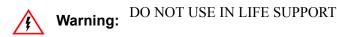

E. Analog Devices Inc./Maxim Integrated - <u>ZLP32300H2032G Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete		
Core Processor	Z8		
Core Size	8-Bit		
Speed	8MHz		
Connectivity	-		
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT		
Number of I/O	16		
Program Memory Size	32KB (32K x 8)		
Program Memory Type	OTP		
EEPROM Size	<u> </u>		
RAM Size	237 x 8		
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V		
Data Converters	-		
Oscillator Type	Internal		
Operating Temperature	0°C ~ 70°C (TA)		
Mounting Type	Surface Mount		
Package / Case	20-SSOP (0.209", 5.30mm Width)		
Supplier Device Package	20-SSOP		
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300h2032g		

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

zilog

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

ISO 9001:2000 FS 507510 Zilog products are designed and manufactured under an ISO registered 9001:2000 Quality Management System. For more details, please visit www.zilog.com/quality.

Architectural Overview

Zilog's Crimzon[®] ZLP32300 is an OTP-based member of the MCU family of infrared microcontrollers. With 237 B of general-purpose RAM and 8 KB to 32 KB of OTP, Zilog's CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors.

The Crimzon ZLP32300 architecture (see Figure 1 on page 3) is based on Zilog's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] CPU offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications.

There are three basic address spaces available to support a wide range of configurations:

- 1. Program Memory
- 2. Register File
- 3. Expanded Register File

The register file is composed of 256 Bytes of RAM. It includes four I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D).

To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Crimzon ZLP32300 offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2 on page 4). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages.

Note: All signals with an overline, " $\overline{}$ ", are active Low. For example, B/\overline{W} , in which WORD is active Low, and \overline{B}/W , in which BYTE is active Low.

Power connections use the conventional descriptions listed in Table 1.

Connection	Circuit	Device
Power	V _{CC}	V _{DD}
Ground	GND	V _{SS}

Table 1. Power Connections

40-Pin PDIP No	48-Pin SSOP No	Symbol
32	39	P12
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V _{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC
	6	NC

Table 5. 40- and 48-Pin Configuration (Continued)

(see T8 and T16 Common Functions—CTR1(0D)01h on page 28). Other edge detect and IRQ modes are described in Table 6.

Note: Comparators are powered down by entering STOP mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into DIGITAL mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

 Table 6. Port 3 Pin Function Summary

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 11). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

16

Functional Description

This device incorporates special functions to enhance the Z8 functionality in consumer and battery-operated applications.

Program Memory

This device addresses 32 KB of OTP memory. The first 12 bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts. See Figure 12.

RAM

This device features 256 B of RAM.

register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

Note: An expanded register bank is also referred to as an expanded register group (see Figure 13).

