

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zlp32300h4832c00tr

Revision History

Each instance in the Revision History table reflects a change to this document from its previous revision. For more details, refer to the corresponding pages or appropriate link in the table.

Date	Revision Level	Description	Page Number
February 2008	23	Updated Ordering Information section.	87
January 2008	22	Updated Ordering Information section.	87
July 2007	21	Updated Disclaimer section and implemented style guide.	All
February 2007	20	Updated Low-Voltage Detection.	58
May 2006	19	Updated Figure 33 with pin P22 in SMR block input.	52
December 2005	18	Updated Clock and Input/Output Ports sections.	15 and 51

PS020823-0208 Revision History

Development Features

Table 2 lists the features of Crimzon ZLP32300 family.

Table 2. Crimzon ZLP32300 MCU Features

Device	OTP(KB)	RAM* (Bytes)	I/O Lines	Voltage Range
Crimzon ZLP32300	8, 16, 32	237	32, 24 or 16	2.0–3.6 V
*General purpose				

The additional features include:

- Low power consumption–11 mW (typical)
- Three standby modes:
 - STOP—1.7 μA (typical)
 - HALT—0.6 mA (typical)
 - Low-voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One Low-Voltage Detection interrupt
- Low-Voltage Detection and high voltage detection Flags
- Programmable Watchdog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors
 - Port 1: 0–3 pull-up transistors
 - **-** Port 1: 4–7 pull-up transistors

PS020823-0208 Architectural Overview

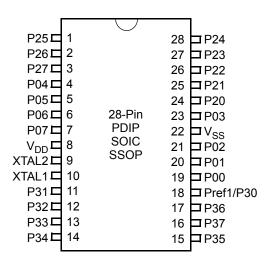


Figure 4. 28-Pin PDIP/SOIC/SSOP Pin Configuration

Table 4. 28-Pin PDIP/SOIC/SSOP Pin Identification

Pin No	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5, 6, 7
4-7	P04-P07	Input/Output	Port 0, Bits 4, 5, 6, 7
8	V_{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1, 2, 3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to
	Port 3 Bit 0		V _{CC} if not used
			Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0, 1, 2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0–4

PS020823-0208 Pin Description

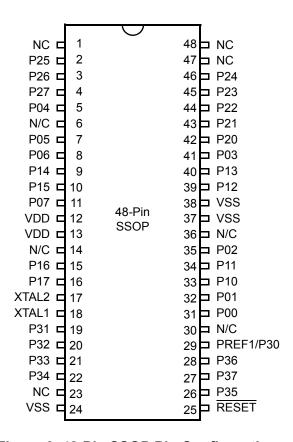


Figure 6. 48-Pin SSOP Pin Configuration

Table 5. 40- and 48-Pin Configuration

40-Pin PDIP No	48-Pin SSOP No	Symbol
26	31	P00
27	32	P01
30	35	P02
34	41	P03
5	5	P04
6	7	P05
7	8	P06
10	11	P07
28	33	P10
29	34	P11

PS020823-0208 Pin Description

Table 5. 40- and 48-Pin Configuration (Continued)

40-Pin PDIP No	48-Pin SSOP No	Symbol
	14	NC
	30	NC
	36	NC

Pin Functions

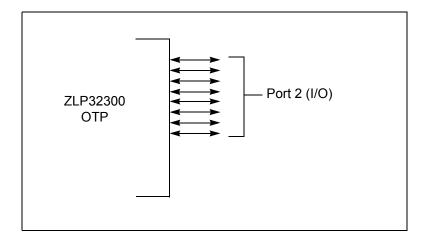
XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Input/Output Ports


Caution: *The CMOS input buffer for each Port 0, 1, or 2 pin is always connected to the pin, even* when the pin is configured as an output. If the pin is configured as an open-drain output and no external signal is applied, a High output state can cause the CMOS input buffer to float. This might lead to excessive leakage current of more than 100 µA. To prevent this leakage, connect the pin to an external signal with a defined logic level or ensure its output state is Low, especially during STOP mode.

> Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

> Port 0, 1, and 2 have both input and output capability. The input logic is always present no matter whether the port is configured as input or output. When doing a READ instruction, the MCU reads the actual value at the input logic but not from the output buffer. In addition, the instructions of OR, AND, and XOR have the Read-Modify-Write sequence. The MCU first reads the port, and then modifies the value and load back to the port.

> Precaution must be taken if the port is configured as open-drain output or if the port is driving any circuit that makes the voltage different from the desired output logic. For example, pins P00–P07 are not connected to anything else. If it is configured as

PS020823-0208 Pin Description

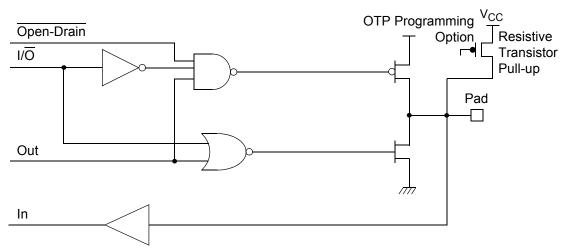


Figure 9. Port 2 Configuration

Port 3 (P37-P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 10). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

PS020823-0208 Pin Description

(see T8 and T16 Common Functions—CTR1(0D)01h on page 28). Other edge detect and IRQ modes are described in Table 6.

Note:

Comparators are powered down by entering STOP mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into DIGITAL mode.

Table 6. Port 3 Pin Function Summary

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	T8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 11). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

PS020823-0208 Pin Description

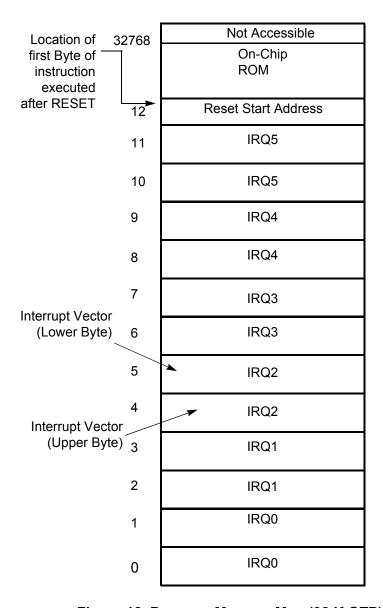


Figure 12. Program Memory Map (32 K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8 register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the ERF (Expanded Register File). Bits 7–4 of


```
R1, 2
LD
                                                 ; CTR2→CTR1
LD
                        RP, #0Dh
                                                 ; Select ERF D
for access to bank D
                                                 ; (working
register group 0)
                                                 ; Select
                        RP, #7Dh
expanded register bank D and working
                                                 ; register
group 7 of bank 0 for access.
                        71h, 2
; CTRL2→register 71h
                        R1, 2
; CTRL2→register 71h
```

Register File

The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose registers, 16 control and status registers (R0–R3, R4–R239, and R240–R255, respectively), and two expanded registers groups in Banks D (see Table 7 on page 27) and F. Instructions can access registers directly or indirectly through an 8-bit address field, thereby allowing a short, 4-bit register address to use the Register Pointer (see Figure 15). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group.

Note:

Working register group E0–EF can only be accessed through working registers and indirect addressing modes.

T16 TRANSMIT Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NOR-MAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set, see Figure 23.

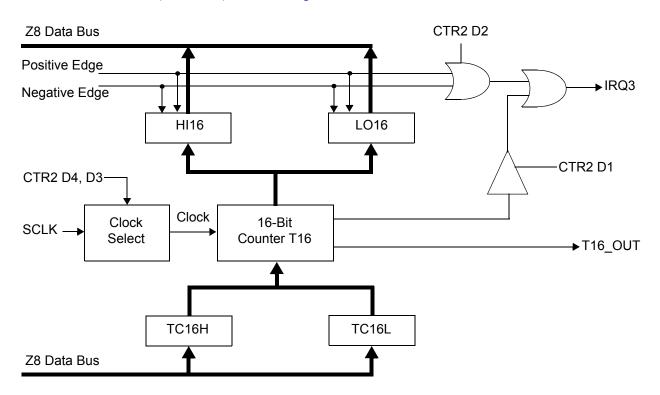


Figure 23. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in Interrupts on page 43.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 24). If it is in MODULO-N mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 25).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to ffffh to ffffh. Transition from 0 to ffffh is not a timeout condition.

