
E. Analog Devices Inc./Maxim Integrated - <u>ZLP32300P2008G Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

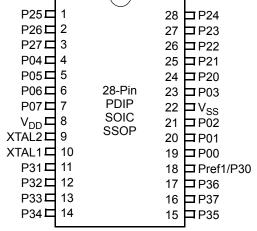
Details	
Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300p2008g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development Features

Table 2 lists the features of Crimzon ZLP32300 family.


 Table 2. Crimzon ZLP32300 MCU Features

Device OTP(KB) RA		RAM* (Bytes)	I/O Lines	Voltage Range
Crimzon ZLP32300	8, 16, 32	237	32, 24 or 16	2.0–3.6 V
*General purpose				

The additional features include:

- Low power consumption–11 mW (typical)
- Three standby modes:
 - STOP—1.7 μA (typical)
 - HALT—0.6 mA (typical)
 - Low-voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One Low-Voltage Detection interrupt
- Low-Voltage Detection and high voltage detection Flags
- Programmable Watchdog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors
 - Port 1: 0–3 pull-up transistors
 - Port 1: 4–7 pull-up transistors

Pin No	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5, 6, 7
4-7	P04-P07	Input/Output	Port 0, Bits 4, 5, 6, 7
8	V _{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1, 2, 3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to
	Port 3 Bit 0		V _{CC} if not used
			Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0, 1, 2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0–4

Table 4. 28-Pin PDIP/SOIC/SSOP Pin Identification

Figure 5. 40-Pin PDIP Pin Configuration

NC	– 1	\smile	48 🗖 ו	NC
P25	E 2		47 🗖 1	NC
P26	– 3		46 🗆 I	P24
P27	□ 4		45 🗖 I	P23
P04	- 5		44 🗖 I	P22
N/C	– 6		43 □ I	P21
P05	⊏ 7		42 🗖 I	P20
P06	□ 8		41 🗆 🛙	P03
P14	- 9		40 🗖 I	P13
P15	□ 10		39 🗖 I	P12
P07	C 11	48-Pin	38 🗖 👌	VSS
VDD	□ 12	SSOP	37 🗖 🕚	VSS
	□ 13	0001	36 🗖 🛛	N/C
10.0	- 14			P02
P16	□ 15		34 🗖 I	P11
P17	□ 16		00 - 1	P10
XTAL2	- 17		32 🗖 🛛	P01
XTAL1	□ 18		31 🗖 🛛	P00
P31	□ 19		30 🗖 🛛	N/C
P32	2 0		29 🗖 I	PREF1/P30
P33	L 21		28 🗖 I	P36
P34	2 2		27 🗖 🛛	P37
	2 3			P35
VSS	□ 24		25 🗆 I	RESET

Figure 6. 48-Pin SSOP Pin Configuration

Table 5. 40- and 48-Pin Configuration

40-Pin PDIP No	48-Pin SSOP No	Symbol
26	31	P00
27	32	P01
30	35	P02
34	41	P03
5	5	P04
6	7	P05
7	8	P06
10	11	P07
28	33	P10
29	34	P11

40-Pin PDIP No	48-Pin SSOP No	Symbol
32	39	P12
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V _{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC
	6	NC

Table 5. 40- and 48-Pin Configuration (Continued)

