E. Analog Devices Inc./Maxim Integrated - <u>ZLP32300P2032G Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300p2032g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development Features

Table 2 lists the features of Crimzon ZLP32300 family.

 Table 2. Crimzon ZLP32300 MCU Features

Device	OTP(KB)	RAM* (Bytes)	I/O Lines	Voltage Range
Crimzon ZLP32300	8, 16, 32	237	32, 24 or 16	2.0–3.6 V
*General purpose				

The additional features include:

- Low power consumption–11 mW (typical)
- Three standby modes:
 - STOP—1.7 µA (typical)
 - HALT—0.6 mA (typical)
 - Low-voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One Low-Voltage Detection interrupt
- Low-Voltage Detection and high voltage detection Flags
- Programmable Watchdog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors
 - Port 1: 0–3 pull-up transistors
 - Port 1: 4–7 pull-up transistors

- EPROM Protection
- WDT enabled at POR

Functional Block Diagram

Figure 1 displays the Crimzon ZLP32300 MCU functional block diagram.

Note: Refer to the specific package for available pins.

Figure 1. Crimzon ZLP32300 MCU Functional Block Diagram

Crimzon[®] ZLP32300 Product Specification

zilog

Pin No	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5, 6, 7
4-7	P04-P07	Input/Output	Port 0, Bits 4, 5, 6, 7
8	V _{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1, 2, 3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to
	Port 3 Bit 0		V _{CC} if not used
			Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0, 1, 2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0–4

Table 4. 28-Pin PDIP/SOIC/SSOP Pin Identification

40-Pin PDIP No	48-Pin SSOP No	Symbol
32	39	P12
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V _{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC
	6	NC

Table 5. 40- and 48-Pin Configuration (Continued)

(see T8 and T16 Common Functions—CTR1(0D)01h on page 28). Other edge detect and IRQ modes are described in Table 6.

Note: Comparators are powered down by entering STOP mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into DIGITAL mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

 Table 6. Port 3 Pin Function Summary

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 11). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

Functional Description

This device incorporates special functions to enhance the Z8 functionality in consumer and battery-operated applications.

Program Memory

This device addresses 32 KB of OTP memory. The first 12 bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts. See Figure 12.

RAM

This device features 256 B of RAM.

28

T8 Enable

This field enables T8 when set (written) to 1.

Single/Modulo-N

When set to 0 (Modulo-N), the counter reloads the initial value when the terminal count is reached. When set to 1 (single-pass), the counter stops when the terminal count is reached.

Timeout

This bit is set when T8 times out (terminal count reached). To reset this bit, write a 1 to its location.

Caution: Writing a 1 is the only way to reset the Terminal Count status condition. Reset this bit before using/enabling the counter/timers. The first clock of T8 might not have complete clock width and can occur any time when enabled.

Note: Ensure to manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (DEMODULATION mode) when using the OR or AND commands. These instructions use a Read-Modify-Write sequence in which the current status from the CTR0 and CTR1 registers is ORed or ANDed with the designated value and then written back into the registers.

T8 Clock

These bits define the frequency of the input signal to T8.

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in DEMODULATION mode.

Counter_INT_Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01h

This register controls the functions in common with the T8 and T16.

Table 8 lists and briefly describes the fields for this register.

Port Configuration

Port Configuration Register

The Port Configuration (PCON) register (see Figure 30) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00h

* Default setting after reset

Figure 30. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of Port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Port 0 Output Mode (D2)

Bit 2 controls the output mode of Port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

zilog ,

Table 13. SMR2(F)0Dh:Stop Mode Recovery Register 2* (Continued)

Field	Bit Position		Value	Description	
Source	432	W	000†	A. POR Only	
			001	B. NAND of P23–P20	
			010	C. NAND of P27–P20	
			011	D. NOR of P33–P31	
			100	E. NAND of P33–P31	
			101	F. NOR of P33–P31, P00, P07	
			110	G. NAND of P33–P31, P00, P07	
			111	H. NAND of P33–P31, P22–P20	
Reserved	10		00	Reserved (Must be 0)	
*Port pins configured as outputs are ignored as an SMR recovery source.					

