

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

etails	
roduct Status	Obsolete
ore Processor	R32C/100
ore Size	16/32-Bit
peed	50MHz
onnectivity	CANbus, EBI/EMI, I ² C, IEBus, UART/USART
ripherals	DMA, LVD, PWM, WDT
umber of I/O	120
ogram Memory Size	640KB (640K x 8)
gram Memory Type	FLASH
PROM Size	8K x 8
M Size	48K x 8
tage - Supply (Vcc/Vdd)	3V ~ 5.5V
ta Converters	A/D 34x10b; D/A 2x8b
cillator Type	Internal
erating Temperature	-40°C ~ 85°C (TA)
ounting Type	Surface Mount
ckage / Case	144-LQFP
pplier Device Package	144-LFQFP (20x20)
rchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f64177pfd-ub

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.2 Performance Overview for the 144-pin Package (2/2)

Unit	Function	Explanation	
Timer	Timer A	16-bit timer × 5 Timer mode, event counter mode, one-shot timer mode, pulse-width modulation (PWM) mode Two-phase pulse signal processing in event counter mode (two-phase encoder input) × 3	
	Timer B	Timer mode, event counter mode, pulse frequency measurement mode, pulse-width measurement mode	
	Three-phase motor control timer	Three-phase motor control timer × 1 (timers A1, A2, A4, and B2 used) 8-bit programmable dead time timer	
Serial Interface	UART0 to UART8	• I ² C-bus (UART0 to UART6) • Special mode 2 (UART0 to UART6) • IEBus (optional ⁽¹⁾) (UART0 to UART6)	
A/D Converter		10-bit resolution × 34 channels Sample and hold functionality integrated	
D/A Converter		8-bit resolution × 2	
CRC Calculator	r	CRC-CCITT (X ¹⁶ + X ¹² + X ⁵ + 1)	
X-Y Converter		16 bits × 16 bits	
Intelligent I/O		Time measurement (input capture): 16 bits × 16 Waveform generation (output compare): 16 bits × 24 Serial interface: Variable-length synchronous serial I/O mode, IEBus mode (optional (1))	
Multi-master I ² (C-bus Interface	1 channel	
CAN Module		1 channel CAN functionality compliant with ISO 11898-1 32 mailboxes	
Flash Memory		Programming and erasure supply voltage: VCC = 3.0 to 5.5 V Minimum endurance: 1,000 program/erase cycles Security protection: ROM code protect, ID code protect Debugging: On-chip debug, on-board flash programming	
Operating Freq Voltage	uency/Supply	64 MHz (high speed version)/VCC = 3.0 to 5.5 V 50 MHz (normal speed version)/VCC = 3.0 to 5.5 V	
Operating Temperature		-20°C to 85°C (N version) -40°C to 85°C (D version) -40°C to 85°C (P version)	
Current Consumption		45 mA (VCC = 5.0 V, f(CPU) = 64 MHz) 35 mA (VCC = 5.0 V, f(CPU) = 50 MHz) 8 μA (VCC = 3.3 V, f(XCIN) = 32.768 kHz, in wait mode)	
Package		144-pin plastic molded LQFP (PLQP0144KA-A)	

