field	1	XXXX XXXX
Í	047CB7h			XXXX XXXXh
t	047CB8h			
t	047CB9h			
t	047CBAh			
t	047CBBh			
t	047CBCh			
t	047CBDh			
ŀ			-	20000

Register

Table 4.29SFR List (29)Address

047CBFh X: Undefined

Blanks are reserved. No access is allowed.

047CBEh CAN0 Mailbox 11: Time Stamp

XXXXh

Table 4.30	SFR List (30)

Table 4.30	SFR LIST (30)		
Address	Register	Symbol	Reset Value
047CC0h	CAN0 Mailbox 12: Message Identifier	C0MB12	XXXX XXXXh
047CC1h			
047CC2h			
047CC3h			
047CC4h			
047CC5h	CAN0 Mailbox 12: Data Length		XXh
047CC6h	CAN0 Mailbox 12: Data Field		XXXX XXXX
047CC7h			XXXX XXXXh
047CC8h			
047CC9h			
047CCAh			
047CCBh			
047CCCh			
047CCDh			
047CCEh	CAN0 Mailbox 12: Time Stamp		XXXXh
047CCFh			
047CD0h	CAN0 Mailbox 13: Message Identifier	C0MB13	XXXX XXXXh
047CD1h			
047CD2h			
047CD3h			
047CD4h			
047CD5h	CAN0 Mailbox 13: Data Length		XXh
047CD6h	CAN0 Mailbox 13: Data Field		XXXX XXXX
047CD7h			XXXX XXXXh
047CD8h			
047CD9h			
047CDAh			
047CDBh			
047CDCh			
047CDDh			
047CDEh	CAN0 Mailbox 13: Time Stamp		XXXXh
047CDFh			
047CE0h	CAN0 Mailbox 14: Message Identifier	C0MB14	XXXX XXXXh
047CE1h			
047CE2h			
047CE3h			
047CE4h			
	CAN0 Mailbox 14: Data Length		XXh
	CAN0 Mailbox 14: Data Field		XXXX XXXX
047CE7h			XXXX XXXXh
047CE8h			
047CE9h			
047CEAh			
047CEBh			
047CECh			
047CEDh			
	CAN0 Mailbox 14: Time Stamp		XXXXh
	-		
047CEFh			

X: Undefined

	(V _{CC} = 3.0 to 5.5 V, V _{SS} = 0 V, and $T_a = T_{opr}$, unless otherwise noted) ⁽¹⁾								
Symbol	Characteristic		Value			Llpit			
Symbol		Characteristic		Тур.	Max.	Unit			
I _{OH} (peak)	peak output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 ⁽³⁾			-10.0	mA			
I _{ОН(avg)}	average output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 ⁽³⁾			-5.0	mA			
I _{OL(peak)}	Low level peak output current ⁽²⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 ⁽³⁾			10.0	mA			
I _{OL} (avg)	Low level average output current ⁽⁴⁾	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 ⁽³⁾			5.0	mA			

Table 5.4 **Operating Conditions (3/5)**

Notes:

- 1. The device is operationally guaranteed under these operating conditions.
- 2. The following conditions should be satisfied:
 - The sum of I_{OL(peak)} of ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14, and P15 is 80 mA or less.
 - The sum of I_{OL(peak)} of ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 is 80 mA or less.
 - The sum of I_{OH(peak)} of ports P0, P1, P2, and P11 is -40 mA or less.
 - The sum of I_{OH(peak)} of ports P8_6, P8_7, P9, P10, P14, and P15 is -40 mA or less.
 - The sum of $I_{OH(peak)}$ of ports P3, P4, P5, P12, and P13 is -40 mA or less.
 - The sum of I_{OH(peak)} of ports P6, P7, and P8_0 to P8_4 is -40 mA or less.
- 3. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.
- 4. Average value within 100 ms.

Table 5.6Operating Conditions (5/5) $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ and } \text{T}_{a} = \text{T}_{opr}, \text{ unless otherwise noted})$ (1)

Symbol	Characteristic			Value		
Symbol			Min.	Тур.	Max.	Unit
V _{r(VCC)}	Allowable ripple voltage	V _{CC} = 5.0 V			0.5	Vp-р
		V _{CC} = 3.0 V			0.3	Vp-р
dV _{r(VCC)} /dt	Ripple voltage gradient	V _{CC} = 5.0 V			±0.3	V/ms
		V _{CC} = 3.0 V			±0.3	V/ms
f _{r(VCC)}	Allowable ripple frequency				10	kHz

Note:

1. The device is operationally guaranteed under these operating conditions.

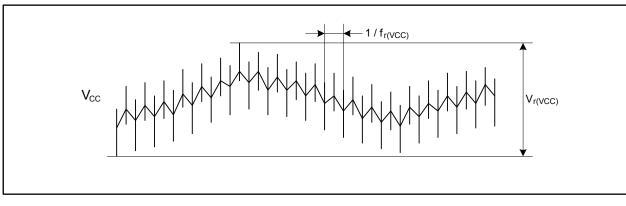


Figure 5.2 Ripple Waveform

V_{CC} = 5 V

Switching Characteristics (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol	Characteristic	Measurement	Value		Unit
		Condition	Min.	Max.	Unit
t _{d(C-Q)}	TXDi output delay time	Refer to		80	ns
t _{h(C-Q)}	TXDi output hold time	Figure 5.6	0		ns