[†]Indicates the value upon Power-On Reset.

Figure 33. Stop Mode Recovery Source

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (see Figure 34).

SMR2(0F)Dh

D7	D6	D5	D4	D3	D2	D1	D0	
								Reserved (Must be 0) Reserved (Must be 0) Stop Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07
								111 NAND P31, P32, P33, P20, P21, P22 Reserved (Must be 0) Recovery Level * * 0 Low * 1 High
								Reserved (Must be 0)

If used in conjunction with SMR, either of the two specified events causes a Stop Mode Recovery.

*Default setting after reset.

* *At the XOR gate input.

Figure 34. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

L	D6	D5	D4	D3	D2	D1	D0	
								TRANSMIT Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially DEMODULATION Mode R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 TRANSMIT Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially DEMODULATION Mode R 0 No Rising Edge Detection R 1 Rising Edge Detection R 0 No Rising Edge Detection R 1 Rising Edge Detection R 1 Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 TRANSMIT Mode* 0 0 Normal Operation* 0 1 PING-PONG Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 DEMODULATION Mode 0 0 No Filter 0 1 A SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 0 NOR 1 1 Reserved TRANSMIT Mode/T8/T16 Logic 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND DEMODULATION Mode
								1 P36 as T8/T16_OUT DEMODULATION Mode
								1 P20 as Demodulator Input
								TRANSMIT/DEMODULATION Mode

CTR3(0D)03H

**Default setting after reset. Not reset with a Stop Mode Recovery.

Figure 40. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse.

SMR2(0F)0DH D7 D6 D5 D4 D3 D2 D1 D0 Reserved (Must be 0) Reserved (Must be 0) Stop Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07 111 NAND P31, P32, P33, P20, P21, P22 Reserved (Must be 0) Recovery Level * * 0 Low 1 High Reserved (Must be 0)

If used in conjunction with SMR, either of the two specified events causes a Stop Mode Recovery.

*Default setting after reset. Not Reset with a Stop Mode Recovery.

* *At the XOR gate input

Figure 44. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)

Crimzon[®] ZLP32300 Product Specification

zilog

R250 IRQ(FAH)

Figure 50. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)

*Default setting after reset

* *Only by using EI, DI instruction; DI is required before changing the IMR register

Figure 51. Interrupt Mask Register (FBH: Read/Write)

zilog ₇₉

			T _A =0 °C to +70 °C 8.0 MHz				Watchdog Timer	
No	Symbol	Parameter	V _{cc}	Minimum	Maximum	Units	Notes	Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3ТрС			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwIH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop Mode Recovery Width Spec	2.0–3.6	12		ns	3	
				10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watchdog Timer Delay Time	2.0–3.6 2.0–3.6 2.0–3.6 2.0–3.6	5 10 20 80		ms ms ms ms		0, 0 0, 1 1, 0 1, 1
13	T _{POR}	Power-on reset	2.0–3.6	2.5	10	ms		

Table 20. AC Characteristics

Notes

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR–D5 = 1.

4. SMR–D5 = 0.

80

Packaging

Package information for all versions of Crimzon ZLP32300 is displayed in Figure 58 through Figure 65.