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

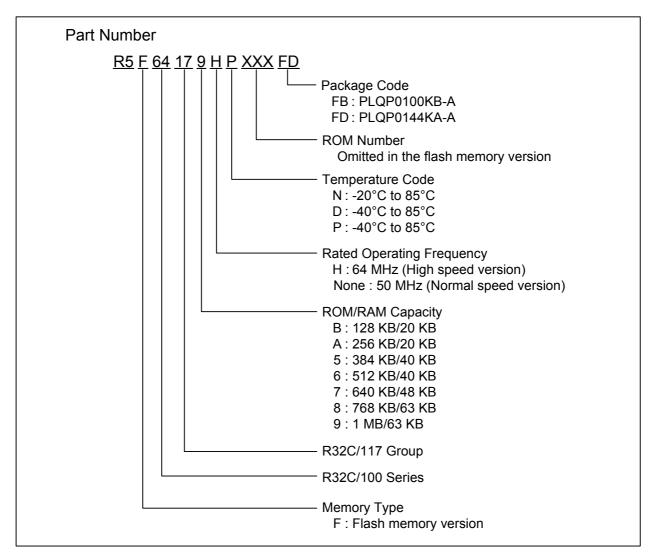


Figure 1.1 Part Numbering

Table 1.7 Pin Characteristics for the 144-pin Package (1/4)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin
1		P9_6			TXD4/SDA4/SRXD4		ANEX1	
2		P9_5			CLK4		ANEX0	
3		P9_4		TB4IN	CTS4/RTS4/SS4		DA1	
4		P9_3		TB3IN	CTS3/RTS3/SS3		DA0	
5		P9_2		TB2IN	TXD3/SDA3/SRXD3	OUTC2_0/ISTXD2/ IEOUT		
6		P9_1		TB1IN	RXD3/SCL3/STXD3	ISRXD2/IEIN		
7		P9_0		TB0IN	CLK3			
8			ĪNT8					
9		P14_5	ĪNT7					
10		P14_4	ĪNT6					
11		P14_3						
12	VDC0							
13		P14_1						
14	VDC1							
15	NSD							
16	CNVSS							
17	XCIN	P8_7						
18	XCOUT	P8_6						
19	RESET							
20	XOUT							
21	VSS							
22	XIN							
23	VCC							
24		P8_5	NMI					
25		P8_4	ĪNT2					
26		P8_3	INT1		CAN0IN/CAN0WU			
27		P8_2	ĪNT0		CAN0OUT			
28		P8_1		TA4IN/Ū	CTS5/RTS5/SS5	IIO1_5/UD0B/UD1B		
29		P8_0		TA4OUT/U	RXD5/SCL5/STXD5	UD0A/UD1A		
30		P7_7		TA3IN	CLK5/CAN0IN/ CAN0WU	IIO1_4/UD0B/UD1B		
31		P7_6		TA3OUT	TXD5/SDA5/SRXD5/ CTS8/RTS8/CAN0OUT	IIO1_3/UD0A/UD1A		
32		P7_5		TA2IN/W	RXD8	IIO1_2	1	
33		P7_4		TA2OUT/W	CLK8	IIO1_1	1	
34		P7_3		TA1IN/V		IIO1_0	1	
35		P7_2		TA1OUT/V	CLK2			
36		P7_1		TA0IN/ TB5IN	RXD2/SCL2/STXD2/ MSCL	IIO1_7/OUTC2_2/ ISRXD2/IEIN		

Table 1.9 Pin Characteristics for the 144-pin Package (3/4)

Pin	Control		Interrupt		THE PITT BERAGE (5/4	<u> </u>	Analog	Bus Control
No.	Pin	Port	Pin	Timer Pin	UART/CAN Module Pin	Intelligent I/O Pin	Pin	Pin
75		P4_2			RXD3/SCL3/STXD3	ISRXD2/IEIN		A18
76	VSS							
77		P4_1			CLK3			A17
78		P4_0			CTS3/RTS3/SS3			A16
79		P3_7		TA4IN/Ū				A15(/D15)
80		P3_6		TA4OUT/U				A14(/D14)
81		P3_5		TA2IN/W				A13(/D13)
82		P3_4		TA2OUT/W				A12(/D12)
83		P3_3		TA1IN/V				A11(/D11)
84		P3_2		TA1OUT/V				A10(/D10)
85		P3_1		TA3OUT		UD0B/UD1B		A9(/D9)
86		P12_4						D20
87		P12_3			CTS6/RTS6/SS6			D19
88		P12_2			RXD6/SCL6/STXD6			D18
89		P12_1			CLK6			D17
90		P12_0			TXD6/SDA6/SRXD6			D16
91	VCC							
92		P3_0		TA0OUT		UD0A/UD1A		A8(/D8)
93	VSS							
94		P2_7					AN2_7	A7(/D7)
95		P2_6					AN2_6	A6(/D6)
96		P2_5					AN2_5	A5(/D5)
97		P2_4					AN2_4	A4(/D4)
98		P2_3					AN2_3	A3(/D3)
99		P2_2					AN2_2	A2(/D2)
100		P2_1					AN2_1	A1(/D1)/ BC2(/D1)
101		P2_0					AN2_0	A0(/D0)/ BC0(/D0)
102		P1_7	ĪNT5			IIO0_7/IIO1_7		D15
103		P1_6	ĪNT4			IIO0_6/IIO1_6		D14
104		P1_5	ĪNT3			IIO0_5/IIO1_5		D13
105		P1_4				IIO0_4/IIO1_4		D12
106		P1_3				IIO0_3/IIO1_3		D11
107		P1_2				IIO0_2/IIO1_2		D10
108		P1_1				IIO0_1/IIO1_1		D9
109		P1_0				IIO0_0/IIO1_0		D8
110		P0_7					AN0_7	D7
111	1	P0_6					AN0_6	D6
112	1	P0_5					AN0_5	D5
113		P0_4					AN0_4	D4
114		P11_4						BC3/WR3

Table 1.15 Pin Definitions and Functions (2/4)

Function	Symbol	I/O	Description
Bus control pins	BC0/D0, BC2/D1		Output of byte control (BCO and BC2) and input/output of
	(1)	I/O	data (D0 and D1) by time-division while accessing an
	000 1 000		external memory space with multiplexed bus
	CS0 to CS3	0	Chip select output
	WR0/WR1/WR2/		Output of write, byte control, and read signals. Either WRx
	WR3, WR/BC0/BC1/		or WR and BCx can be selected by a program. Data is read when RD is low.
	BC2/BC3,		Data is read when AD is low.
	RD (1)		• When WRO, WR1, WR2, WR3, and RD are selected,
			data is written to the following address:
			4n+0, when $\overline{\text{WR0}}$ is low
			4n+1, when WR1 is low
			$4n+2$, when $\overline{WR2}$ is low
			4n+3, when WR3 is low
			on 32-bit external data bus
			or an even address, when WR0 is low
			an odd address, when WR1 is low
		0	on 16-bit external data bus
			• When \overline{WR} , $\overline{BC0}$, $\overline{BC1}$, $\overline{BC2}$, $\overline{BC3}$, and \overline{RD} are selected,
			data is written, when WR is low
			and
			the following address is accessed:
			4n+0, when BC0 is low
			4n+1, when BC1 is low 4n+2, when BC2 is low
			4n+3, when BC3 is low
			on 32-bit external data bus
			or
			an even address, when BC0 is low
			an odd address, when BC1 is low
			on 16-bit external data bus
	ALE	0	Latch enable signal in multiplexed bus format
	HOLD		The MCU is in a hold state while this pin is held low
	HLDA	0	This pin is driven low while the MCU is held in a hold state
	RDY	I	Bus cycle is extended by the CPU if this pin is low on the falling edge of BCLK