zilog

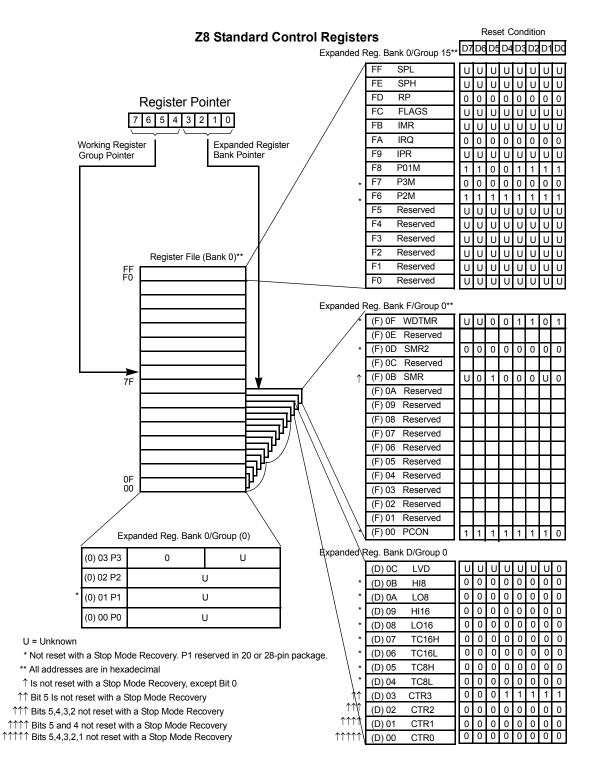


Figure 13. Expanded Register File Architecture

22

33

P35_Out

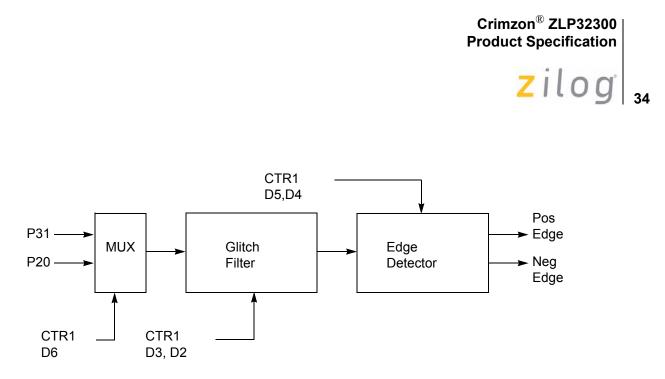
This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03h

Table 10 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

Table 10.CTR3 (D)03h: T8/T16 Control Register

Field	Bit Position		Value	Description		
T ₁₆ Enable	7	R	0*	Counter Disabled		
10		R	1	Counter Enabled		
		W	0	Stop Counter		
		W	1	Enable Counter		
T ₈ Enable	-6	R	0*	Counter Disabled		
C C		R	1	Counter Enabled		
		W	0	Stop Counter		
		W	1	Enable Counter		
Sync Mode	5	R/W	0**	Disable Sync Mode		
-			1	Enable Sync Mode		
Reserved	43210	R	1	Always reads 11111		
		W	х	No Effect		

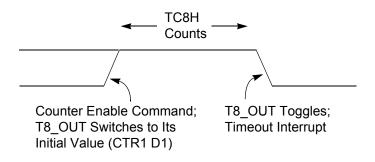

*Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset. Not reset with a Stop Mode Recovery.

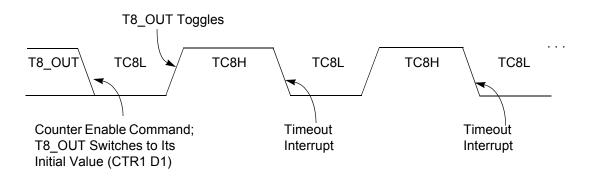
Counter/Timer Functional Blocks

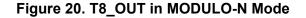
Input Circuit

The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5–D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 16).


T8 TRANSMIT Mode

Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 17.




Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur, see Figure 19 and Figure 20.

T8 DEMODULATION Mode

You must program TC8L and TC8H to FFh. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the time-out status bit (CTR0, D5) is set, and an counter/timers (see Table 11 on page 45) and one for low-voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in DIGITAL mode, Pin P33 is the source. When in ANALOG mode, the output of the Stop Mode Recovery source logic is used as the source for the interrupt, see Figure 33 on page 52.

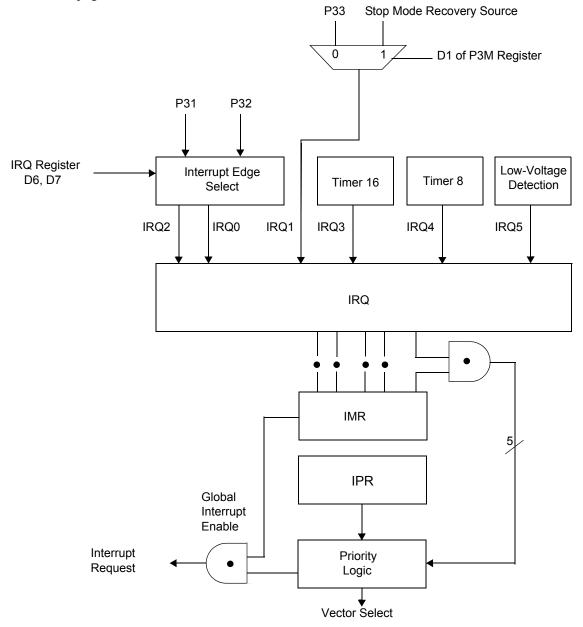


Figure 28. Interrupt Block Diagram

Name	Source	Vector Location	Comments
IRQ0	P32	0,1	External (P32), Rising, Falling Edge Triggered
IRQ1	P33	2,3	External (P33), Falling Edge Triggered
IRQ2	P31, T _{IN}	4,5	External (P31), Rising, Falling Edge Triggered
IRQ3	T16	6,7	Internal
IRQ4	Т8	8,9	Internal
IRQ5	LVD	10,11	Internal

Table 11. Interrupt Types, Sources, and Vectors

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All Crimzon ZLP32300 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 12.