zilog

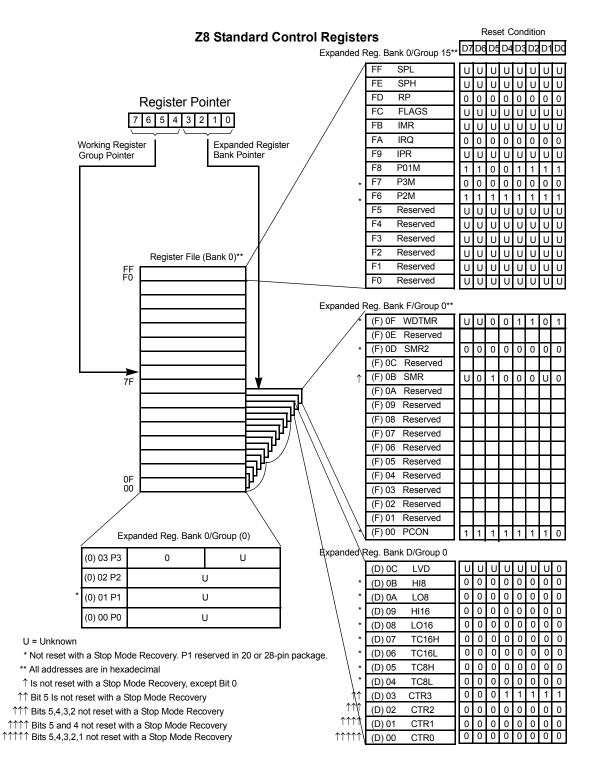


Figure 13. Expanded Register File Architecture

22

Initial_T8_Out/Rising_Edge

In TRANSMIT mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8 OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16 OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16 OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02h

Table 9 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
T16_Enable	7	R	0*	Counter Disabled
_			1	Counter Enabled
		W	0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-б	R/W		TRANSMIT Mode
-			0*	Modulo-N
			1	Single Pass
				DEMODULATION Mode
			0	T16 Recognizes Edge
			1	T16 Does Not Recognize
				Edge
Time_Out	5	R	0*	No Counter Timeout
-			1	Counter Timeout
				Occurred
		W	0	No Effect
			1	Reset Flag to 0

Table 9. CTR2(D)02h: Counter/Timer16 Control Register

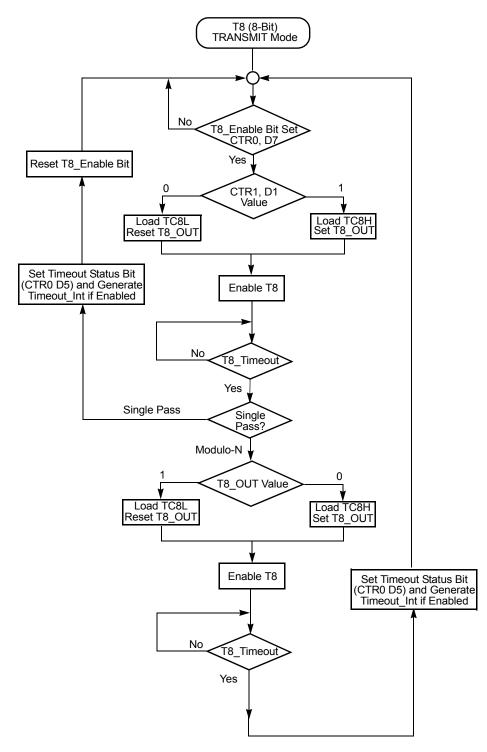
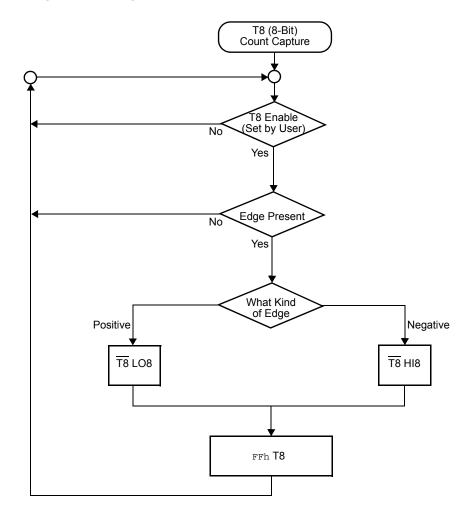
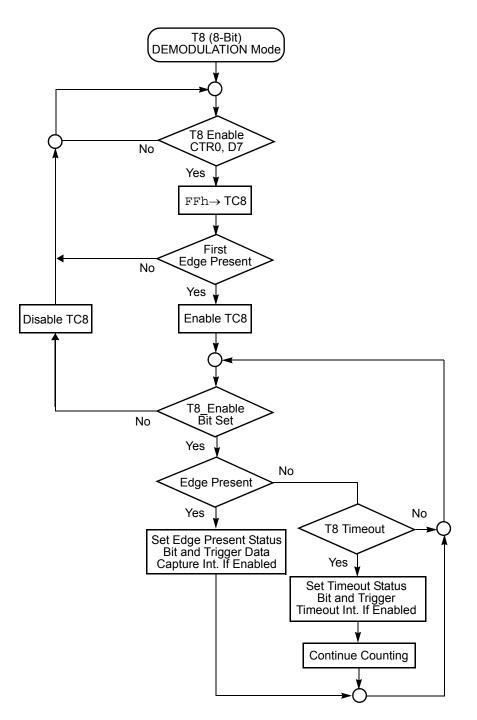
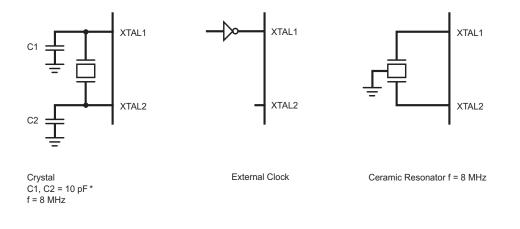