Note:

1. Pins $\overline{BC2}/D1$, $\overline{WR2}$, $\overline{WR3}$, $\overline{BC2}$, and $\overline{BC3}$ are available in the 144-pin package only.

Table 1.17 Pin Definitions and Functions (4/4)

Function	Symbol	I/O	Description
A/D converter	AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, AN15_0 to AN15_7 (1)	I	Analog input for the A/D converter
	ADTRG	ı	External trigger input for the A/D converter
	ANEX0	I/O	Expanded analog input for the A/D converter and output in external op-amp connection mode
	ANEX1	I	Expanded analog input for the A/D converter
D/A converter	DA0, DA1	0	Output for the D/A converter
Reference voltage input	VREF	Ι	Reference voltage input for the A/D converter and D/A converter
Intelligent I/O	IIO0_0 to IIO0_7	I/O	Input/output for Intelligent I/O group 0. Either input capture or output compare is selectable
	IIO1_0 to IIO1_7	I/O	Input/output for Intelligent I/O group 1. Either input capture or output compare is selectable
	UD0A, UD0B, UD1A, UD1B	I	Input for the two-phase encoder
	OUTC2_0 to OUTC2_7 (2)	0	Output for OC (output compare) of Intelligent I/O group 2
	ISCLK2	I/O	Clock input/output for the serial interface
	ISRXD2	-	Receive data input for the serial interface
	ISTXD2	0	Transmit data output for the serial interface
	IEIN	I	Receive data input for the serial interface
	IEOUT	0	Transmit data output for the serial interface
	MSDA	I/O	Serial data input/output
bus	MSCL	I/O	Transmit/receive clock input/output
CAN Module	CAN0IN	I	Receive data input for the CAN communications
	CAN0OUT	0	Transmit data output for the CAN communications
	CAN0WU	I	Input for the CAN wake-up interrupt

Notes:

- 1. Pins AN15_0 to AN15_7 are available in the 144-pin package only.
- 2. Pins OUTC2_3 to OUTC2_7 are available in the 144-pin package only.

2.1 General Purpose Registers

2.1.1 Data Registers (R2R0, R3R1, R6R4, and R7R5)

These 32-bit registers are primarily used for transfers and arithmetic/logic operations.

Each of the registers can be divided into upper and lower 16-bit registers, e.g. R2R0 can be divided into R2 and R0, R3R1 can be divided into R3 and R1, etc.

Moreover, data registers R2R0 and R3R1 can be divided into four 8-bit data registers: upper (R2H and R3H), mid-upper (R2L and R3L), mid-lower (R0H and R1H), and lower (R0L and R1L).

2.1.2 Address Registers (A0, A1, A2, and A3)

These 32-bit registers have functions similar to data registers. They are also used for address register indirect addressing and address register relative addressing.

2.1.3 Static Base Register (SB)

This 32-bit register is used for SB relative addressing.

2.1.4 Frame Base Register (FB)

This 32-bit register is used for FB relative addressing.

2.1.5 Program Counter (PC)

This 32-bit counter indicates the address of the instruction to be executed next.

2.1.6 Interrupt Vector Table Base Register (INTB)

This 32-bit register indicates the start address of a relocatable vector table.

2.1.7 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Two types of 32-bit stack pointers (SPs) are provided: user stack pointer (USP) and interrupt stack pointer (ISP).

Use the stack pointer select flag (U flag) to select either the user stack pointer (USP) or the interrupt stack pointer (ISP). The U flag is bit 7 in the flag register (FLG). Refer to 2.1.8 "Flag Register (FLG)" for details.

To minimize the overhead of interrupt sequence due to less memory access, set the user stack pointer (USP) or the interrupt stack pointer (ISP) to a multiple of 4.

2.1.8 Flag Register (FLG)

This 32-bit register indicates the CPU status.

2.1.8.1 Carry Flag (C flag)

This flag retains a carry, borrow, or shifted-out bit generated by the arithmetic logic unit (ALU).

2.1.8.2 Debug Flag (D flag)

This flag is only for debugging. Only set this bit to 0.

2.1.8.3 Zero Flag (Z flag)

This flag becomes 1 when the result of an operation is 0; otherwise it is 0.