IRQ		Interr	Interrupt Edge		
D7	D6	D6 IRQ2 (P31) IRQ0 (P3			
0	0	F	F		
0	1	F	R		
1	0	R	F		
1	1	R/F	R/F		
Note	Note: F = Falling Edge; R = Rising Edge				

Table 12. IRQ Register

zilog ,

Table 13. SMR2(F)0Dh:Stop Mode Recovery Register 2* (Continued)

Field	Bit Position	Value	Description
Source	432 \	N 000 [†]	A. POR Only
		001	B. NAND of P23–P20
		010	C. NAND of P27–P20
		011	D. NOR of P33–P31
		100	E. NAND of P33–P31
		101	F. NOR of P33–P31, P00, P07
		110	G. NAND of P33–P31, P00, P07
		111	H. NAND of P33–P31, P22–P20
Reserved	10	00	Reserved (Must be 0)
*Port pins cont	figured as outputs ar	e ignored	as an SMR recovery source.

[†]Indicates the value upon Power-On Reset.

51

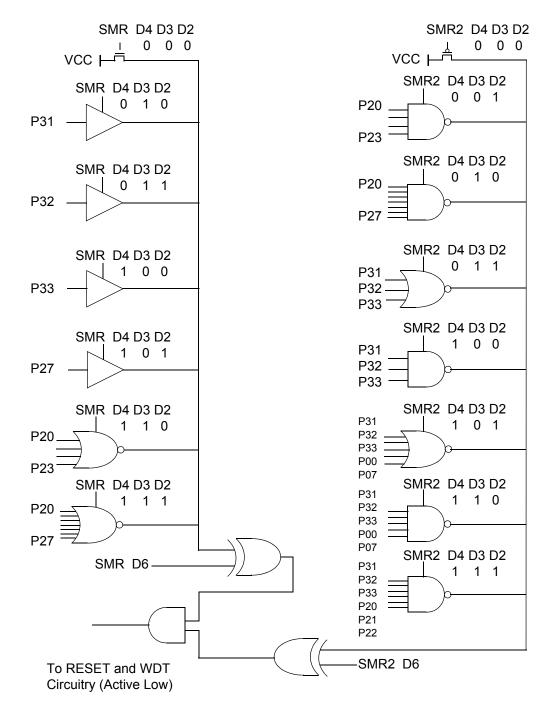
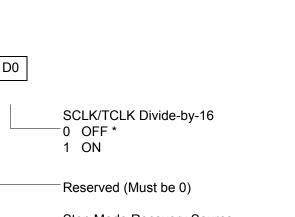


Figure 33. Stop Mode Recovery Source

59


Voltage Detection and Flags

The Voltage Detection register (LVD, register 0Ch at the expanded register bank 0Dh) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the V_{CC} level is monitored in real time. The HVD Flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD} . The LVD Flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD} . When Voltage Detection is enabled, the LVD Flag also triggers IRQ5. The IRQ bit 5 latches the low-voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a Flag only.

Note:

If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt (EI) instruction prior to enabling the voltage detection.

0 OFF * 1 ON
Reserved (Must be 0)
Stop Mode Recovery Source 000 POR Only * 001 Reserved 010 P31 011 P32 100 P33 101 P27 110 P2 NOR 0–3 111 P2 NOR 0–7
Stop Delay 0 OFF 1 ON * * * *
Stop Recovery Level * * * 0 Low * 1 High
Stop Flag 0 POR * * * * 1 Stop Recovery * *