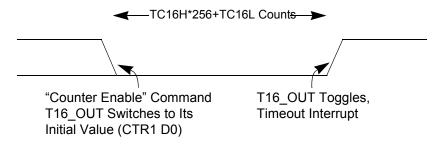


Figure 24. T16_OUT in SINGLE-PASS Mode

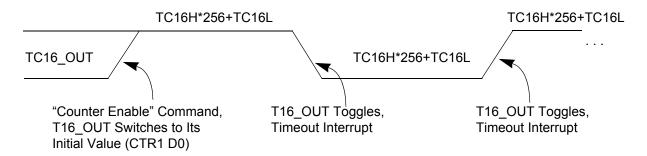


Figure 25. T16_OUT in MODULO-N Mode

T16 DEMODULATION Mode

You must program TC16L and TC16H to FFh. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures HI16 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFh and starts again.

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into SINGLE-PASS mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the PING-PONG mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7), see Figure 26.

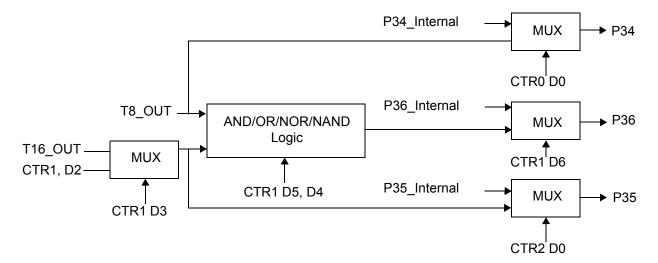


Figure 27. Output Circuit

The initial value of T8 or T16 must not be 1. If you stop the timer and restart the timer, reload the initial value to avoid an unknown previous value.

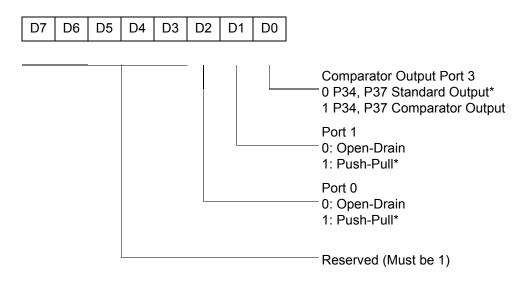
During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Timer Output

The output logic for the timers is displayed in Figure 27. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1.

Interrupts


The Crimzon ZLP32300 features six different interrupts (see Table 11 on page 45). The interrupts are maskable and prioritized (see Figure 28). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the

Port Configuration

Port Configuration Register

The Port Configuration (PCON) register (see Figure 30) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00h

^{*} Default setting after reset

Figure 30. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of Port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Port 0 Output Mode (D2)

Bit 2 controls the output mode of Port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Field	Bit Position		Value	Description
Source	432	W	000†	A. POR Only
			001	B. NAND of P23-P20
			010	C. NAND of P27-P20
			011	D. NOR of P33-P31
			100	E. NAND of P33-P31
			101	F. NOR of P33-P31, P00, P07
			110	G. NAND of P33-P31, P00, P07
			111	H. NAND of P33-P31, P22-P20
Reserved	10		00	Reserved (Must be 0)

^{*}Port pins configured as outputs are ignored as an SMR recovery source.

†Indicates the value upon Power-On Reset.

Notes:

- 1. Ensure to differentiate the TRANSMIT mode from DEMODULATION mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.
- 2. Changing from one mode to another cannot be performed without disabling the counter/timers.