Table 5.37Serial Interface

Table 5.38 Intelligent I/O

Symbol	Characteristic	Measurement	Value		Unit
		Condition	Min.	Max.	Unit
t _{d(ISCLK2-TXD)}	ISTXD2 output delay time	Refer to		180	ns
t _{h(ISCLK2-RXD)}	ISTXD2 output hold time	Figure 5.6	0		ns

Table 5.39 Multi-master I²C-bus Interface (standard-mode)

Symbol	Characteristic	Measurement	Value		
Symbol	Characteristic	Condition	Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time		2		ns
t _{f(SDA)}	MSDA output fall time		2		ns
t _{d(SDA-SCL)S}	MSCL output delay time after START condition/repeated START condition	Refer to Figure 5.6	20 × t _{c(\u00f6} IIC) - 120	$52 \times t_{c(\phi IIC)} - 40$	ns
t _{d(SCL-SDA)} P	Repeated START condition/STOP condition output delay time after MSCL becomes high		$20 \times t_{c(\phi IIC)} + 40$	$52 \times t_{c(\phi IIC)} + 120$	ns
t _{d(SCL-SDA)}	MSDA output delay time]	$2 \times t_{c(\phi IIC)} + 40$	$3 \times t_{c(\phi IIC)} + 120$	ns

Table 5.40 Multi-master I²C-bus Interface (fast-mode)

Symbol	Characteristic	Measurement	Value		
Symbol	Characteristic	Condition	Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time	Refer to	2 (1)		ns
t _{f(SDA)}	MSDA output fall time		2 (1)		ns
	MSCL output delay time after START condition/repeated START condition		10 × t _{c(¢IIC)} - 120	$26 \times t_{c(\phi IIC)} - 40$	ns
	Repeated START condition/STOP condition output delay time after MSCL becomes high	Figure 5.6	10 × t _{c(∳IIC)} + 40	26 × t _{c(\UC)} + 120	ns
t _{d(SCL-SDA)}	MSDA output delay time		$2 \times t_{c(\phi \parallel C)} + 40$	$3 \times t_{c(\phi IIC)} + 120$	ns

Note:

1. External circuits are required to satisfy the I²C-bus specification.

V_{CC} = 3.3 V

Switching Characteristics (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Symbol	Characteristic	Measurement	Value		— Unit
Symbol	Characteristic	Condition	Min.	Max.	
t _{su(S-R)}	Chip-select setup time before read		(1)		ns
t _{h(R-S)}	Chip-select hold time after read		t _{c(Base)} - 15		ns
t _{su(A-R)}	Address setup time before read		(1)		ns
t _{h(R-A)}	Address hold time after read		t _{c(Base)} - 15		ns
t _{w(R)}	Read pulse width		(1)		ns
t _{su(S-W)}	Chip-select setup time before write	Refer to Figure 5.6	(1)		ns
t _{h(W-S)}	Chip-select hold time after write		1.5 × t _{c(Base)} - 15		ns
t _{su(A-W)}	Address setup time before write		(1)		ns
t _{h(W-A)}	Address hold time after write		1.5 × t _{c(Base)} - 15		ns
t _{w(W)}	Write pulse width		(1)		ns
t _{su(D-W)}	Data setup time before write		(1)		ns
t _{h(W-D)}	Data hold time after write		0		ns

Table 5.61 External Bus Timing (separate bus)

Note:

 The value is calculated using the formulas below based on the base clock cycles (t_{c(Base)}) and respective cycles of Tsu(A-R), Tw(R), Tsu(A-W), and Tw(W) set by registers EBC0 to EBC3. If the calculation results in a negative value, modify the value to be set. For details on how to set values, refer to the User's manual.

$$\begin{split} t_{su(S-R)} &= t_{su(A-R)} = Tsu(A-R) \times t_{c(Base)} - 15 \text{ [ns]} \\ t_{w(R)} &= Tw(R) \times t_{c(Base)} - 10 \text{ [ns]} \\ t_{su(S-W)} &= t_{su(A-W)} = Tsu(A-W) \times t_{c(Base)} - 15 \text{ [ns]} \\ t_{w(W)} &= t_{su(D-W)} = Tw(W) \times t_{c(Base)} - 10 \text{ [ns]} \end{split}$$

V_{CC} = 3.3 V

Switching Characteristics (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Symbol	Characteristic	Measurement Condition	Value		Unit
			Min.	Max.	Offic
t _{d(C-Q)}	TXDi output delay time	Refer to		80	ns
t _{h(C-Q)}	TXDi output hold time	Figure 5.6	0		ns