2.1.8.4 Sign Flag (S flag)

This flag becomes 1 when the result of an operation is a negative value; otherwise it is 0.

2.2 Fast Interrupt Registers

The following three registers are provided to minimize the overhead of the interrupt sequence.

2.2.1 Save Flag Register (SVF)

This 32-bit register is used to save the flag register when a fast interrupt occurs.

2.2.2 Save PC Register (SVP)

This 32-bit register is used to save the program counter when a fast interrupt occurs.

2.2.3 Vector Register (VCT)

This 32-bit register is used to indicate a jump address when a fast interrupt occurs.

2.3 DMAC-associated Registers

There are seven types of DMAC-associated registers.

2.3.1 DMA Mode Registers (DMD0, DMD1, DMD2, and DMD3)

These 32-bit registers are used to set DMA transfer mode, bit rate, etc.

2.3.2 DMA Terminal Count Registers (DCT0, DCT1, DCT2, and DCT3)

These 24-bit registers are used to set the number of DMA transfers.

2.3.3 DMA Terminal Count Reload Registers (DCR0, DCR1, DCR2, and DCR3)

These 24-bit registers are used to set the reloaded values for DMA terminal count registers.

2.3.4 DMA Source Address Registers (DSA0, DSA1, DSA2, and DSA3)

These 32-bit registers are used to set DMA source addresses.

2.3.5 DMA Source Address Reload Registers (DSR0, DSR1, DSR2, and DSR3)

These 32-bit registers are used to set the reloaded values for DMA source address registers.

2.3.6 DMA Destination Address Registers (DDA0, DDA1, DDA2, and DDA3)

These 32-bit registers are used to set DMA destination addresses.

2.3.7 DMA Destination Address Reload Registers (DDR0, DDR1, DDR2, and DDR3)

These 32-bit registers are used to set reloaded values for DMA destination address registers.

Table 4.3 SFR List (3)

Address	Register	Symbol	Reset Value
	DMA1 Transfer Complete Interrupt Control Register	DM1IC	XXXX X000b
000089h	UART1/4 Bus Collision, START Condition/STOP Condition Detection Interrupt Control Register	BCN1IC/BCN4IC	XXXX X000b
00008Ah	DMA3 Transfer Complete Interrupt Control Register	DM3IC	XXXX X000b
00008Bh	Key Input Interrupt Control Register	KUPIC	XXXX X000b
00008Ch	Timer A1 Interrupt Control Register	TA1IC	XXXX X000b
00008Dh	Intelligent I/O Interrupt Control Register 1	IIO1IC	XXXX X000b
00008Eh	Timer A3 Interrupt Control Register	TA3IC	XXXX X000b
00008Fh	Intelligent I/O Interrupt Control Register 3	IIO3IC	XXXX X000b
000090h	UART0 Transmit/NACK Interrupt Control Register	S0TIC	XXXX X000b
000091h	Intelligent I/O Interrupt Control Register 5	IIO5IC	XXXX X000b
000092h	UART1 Transmit/NACK Interrupt Control Register	S1TIC	XXXX X000b
	Intelligent I/O Interrupt Control Register 7	IIO7IC	XXXX X000b
	Timer B0 Interrupt Control Register	TB0IC	XXXX X000b
	Intelligent I/O Interrupt Control Register 9	IIO9IC	XXXX X000b
	Timer B2 Interrupt Control Register	TB2IC	XXXX X000b
	Intelligent I/O Interrupt Control Register 11	IIO11IC	XXXX X000b
000098h	Timer B4 Interrupt Control Register	TB4IC	XXXX X000b
000099h			
	INT4 Interrupt Control Register	INT4IC	XX00 X000b
00009Bh			
00009Ch	INT2 Interrupt Control Register	INT2IC	XX00 X000b
00009Dh			
	INT0 Interrupt Control Register	INT0IC	XX00 X000b
00009Fh			
	Intelligent I/O Interrupt Request Register 0	IIO0IR	0000 0XX1b
	Intelligent I/O Interrupt Request Register 1	IIO1IR	0000 0XX1b
0000A2h	Intelligent I/O Interrupt Request Register 2	IIO2IR	0000 0X01b
0000A3h	Intelligent I/O Interrupt Request Register 3	IIO3IR	0000 XXX1b
	Intelligent I/O Interrupt Request Register 4	IIO4IR	000X 0XX1b
	Intelligent I/O Interrupt Request Register 5	IIO5IR	000X 0XX1b
	Intelligent I/O Interrupt Request Register 6	IIO6IR	000X 0XX1b
	Intelligent I/O Interrupt Request Register 7	IIO7IR	X00X 0XX1b
	Intelligent I/O Interrupt Request Register 8	IIO8IR	XX0X 0XX1b
	Intelligent I/O Interrupt Request Register 9	IIO9IR	0X00 0XX1b
	Intelligent I/O Interrupt Request Register 10	IIO10IR	0X00 0XX1b
	Intelligent I/O Interrupt Request Register 11	IIO11IR	0X00 0XX1b
0000ACh			
0000ADh			
0000AEh			
0000AFh			

Blanks are reserved. No access is allowed.