*Default setting after Reset

SMR(0F)0BH

D6

D5

D4

D3

D2

D1

D7

* *Set after Stop Mode Recovery

* * *At the XOR gate input

*** *Default setting after Reset. Must be 1 if using a crystal or resonator clock source.

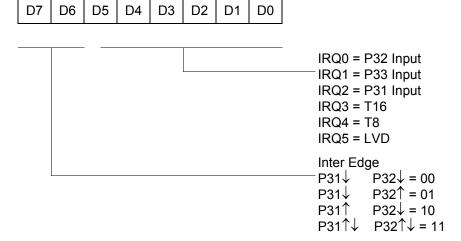
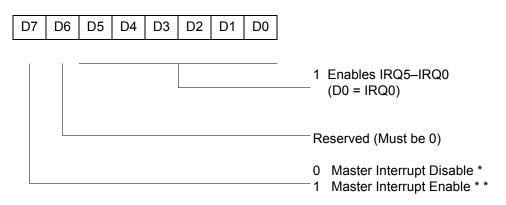

*** * *Default setting after Power-On Reset. Not Reset with a Stop Mode Recovery.

Figure 43. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

66



R250 IRQ(FAH)

Figure 50. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)

*Default setting after reset

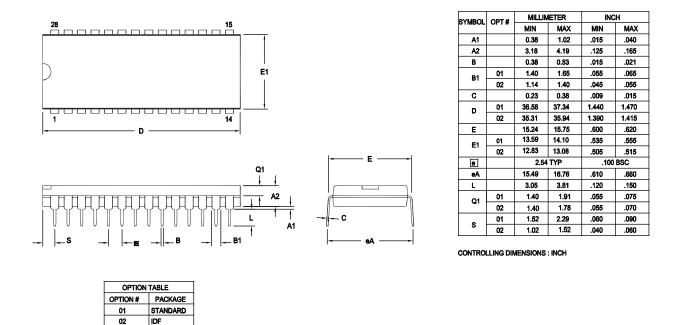
* *Only by using EI, DI instruction; DI is required before changing the IMR register

Figure 51. Interrupt Mask Register (FBH: Read/Write)

zilog ₇₉

					to +70 °C MHz			Watchdog Timer
No Symbol		Parameter	v _{cc}	Minimum	Maximum	Units	Notes	[−] Mode Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3TpC			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwlH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop Mode Recovery Width Spec	2.0–3.6	12		ns	3	
		·		10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watchdog Timer	2.0–3.6	5		ms		0, 0
		Delay Time	2.0–3.6	10		ms		0, 1
			2.0–3.6	20		ms		1, 0
			2.0–3.6	80		ms		1, 1
13	T _{POR}	Power-on reset	2.0–3.6	2.5	10	ms		

Table 20. AC Characteristics


Notes

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR–D5 = 1.

4. SMR–D5 = 0.

Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.

zilog

88

Device	Part Number	Description			
	ZLP32300P2008G	20-pin PDIP 8 K OTP			
	ZLP32300S2008G	20-pin SOIC 8 K OTP			
	ZLP32300H4804G	48-pin SSOP 4 K OTP			
	ZLP32300P4004G	40-pin PDIP 4 K OTP			
	ZLP32300H2804G	28-pin SSOP 4 K OTP			
	ZLP32300P2804G	28-pin PDIP 4 K OTP			
	ZLP32300S2804G	28-pin SOIC 4 K OTP			
	ZLP32300H2004G	20-pin SSOP 4 K OTP			
	ZLP32300P2004G	20-pin PDIP 4 K OTP			
	ZLP32300S2004G	20-pin SOIC 4 K OTP			
	ZLP323ICE01ZAC*	40-PDIP/48-SSOP Accessory Kit			
	Note: *ZLP323ICE01ZAC h ZCRMZNICE02ZAC	as been replaced by an improved version, G.			
	ZLP128ICE01ZEMG	In-Circuit Emulator			
	Note: *ZLP128ICE01ZEMG ZCRMZNICE01ZEM	has been replaced by an improved version, G.			
	ZCRMZNICE01ZEMG	Crimzon In-Circuit Emulator			
	ZCRMZN00100KITG	Crimzon In-Circuit Emulator Development Kit			
	ZCRMZNICE01ZACG	20-Pin Accessory Kit			
	ZCRMZNICE02ZACG	40/48-Pin Accessory Kit			

1. Replace C with G for Lead-Free Packaging.

2. Contact <u>www.zilog.com</u> for the die form.

For fast results, contact your local Zilog[®] sales office for assistance in ordering the part(s) desired.