CTR2(0D)02H

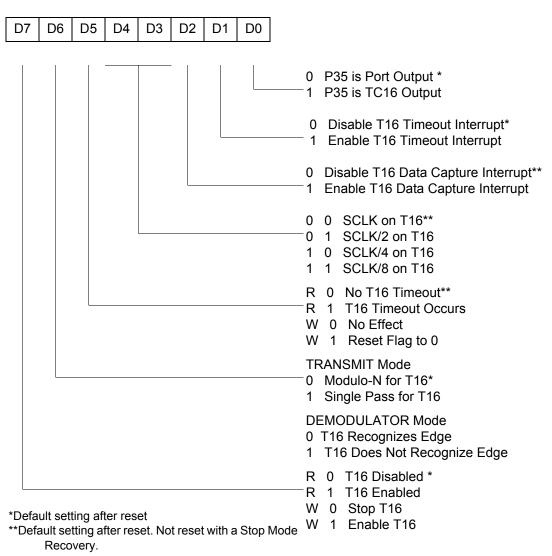
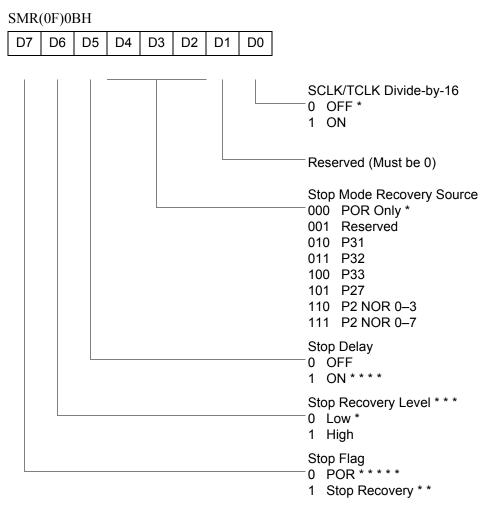



Figure 39. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

^{*}Default setting after Reset

Figure 43. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

^{* *}Set after Stop Mode Recovery

^{* * *}At the XOR gate input

^{* * * *}Default setting after Reset. Must be 1 if using a crystal or resonator clock source.

^{* * * *} Default setting after Power-On Reset. Not Reset with a Stop Mode Recovery.

Table 20. AC Characteristics

				• •	to +70 °C MHz			Watchdog Timer
No	Symbol	Parameter	V _{CC}	Minimum	Maximum	Units	Notes	⁻Mode Register (D1, D0)
1	ТрС	Input Clock Period	2.0-3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0-3.6		25	ns	1	
3	TwC	Input Clock Width	2.0-3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0-3.6	3ТрС			1	
6	TpTin	Timer Input Period	2.0-3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0-3.6		100	ns	1	
8	TwlL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwlH	Interrupt Request Input High Time	2.0-3.6	5TpC			1, 2	
10	Twsm	Stop Mode Recovery Width Spec	2.0-3.6	12		ns	3	
		·		10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watchdog Timer Delay Time	2.0–3.6 2.0–3.6 2.0–3.6 2.0–3.6	5 10 20 80		ms ms ms ms		0, 0 0, 1 1, 0 1, 1
13	T _{POR}	Power-on reset	2.0-3.6	2.5	10	ms		

Notes

- 1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).
- 3. SMR-D5 = 1.
- 4. SMR-D5 = 0.

PS020823-0208 **Electrical Characteristics**

Device	Part Number	Description
	ZLP32300P2008G	20-pin PDIP 8 K OTP
	ZLP32300S2008G	20-pin SOIC 8 K OTP
	ZLP32300H4804G	48-pin SSOP 4 K OTP
	ZLP32300P4004G	40-pin PDIP 4 K OTP
	ZLP32300H2804G	28-pin SSOP 4 K OTP
	ZLP32300P2804G	28-pin PDIP 4 K OTP
	ZLP32300S2804G	28-pin SOIC 4 K OTP
	ZLP32300H2004G	20-pin SSOP 4 K OTP
	ZLP32300P2004G	20-pin PDIP 4 K OTP
	ZLP32300S2004G	20-pin SOIC 4 K OTP
	ZLP323ICE01ZAC*	40-PDIP/48-SSOP Accessory Kit
	Note: *ZLP323ICE01ZAC h ZCRMZNICE02ZAC0	as been replaced by an improved version, G.
	ZLP128ICE01ZEMG	In-Circuit Emulator
	Note: *ZLP128ICE01ZEMG ZCRMZNICE01ZEM	has been replaced by an improved version, G.
	ZCRMZNICE01ZEMG	Crimzon In-Circuit Emulator
	ZCRMZN00100KITG	Crimzon In-Circuit Emulator Development Kit
	ZCRMZNICE01ZACG	20-Pin Accessory Kit
	ZCRMZNICE02ZACG	40/48-Pin Accessory Kit

Notes

- 1. Replace C with G for Lead-Free Packaging.
- 2. Contact <u>www.zilog.com</u> for the die form.