Figure 17. TRANSMIT Mode Flowchart

interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFh (see Figure 21 and Figure 22).

Figure 21. DEMODULATION Mode Count Capture Flowchart




Figure 22. DEMODULATION Mode Flowchart

zilog

Clock

The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source.

The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors from each pin to ground. The typical capacitor value is 10 pF for 8 MHz. Also check with the crystal supplier for the optimum capacitance.

*Note: preliminary value.

Figure 29. Oscillator Configuration

Zilog's IR MCU supports crystal, resonator, and oscillator. Most resonators have a frequency tolerance of less than $\pm 0.5\%$, which is enough for remote control application. Resonator has a very fast startup time, which is around few hundred microseconds. Most crystals have a frequency tolerance of less than 50 ppm ($\pm 0.005\%$). However, crystal needs longer startup time than the resonator. The large loading capacitance slows down the oscillation startup time. Zilog[®] suggests not to use more than 10 pF loading capacitor for the crystal. If the stray capacitance of the PCB or the crystal is high, the loading capacitance C1 and C2 must be reduced further to ensure stable oscillation before the T_{POR} (Power-On Reset time is typically 5-6 ms, see Table 20 on page 79).

For Stop Mode Recovery operation, bit 5 of SMR register allows you to select the Stop Mode Recovery delay, which is the T_{POR} . If Stop Mode Recovery delay is not selected, the MCU executes instruction immediately after it wakes up from the STOP mode. If resonator or crystal is used as a clock source then Stop Mode Recovery delay needs to be selected (bit 5 of SMR = 1).

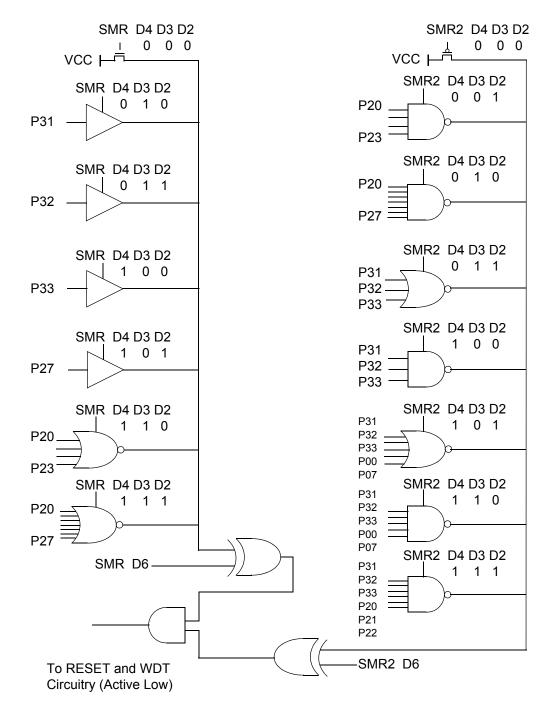
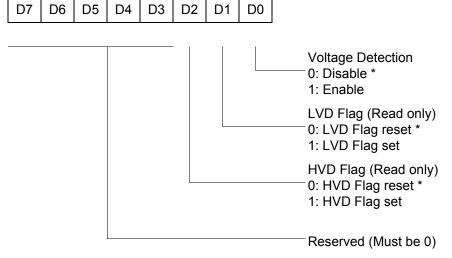
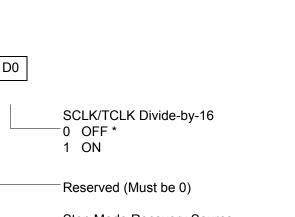



Figure 33. Stop Mode Recovery Source

LVD(0D)0CH



*Default setting after reset.