Table 4.19 SFR List (19)

Address	Register	Symbol	Reset Value
040030h to	_	,	
04003Fh			
040040h			
040041h			
040042h			
040043h			
040044h	Processor Mode Register 0 (1)	PM0	1000 0000b (CNVSS pin = Low) 0000 0011b (CNVSS pin = High)
040045h			
040046h	System Clock Control Register 0	CM0	0000 1000b
040047h	System Clock Control Register 1	CM1	0010 0000b
040048h	Processor Mode Register 3	PM3	00h
040049h			
	Protect Register	PRCR	XXXX X000b
04004Bh			
	Protect Register 3	PRCR3	0000 0000b
	Oscillator Stop Detection Register	CM2	00h
04004Eh	. •	0.11.2	0011
04004Fh			
040050h			
040051h			
040051h			
	Processor Mode Register 2	PM2	00h
	Chip Select Output Pin Setting Register 0	CSOP0	1000 XXXXb
	Chip Select Output Pin Setting Register 0 Chip Select Output Pin Setting Register 1	CSOP1	01X0 XXXXb
	Chip Select Output Pin Setting Register 1 Chip Select Output Pin Setting Register 2	CSOP1	XXXX 0000b
040056h		CSOP2	XXXX 0000b
040058h			
040059h			2000/20/00/
	Low Speed Mode Clock Control Register	CM3	XXXX XX00b
04005Bh			
04005Ch			
04005Dh			
04005Eh			
04005Fh			
	Voltage Regulator Control Register	VRCR	0000 0000b
040061h			
	Low Voltage Detector Control Register	LVDC	0000 XX00b
040063h			
040064h	Detection Voltage Configuration Register	DVCR	0000 XXXXb
040065h			
040066h			
040067h			
040068h to			
040093h			
X: Undefine		L	•

Blanks are reserved. No access is allowed.

Note:

1. The value in the PM0 register is retained even after a software reset or watchdog timer reset.

Table 4.32 SFR List (32)

Address Register	Symbol	Reset Value
047D20h CAN0 Mailbox 18: Message Identifier	C0MB18	XXXX XXXXh
047D21h		
047D22h		
047D23h		
047D24h		
047D25h CAN0 Mailbox 18: Data Length		XXh
047D26h CAN0 Mailbox 18: Data Field		XXXX XXXX
047D27h		XXXX XXXXh
047D28h		
047D29h		
047D2Ah		
047D2Bh		
047D2Ch		
047D2Dh		
047D2Eh CAN0 Mailbox 18: Time Stamp		XXXXh
047D2Fh		700011
047D30h CAN0 Mailbox 19: Message Identifier	C0MB19	XXXX XXXXh
047D30H CANO Malibox 19. Message Identifier	COMP19	
047D31H 047D32h		
047D33h		
047D33H		
047D35h CAN0 Mailbox 19: Data Length		XXh
047D36h CAN0 Mailbox 19: Data Field		XXXX XXXX
047D37h		XXXX XXXXh
047D38h		7000 700011
047D39h		
047D39H 047D3Ah		
047D3Bh		
047D3Ch		
047D3Dh		VVVVh
047D3Eh CAN0 Mailbox 19: Time Stamp		XXXXh
047D3Fh	COMPOS	2000/2000/
047D40h CAN0 Mailbox 20: Message Identifier	C0MB20	XXXX XXXXh
047D41h		
047D42h		
047D43h		
047D44h		200
047D45h CAN0 Mailbox 20: Data Length		XXh
047D46h CAN0 Mailbox 20: Data Field		XXXX XXXX
047D47h		XXXX XXXXh
047D48h		
047D49h		
047D4Ah		
047D4Bh		
047D4Ch		
047D4Dh		
047D4Eh CAN0 Mailbox 20: Time Stamp		XXXXh
047D4Fh		

Blanks are reserved. No access is allowed.

Table 4.35 SFR List (35)

Address Register	Symbol	Reset Value
047DB0h CAN0 Mailbox 27: Message Identifier	C0MB27	XXXX XXXXh
047DB1h		
047DB2h		
047DB3h		
047DB4h		
047DB5h CAN0 Mailbox 27: Data Length		XXh
047DB6h CAN0 Mailbox 27: Data Field		XXXX XXXX
047DB7h		XXXX XXXXh
047DB8h		
047DB9h		
047DBAh		
047DBBh		
047DBCh		
047DBDh		
047DBEh CAN0 Mailbox 27: Time Stamp		XXXXh
047DBFh		/00001
047DC0h CAN0 Mailbox 28: Message Identifier	C0MB28	XXXX XXXXh
047DC1h	30101020	70000700011
047DC111 047DC2h		
047DC3h		
047DC4h		
047DC5h CAN0 Mailbox 28: Data Length		XXh
047DC6h CAN0 Mailbox 28: Data Field		XXXX XXXX
047DC7h		XXXX XXXXh
047DC8h		700007000011
047DC9h		
047DC9h		
047DCBh		
047DCCh		
047DCDh		
047DCEh CAN0 Mailbox 28: Time Stamp		XXXXh
047DCFh		^^^
047DD0h CAN0 Mailbox 29: Message Identifier	C0MB29	XXXX XXXXh
047DD011 CANO Malibox 29. Message identifier	COMB29	^^^^
047DD111 047DD2h		
047DD3h		
047DD5h CANO Mailhay 20: Data Langth		VVI
047DD5h CAN0 Mailbox 29: Data Length 047DD6h CAN0 Mailbox 29: Data Field		XXh
		XXXX XXXX XXXX XXXXh
047DD7h		^^^^
047DD8h		
047DD9h		
047DDAh		
047DDBh		
047DDCh		
047DDDh		
047DDEh CAN0 Mailbox 29: Time Stamp		XXXXh
047DDFh X: Undefined		