SYMBOL	MILLIN	ETER	INCH		
STWDOL	MIN	MAX	MIN	MAX	
A1	0.38	0.81	.015	.032	
A2	3.25	3.68	.128	.145	
В	0.41	0.51	.016	.020	
B1	1.47	1.57	.058	.062	
С	0.20	0.30	.008	.012	
D	25.65	26.16	1.010	1.030	
E	7.49	8.26	.295	.325	
E1	6.10	6.65	.240	.262	
e	2.54	BSC	.100	BSC	
eA	7.87	9.14	.310	.360	
L	3.18	3.43	.125	.135	
Q1	1.42	1.65	.056	.065	
S	1.52	1.65	.060	.065	

F

L___

CONTROLLING	DIMENSIONS	:	INCH

Figure 59. 20-Pin SOIC Package Diagram

Ordering Information

The Crimzon ZLP32300 is available for the following parts:

Device	Part Number	Description		
Crimzon ZLP32300	ZLP32300H4832G	48-pin SSOP 32 K OTP		
	ZLP32300P4032G	40-pin PDIP 32 K OTP		
	ZLP32300H2832G	28-pin SSOP 32 K OTP		
	ZLP32300P2832G	28-pin PDIP 32 K OTP		
	ZLP32300S2832G	28-pin SOIC 32 K OTP		
	ZLP32300H2032G	20-pin SSOP 32 K OTP		
	ZLP32300P2032G	20-pin PDIP 32 K OTP		
	ZLP32300S2032G	20-pin SOIC 32 K OTP		
	ZLP32300H4816G	48-pin SSOP 16 K OTP		
	ZLP32300P4016G	40-pin PDIP 16 K OTP		
	ZLP32300H2816G	28-pin SSOP 16 K OTP		
	ZLP32300P2816G	28-pin PDIP 16 K OTP		
	ZLP32300S2816G	28-pin SOIC 16 K OTP		
	ZLP32300H2016G	20-pin SSOP 16 K OTP		
	ZLP32300P2016G	20-pin PDIP 16 K OTP		
	ZLP32300S2016G	20-pin SOIC 16 K OTP		
	ZLP32300H4808G	48-pin SSOP 8 K OTP		
	ZLP32300P4008G	40-pin PDIP 8 K OTP		
	ZLP32300H2808G	28-pin SSOP 8 K OTP		
	ZLP32300P2808G	28-pin PDIP 8 K OTP		
	ZLP32300S2808G	28-pin SOIC 8 K OTP		
	ZLP32300H2008G	20-pin SSOP 8 K OTP		

Index

Numerics

16-bit counter/timer circuits 40 20-pin DIP package diagram 80 20-pin SSOP package diagram 82 28-pin DIP package diagram 84 28-pin SOIC package diagram 83 28-pin SSOP package diagram 85 40-pin DIP package diagram 85 48-pin SSOP package diagram 86 8-bit counter/timer circuits 36

Α

absolute maximum ratings 75 AC characteristics 78 timing diagram 78 address spaces, basic 1 architecture 1 expanded register file 22

В

basic address spaces 1 block diagram, ZLP32300 functional 3

С

capacitance 76 characteristics AC 78 DC 76 clock 46 comparator inputs/outputs 18 configuration port 0 12 port 1 13 port 2 14 port 3 15

port 3 counter/timer 17 counter/timer 16-bit circuits 40 8-bit circuits 36 brown-out voltage/standby 58 clock 46 demodulation mode count capture flowchart 38 demodulation mode flowchart 39 EPROM selectable options 58 glitch filter circuitry 34 halt instruction 47 input circuit 33 interrupt block diagram 44 interrupt types, sources and vectors 45 oscillator configuration 46 output circuit 43 port configuration register 48 resets and WDT 57 SCLK circuit 50 stop instruction 47 stop mode recovery register 49 stop mode recovery register 2 54 stop mode recovery source 52 T16 demodulation mode 41 T16 transmit mode 40 T16 OUT in modulo-N mode 41 T16 OUT in single-pass mode 41 T8 demodulation mode 37 T8 transmit mode 34 T8 OUT in modulo-N mode **37** T8 OUT in single-pass mode 37 transmit mode flowchart 35 voltage detection and flags 59 watch-dog timer mode register 55 watch-dog timer time select 56 CTR(D)01h T8 and T16 Common Functions 29

D

DC characteristics 76 demodulation mode count capture flowchart 38 flowchart 39 T16 41