Figure 41. Voltage Detection Register

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both Ports 0 and 1 together might trigger the LVD Flag.

0 OFF * 1 ON
Reserved (Must be 0)
Stop Mode Recovery Source 000 POR Only * 001 Reserved 010 P31 011 P32 100 P33 101 P27 110 P2 NOR 0–3 111 P2 NOR 0–7
Stop Delay 0 OFF 1 ON * * * *
Stop Recovery Level * * * 0 Low * 1 High
Stop Flag 0 POR * * * * 1 Stop Recovery * *

*Default setting after Reset

SMR(0F)0BH

D6

D5

D4

D3

D2

D1

D7

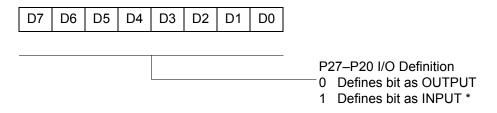
* *Set after Stop Mode Recovery

* * *At the XOR gate input

*** *Default setting after Reset. Must be 1 if using a crystal or resonator clock source.

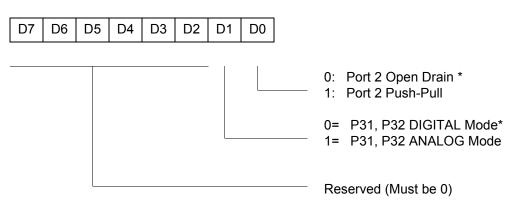
*** * *Default setting after Power-On Reset. Not Reset with a Stop Mode Recovery.

Figure 43. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)


66

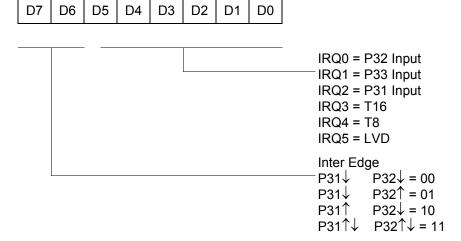
69

Standard Control Registers


The standard control registers are displayed in Figure 46 through Figure 55 on page 74. R246 P2M(F6H)

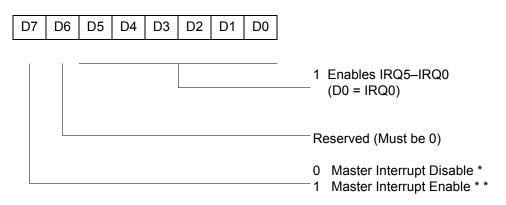
*Default setting after reset. Not Reset with a Stop Mode Recovery.

R247 P3M(F7H)



*Default setting after reset. Not Reset with a Stop Mode Recovery.

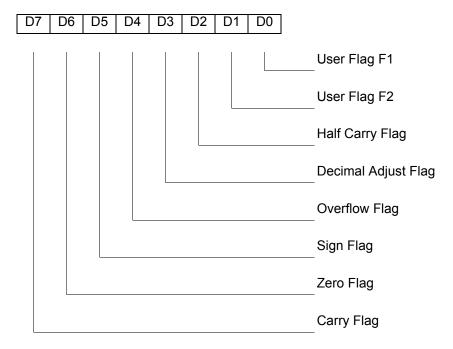
Figure 47. Port 3 Mode Register (F7H: Write Only)



R250 IRQ(FAH)

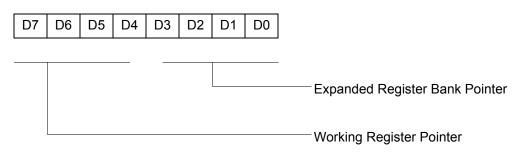
Figure 50. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)