Blanks are reserved. No access is allowed.

Table 5.5 Operating Conditions (4/5) $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$ (1)

O: male al	Characteristic			1.1		
Symbol	Characteris	Min.	Тур.	Max.	Unit	
f _(XIN)	Main clock oscillator frequency	4		16	MHz	
f _(XRef)	Reference clock frequency		2		4	MHz
f _(PLL)	PLL clock oscillator frequency		96		128	MHz
f _(Base)	Base clock frequency High speed vers				64	MHz
		Normal speed version			50	MHz
t _{c(Base)}	Base clock cycle time	High speed version	15.625			ns
, ,		Normal speed version	20			ns
f _(CPU)	CPU operating frequency	High speed version			64	MHz
		Normal speed version			50	MHz
t _{c(CPU)}	CPU clock cycle time	High speed version	15.625			ns
		Normal speed version	20			ns
f _(BCLK)	Peripheral bus clock operating	High speed version			32	MHz
	frequency	Normal speed version			25	MHz
t _{c(BCLK)}	Peripheral bus clock cycle time	High speed version	31.25			ns
		40			ns	
f _(PER)	Peripheral clock source frequency	Peripheral clock source frequency			32	MHz
f _(XCIN)	Sub clock oscillator frequency			32.768	62.5	kHz

Note:

1. The device is operationally guaranteed under these operating conditions.

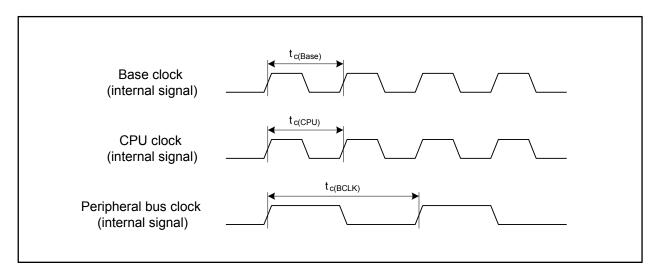


Figure 5.1 Clock Cycle Time

 $V_{CC} = 5 V$

Table 5.16 Electrical Characteristics (2/3) $(V_{CC} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, T_a = T_{opr}, \text{ and } f_{(CPU)} = 64 \text{ MHz}, \text{ unless otherwise noted)}$

Symbol		Measurement		Unit			
Symbol		Characteristic	Condition	Min.	Тур.	Max.	Offic
V _{T+} - V _{T-}	Hysteresis	HOLD, RDY, NMI, INTO to INT8, KIO to KI3, TA0IN to TA4IN, TA0OUT to TA4OUT, TB0IN to TB5IN, CTSO to CTS8, CLK0 to CLK8, RXD0 to RXD8, SCL0 to SCL6, SDA0 to SDA6, SSO to SS6, SRXD0 to SRXD6, ADTRG, IIOO_0 to IIOO_7, IIO1_0 to IIO1_7, UD0A, UD0B, UD1A, UD1B, ISCLK2, ISRXD2, IEIN, MSCL, MSDA, CANOIN, CANOWU (1)		0.2		1.0	٧
		RESET		0.2		1.8	V
I _{IH}	High level input current	XIN, RESET, CNVSS, NSD, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_1, P14_3 to P14_6, P15_0 to P15_7 (2)	V _I = 5 V			5.0	μА
I _{IL}	Low level input current	XIN, RESET, CNVSS, NSD, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_1, P14_3 to P14_6, P15_0 to P15_7 (2)	V _I = 0 V			-5.0	μА
R _{PULLUP}	Pull-up resistor	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P5_0 to P5_3, P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_1, P14_3 to P14_6, P15_0 to P15_7 (2)	V _I = 0 V	30	50	170	kΩ
R _{fXIN}	Feedback resistor	XIN			1.5		МΩ
R _{fXCIN}	Feedback resistor	XCIN			15		МΩ

Notes:

- 1. Pins $\overline{\text{INT6}}$ to $\overline{\text{INT8}}$ are available in the 144-pin package only.
- 2. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.

$$V_{CC} = 5 V$$

Switching Characteristics (V_{CC} = 4.2 to 5.5 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 5.37 Serial Interface

