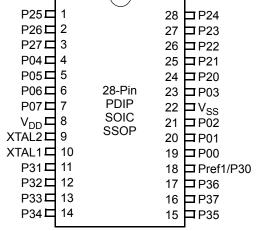

E. Analog Devices Inc./Maxim Integrated - <u>ZLP32300P2808G Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	28-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300p2808g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

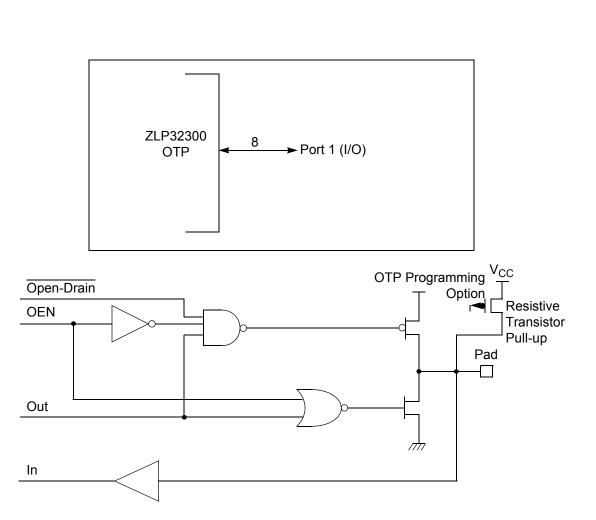

Pin No	Symbol	Direction	Description		
1-3	P25-P27	Input/Output	Port 2, Bits 5, 6, 7		
4-7	P04-P07	07 Input/Output Port 0, Bits 4, 5, 6, 7			
8	V _{DD}		Power supply		
9	XTAL2	Output	Crystal, oscillator clock		
10	XTAL1	Input	Crystal, oscillator clock		
11-13	P31-P33	Input	Port 3, Bits 1, 2, 3		
14	P34	Output	Port 3, Bit 4		
15	P35	Output	Port 3, Bit 5		
16	P37	Output	Port 3, Bit 7		
17	P36	Output	Port 3, Bit 6		
18	Pref1/P30	Input	Analog ref input; connect to		
	Port 3 Bit 0		V _{CC} if not used		
			Input for Pref1/P30		
19-21	P00-P02	Input/Output	Port 0, Bits 0, 1, 2		
22	V _{SS}		Ground		
23	P03	Input/Output	Port 0, Bit 3		
24-28	P20-P24	Input/Output	Port 2, Bits 0–4		

Table 4. 28-Pin PDIP/SOIC/SSOP Pin Identification

40-Pin PDIP No	48-Pin SSOP No	Symbol
32	39	P12
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V _{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC
	6	NC

Table 5. 40- and 48-Pin Configuration (Continued)

Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 9). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A EPROM option bit is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in DEMODULATION mode.

Crimzon[®] ZLP32300 Product Specification

zilog

(see T8 and T16 Common Functions—CTR1(0D)01h on page 28). Other edge detect and IRQ modes are described in Table 6.

Note: Comparators are powered down by entering STOP mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into DIGITAL mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

 Table 6. Port 3 Pin Function Summary

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 11). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

16

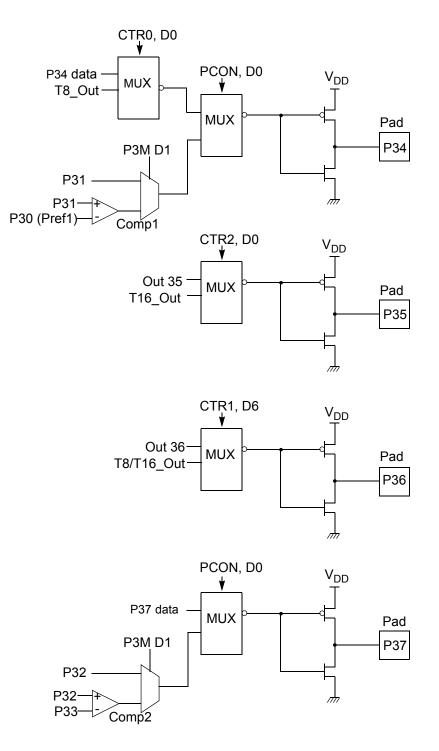
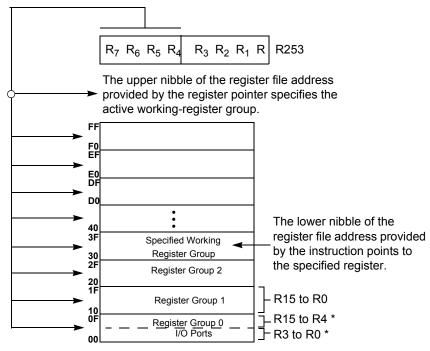