*Default setting after reset

* *Only by using EI, DI instruction; DI is required before changing the IMR register

Figure 51. Interrupt Mask Register (FBH: Read/Write)


Crimzon[®] ZLP32300 Product Specification Zilog ₇₃

R252 Flags(FCH)

Figure 52. Flag Register (FCH: Read/Write)

R253 RP(FDH)

Default setting after reset = 0000 0000

Figure 53. Register Pointer (FDH: Read/Write)

zilog ₇₉

		T _A =0 °C to +70 °C 8.0 MHz						Watchdog Timer
No	Symbol	Parameter	v _{cc}	Minimum	Maximum	Units	Notes	[−] Mode Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3TpC			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwlH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop Mode Recovery Width Spec	2.0–3.6	12		ns	3	
		·		10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watchdog Timer	2.0–3.6	5		ms		0, 0
		Delay Time	2.0–3.6	10		ms		0, 1
			2.0–3.6	20		ms		1, 0
			2.0–3.6	80		ms		1, 1
13	T _{POR}	Power-on reset	2.0–3.6	2.5	10	ms		

Table 20. AC Characteristics

Notes

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR–D5 = 1.

4. SMR–D5 = 0.

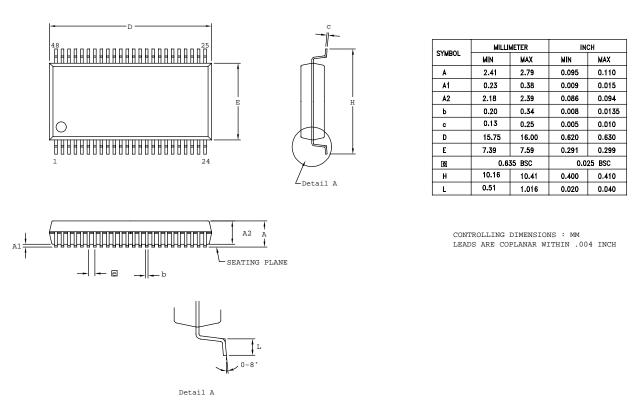


Figure 65. 48-Pin SSOP Package Design

Note: Contact $Zilog^{\mathbb{R}}$ on the actual bonding diagram and coordinate for chip-on-board assembly.

Index

Numerics

16-bit counter/timer circuits 40 20-pin DIP package diagram 80 20-pin SSOP package diagram 82 28-pin DIP package diagram 84 28-pin SOIC package diagram 83 28-pin SSOP package diagram 85 40-pin DIP package diagram 85 48-pin SSOP package diagram 86 8-bit counter/timer circuits 36

Α

absolute maximum ratings 75 AC characteristics 78 timing diagram 78 address spaces, basic 1 architecture 1 expanded register file 22

В

basic address spaces 1 block diagram, ZLP32300 functional 3

С

capacitance 76 characteristics AC 78 DC 76 clock 46 comparator inputs/outputs 18 configuration port 0 12 port 1 13 port 2 14 port 3 15

port 3 counter/timer 17 counter/timer 16-bit circuits 40 8-bit circuits 36 brown-out voltage/standby 58 clock 46 demodulation mode count capture flowchart 38 demodulation mode flowchart 39 **EPROM** selectable options 58 glitch filter circuitry 34 halt instruction 47 input circuit 33 interrupt block diagram 44 interrupt types, sources and vectors 45 oscillator configuration 46 output circuit 43 port configuration register 48 resets and WDT 57 SCLK circuit 50 stop instruction 47 stop mode recovery register 49 stop mode recovery register 2 54 stop mode recovery source 52 T16 demodulation mode **41** T16 transmit mode 40 T16 OUT in modulo-N mode 41 T16 OUT in single-pass mode 41 T8 demodulation mode 37 T8 transmit mode 34 T8 OUT in modulo-N mode **37** T8 OUT in single-pass mode 37 transmit mode flowchart 35 voltage detection and flags 59 watch-dog timer mode register 55 watch-dog timer time select 56 CTR(D)01h T8 and T16 Common Functions 29

D

DC characteristics 76 demodulation mode count capture flowchart 38 flowchart 39 T16 41