Symbol	Characteristic	Measurement Condition	Value		Unit
			Min.	Max.	Offic
$t_{d(C-Q)}$	TXDi output delay time	Refer to		80	ns
t _{h(C-Q)}	TXDi output hold time	Figure 5.6	0		ns

Table 5.38 Intelligent I/O

Symbol	Characteristic	Measurement Condition	Value		Unit
			Min.	Max.	Offic
t _{d(ISCLK2-TXD)}	ISTXD2 output delay time	Refer to		180	ns
t _{h(ISCLK2-RXD)}	ISTXD2 output hold time	Figure 5.6	0		ns

Table 5.39 Multi-master I²C-bus Interface (standard-mode)

Symbol	Characteristic	Measurement	Value		
	Characteristic	Condition	Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time	Figure 5.6	2		ns
t _{f(SDA)}	MSDA output fall time		2		ns
t _{d(SDA-SCL)S}	MSCL output delay time after START condition/repeated START condition		20 × t _{c(φIIC)} - 120	52 × t _{c(φIIC)} - 40	ns
t _{d(SCL-SDA)P}	Repeated START condition/STOP condition output delay time after MSCL becomes high		20 × t _{c(φIIC)} + 40	52 × t _{c(φIIC)} + 120	ns
t _{d(SCL-SDA)}	MSDA output delay time		2 × t _{c(\phiIIC)} + 40	$3 \times t_{C(\phi IIC)} + 120$	ns

Table 5.40 Multi-master I²C-bus Interface (fast-mode)

Symbol	Characteristic	Measurement	Value		
		Condition	Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time		2 (1)		ns
t _{f(SDA)}	MSDA output fall time	Refer to	2 (1)		ns
t _{d(SDA-SCL)S}	MSCL output delay time after START condition/repeated START condition		10 × t _{c(φIIC)} - 120	26 × t _{c(φIIC)} - 40	ns
t _{d(SCL-SDA)P}	Repeated START condition/STOP condition output delay time after MSCL becomes high	Figure 5.6	10 × t _{c(φIIC)} + 40	26 × t _{c(φIIC)} + 120	ns
t _{d(SCL-SDA)}	MSDA output delay time		2 × t _{c(\phiIIC)} + 40	$3 \times t_{C(\phi IIC)} + 120$	ns

Note:

1. External circuits are required to satisfy the I²C-bus specification.

 V_{CC} = 3.3 V

Table 5.41 Electrical Characteristics (1/3) (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, T_a = T_{opr} , and $f_{(CPU)}$ = 64 MHz, unless otherwise noted)

Cymbol	Symbol Characteristic	Measurement	Value			Unit	
Symbol		Characteristic	Condition	Min.	Тур.	Max.	Offic
V _{OH}	High level output voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 (1)	I _{OH} = -1 mA	V _{CC} - 0.6		V _{CC}	٧
V _{OL}	Low level output voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_4, P12_0 to P12_7, P13_0 to P13_7, P14_3 to P14_6, P15_0 to P15_7 (1)	I _{OL} = 1 mA			0.5	V

Note:

1. Ports P9_0, P9_2, and P11 to P15 are available in the 144-pin package only. Port P9_1 is designated as input pin in the 100-pin package.

$$V_{CC}$$
 = 3.3 V

Switching Characteristics (V_{CC} = 3.0 to 3.6 V, V_{SS} = 0 V, and T_a = T_{opr} , unless otherwise noted)

Table 5.63 Serial Interface

Symbol	Characteristic	Measurement Condition	Value		Unit
			Min.	Max.	Offic
t _{d(C-Q)}	TXDi output delay time	Refer to		80	ns
t _{h(C-Q)}	TXDi output hold time	Figure 5.6	0		ns

Table 5.64 Intelligent I/O

Symbol	Characteristic	Measurement Condition	Value		Unit
			Min.	Max.	Offic
t _{d(ISCLK2-TXD)}	ISTXD2 output delay time	Refer to		180	ns
t _{h(ISCLK2-RXD)}	ISTXD2 output hold time	Figure 5.6	0		ns

Table 5.65 Multi-master l²C-bus Interface (Standard-mode)

Symbol	Characteristic	Measurement	Value		
		Condition	Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time	Refer to Figure 5.6	2		ns
t _{f(SDA)}	MSDA output fall time		2		ns
t _{d(SDA-SCL)S}	MSCL output delay time after START condition/repeated START condition		20 × t _{c(φIIC)} - 120	52 × t _{c(φIIC)} - 40	ns
t _{d(SCL-SDA)P}	Repeated START condition/STOP condition output delay time after MSCL becomes high		20 × t _{c(\phiIIC)} + 40	52 × t _{c(φIIC)} + 120	ns
t _{d(SCL-SDA)}	MSDA output delay time]	2 ×t _{c(\phiIIC)} + 40	$3 \times t_{C(\phi IIC)} + 120$	ns

Table 5.66 Multi-master I²C-bus Interface (Fast-mode)