For fast results, contact your local Zilog® sales office for assistance in ordering the part(s) desired.

PS020823-0208 Ordering Information

O	power connections 1		
oscillator configuration 46	power supply 5		
output circuit, counter/timer 43	program memory 19		
	map 20		
P	_		
package information	R		
20-pin DIP package diagram 80	ratings, absolute maximum 75		
20-pin SSOP package diagram 82	register 54		
28-pin DIP package diagram 84	CTR(D)01h 28		
28-pin SOIC package diagram 83	CTR0(D)00h 27		
28-pin SSOP package diagram 85	CTR2(D)02h 31		
40-pin DIP package diagram 85	CTR3(D)03h 33		
48-pin SSOP package diagram 86	flag 73		
part number format 89	HI16(D)09h 26		
pin configuration	HI8(D)0Bh 25		
20-pin DIP/SOIC/SSOP 5	interrupt priority 71		
28-pin DIP/SOIC/SSOP 6	interrupt request 72		
40- and 48-pin 8	interruptmask 72		
40-pin DIP 7	L016(D)08h 26		
48-pin SSOP 8	L08(D)0Ah 26		
pin functions	LVD(D)0Ch 58		
port 0 (P07 - P00) 11	pointer 73		
port 0 (P17 - P10) 12	port 0 and 1 70		
port 0 configuration 12	port 2 configuration 69		
port 1 configuration 13	port 3 mode 69		
port 2 (P27 - P20) 13	port configuration 48, 69		
port 2 (P37 - P30) 14	SMR2(F)0Dh 33		
port 2 configuration 14	stack pointer high 74		
port 3 configuration 15	stack pointer low 74		
port 3 counter/timer configuration 17	stop mode recovery 49		
reset) 18	stop mode recovery 2 54		
XTAL1 (time-based input 10	stop mode recovery 66		
XTAL2 (time-based output) 10	stop mode recovery 2 67		
port 0 configuration 12	T16 control 62		
port 0 pin function 11	T8 and T16 common control functions 61		
port 1 configuration 13	T8/T16 control 63		
port 1 pin function 12	TC16H(D)07h 26		
port 2 configuration 14	TC16L(D)06h 26		
port 2 pin function 13	TC8 control 60		
port 3 configuration 15	TC8H(D)05h 27		
port 3 pin function 14	TC8L(D)04h 27		
port 3counter/timer configuration 17	voltage detection 64		
port configuration register 48	watch-dog timer 68		

PS020823-0208 Index

register description Counter/Timer2 LS-Byte Hold 26 Counter/Timer2 MS-Byte Hold 26 Counter/Timer8 Control 27 Counter/Timer8 High Hold 27 Counter/Timer8 Low Hold 27 CTR2 Counter/Timer 16 Control 31 CTR3 T8/T16 Control 33 Stop Mode Recovery2 33 T16_Capture_LO 26 T8 and T16 Common functions 28	timing diagram, AC 78 transmit mode flowchart 35 V VCC 5 voltage brown-out/standby 58 detection and flags 59 voltage detection register 64
T8_Capture_HI 25 T8_Capture_LO 26 register file 24 expanded 20 register pointer 23 detail 25 reset pin function 18 resets and WDT 57	 W watchdog timer mode register watchdog timer mode register 55 time select 56
SCLK circuit 50 single-pass mode T16_OUT 41	XTAL1 5 XTAL1 pin function 10 XTAL2 5 XTAL2 pin function 10
T8_OUT 37 stack 25 standard test conditions 75 standby modes 2 stop instruction, counter/timer 47 stop mode recovery 2 register 54 source 52 stop mode recovery 2 54 stop mode recovery register 49	Z ZLP32300 family members 2
T T16 transmit mode 40 T16_Capture_HI 26 T8 transmit mode 34 T8 Capture HI 25	

PS020823-0208 Index

test conditions, standard 75

test load diagram 75