Table 5.63Serial Interface

Table 5.64 Intelligent I/O

Symbol	Characteristic	Measurement Condition	Value		Unit
			Min.	Max.	Unit
t _{d(ISCLK2-TXD)}	ISTXD2 output delay time	Refer to		180	ns
t _{h(ISCLK2-RXD)}	ISTXD2 output hold time	Figure 5.6	0		ns

Table 5.65 Multi-master I²C-bus Interface (Standard-mode)

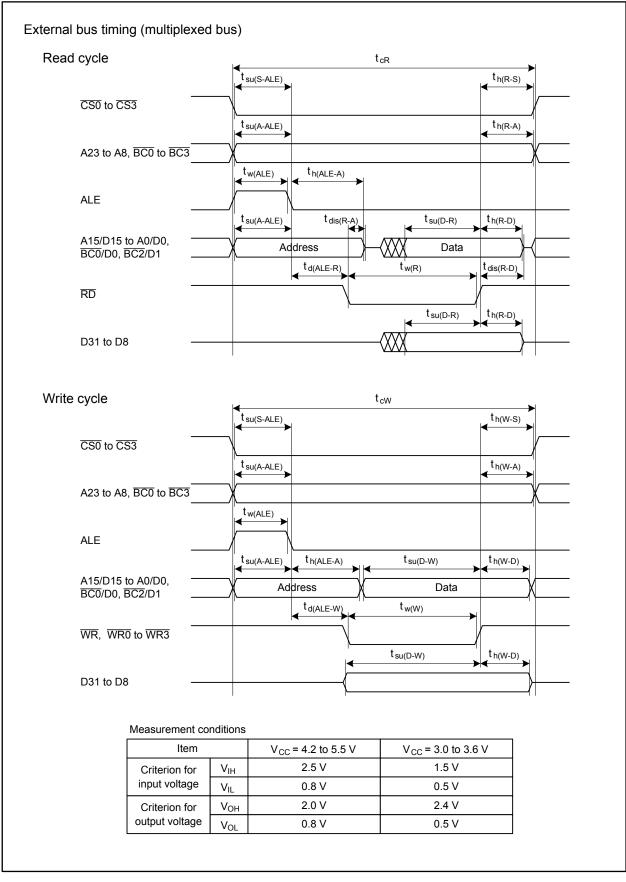

Symbol	Characteristic	Measurement Condition	Value		
			Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time	Refer to Figure 5.6	2		ns
t _{f(SDA)}	MSDA output fall time		2		ns
t _{d(SDA-SCL)} S	MSCL output delay time after START condition/repeated START condition		20 × t _{c(\UC)} - 120	$52 \times t_{c(\phi IIC)} - 40$	ns
t _{d(SCL-SDA)} P	Repeated START condition/STOP condition output delay time after MSCL becomes high		$20 \times t_{c(\phi IIC)} + 40$	$52 \times t_{c(\phi IIC)} + 120$	ns
t _{d(SCL-SDA)}	MSDA output delay time		$2 \times t_{c(\phi IIC)} + 40$	$3 \times t_{c(\phi IIC)} + 120$	ns

Table 5.66 Multi-master I²C-bus Interface (Fast-mode)

Symbol	Characteristic	Measurement Condition	Value		
			Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time	Refer to	2 (1)		ns
t _{f(SDA)}	MSDA output fall time		2 (1)		ns
	MSCL output delay time after START condition/repeated START condition		10 × t _{c(¢IIC)} - 120	26 × t _{c(φIIC)} - 40	ns
t _{d(SCL-SDA)} P	Repeated START condition/STOP condition output delay time after MSCL becomes high	Figure 5.6	$10 \times t_{c(\phi IIC)} + 40$	$26 \times t_{c(\phi IIC)} + 120$	ns
t _{d(SCL-SDA)}	MSDA output delay time		$2 \times t_{c(\phi IIC)} + 40$	$3 \times t_{c(\phi IIC)} + 120$	ns

Note:

1. External circuits are required to satisfy the I²C-bus specification.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation
 with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
 vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
 due to the false recognition of the pin state as an input signal become possible. Unused
 pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 1011 Nicholson Road, Newmarkti, Ontario L3Y 9C3, Canada

 Tel: +1-905-898-5441, Fax: +1-905-898-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millocard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +44-1628-651-700, Fax: +444-1628-651-804

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Dusseldorf, Germany

 Tel: +92-11-65030, Fax: +449-211-6503-1327

 Renesas Electronics (Shanghal) Co., Ltd.

 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +92-17-557, Star, *86-10-8235-7679

 Renesas Electronics (Shanghal) Co., Ltd.

 Unit 204, 205, AZIA Center, No.1233 Lujiazu Ring Rd., Pudong District, Shanghai 200120, China

 Tel: +85-27-587-587

 Renesas Electronics Telescher37-7858

 Renesas Electronics Taiwan Co., Ltd.

 Nuit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +85-2-886-9318, Fax: +852 2886-9022/9044

 Renesas Electronics Taiwan Co., Ltd.

 137, No. 333, Fu Shing North Road, Taipei, Taiwan

 Tel: +85-2-71598, Fax