Symbol	Characteristic	Measurement	Value		
	Characteristic	Condition	Min.	Max.	Unit
t _{f(SCL)}	MSCL output fall time		2 (1)		ns
t _{f(SDA)}	MSDA output fall time		2 (1)		ns
t _{d(SDA-SCL)S}	MSCL output delay time after START condition/repeated START condition	Refer to	10 × t _{c(φIIC)} - 120	26 × t _{c(φIIC)} - 40	ns
t _{d(SCL-SDA)P}	Repeated START condition/STOP condition output delay time after MSCL becomes high	Figure 5.6	10 × t _{c(\phiIIC)} + 40	26 × t _{c(φIIC)} + 120	ns
t _{d(SCL-SDA)}	MSDA output delay time		$2 \times t_{c(\phi IIC)} + 40$	$3 \times t_{C(\phi IIC)} + 120$	ns

Note:

1. External circuits are required to satisfy the I²C-bus specification.

R32C/117 Group 5. Electrical Characteristics

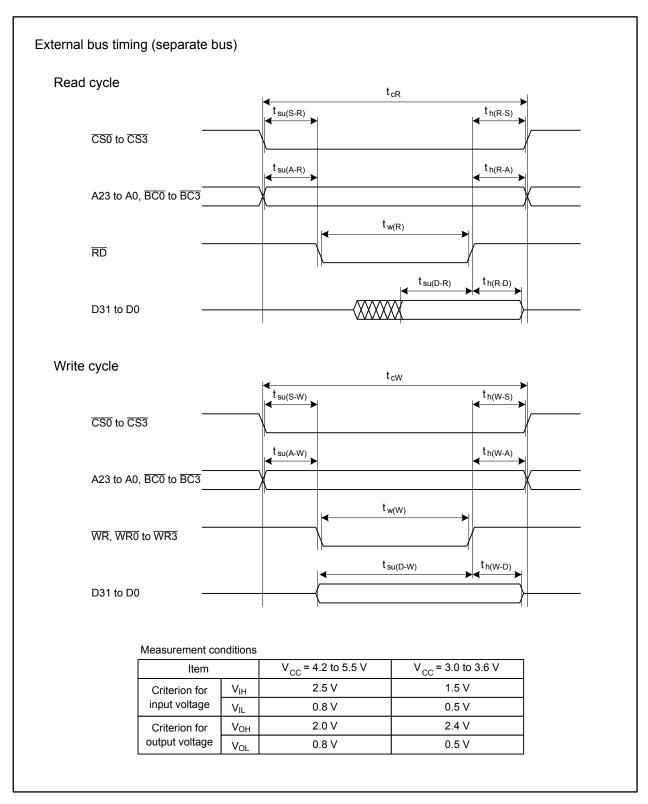
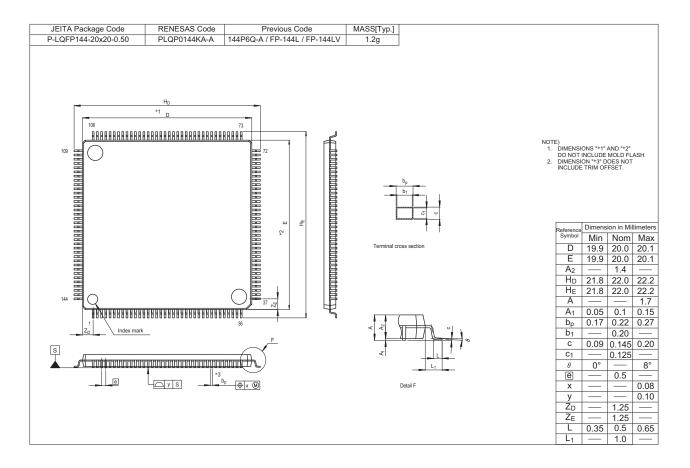
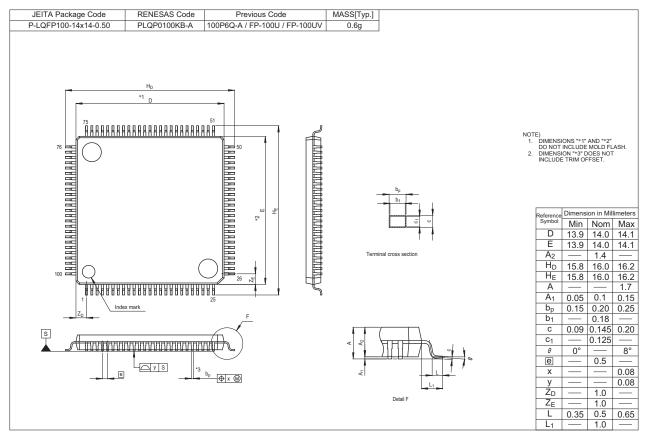




Figure 5.8 External Bus Timing for Separate Bus

Appendix 1. Package Dimensions

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information,
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Ha Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 nunLu Haidian District, Beijing 100083, P.R.China

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2868-9318, Fax: +852 2869-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. เกลาเออออ Erectionius เพลาสู่ysta 3นที.bnu. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-588-3737, Fax: 482-2-588-5141

© 2013 Renesas Electronics Corporation. All rights reserved.