Figure 11. Port 3 Counter/Timer Output Configuration



register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

Note: An expanded register bank is also referred to as an expanded register group (see Figure 13).

* RP = 00: Selects Register Bank 0, Working Register Group 0

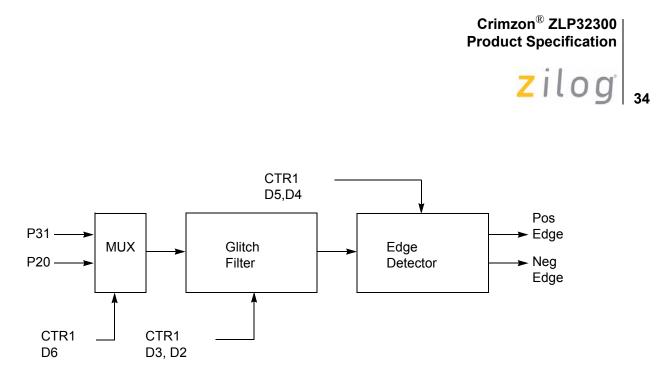
Figure 15. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Timers

T8_Capture_HI—HI8(D)0Bh


This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description		
T8_Capture_HI	[7:0]	R/W	Captured Data—No Effect		

Table 8. CTR1(0D)01h T8 and T16 Common Functions

Field	Bit Position		Value	Description
Mode	7	R/W	0*	TRANSMIT Mode
			1	DEMODULATION Mode
P36_Out/	-б	R/W		TRANSMIT Mode
Demodulator Input			0*	Port Output
			1	T8/T16 Output
				DEMODULATION Mode
			0*	P31
			1	P20
T8/T16_Logic/	54	R/W		TRANSMIT Mode
Edge _Detect			00**	AND
5 –			01	OR
			10	NOR
			11	NAND
				DEMODULATION Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved
Transmit_Submode/	32	R/W		TRANSMIT Mode
Glitch_Filter			00*	Normal Operation
			01	PING-PONG Mode
			10	T16_Out = 0
			11	T16_Out = 1
				DEMODULATION Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			TRANSMIT Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				DEMODULATION Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

T8 TRANSMIT Mode

Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 17.

SCLK/TCLK Divide-by-16 Select (D0)

D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (see Figure 32). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0.

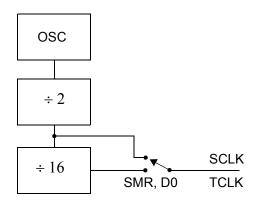


Figure 32. SCLK Circuit

Stop Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (see Figure 33 and Table 14).

Stop Mode Recovery Register 2—SMR2(F)0Dh

Table 13 lists and briefly describes the fields for this register.

Field	Bit Position	Value	Description
Reserved	7	0	Reserved (Must be 0)
Recovery Level	-6 W	0 [†] 1	Low High
Reserved	5	0	Reserved (Must be 0)

zilog ,

Table 13. SMR2(F)0Dh:Stop Mode Recovery Register 2* (Continued)

Field	Bit Position	Value	Description
Source	432 \	N 000 [†]	A. POR Only
		001	B. NAND of P23–P20
		010	C. NAND of P27–P20
		011	D. NOR of P33–P31
		100	E. NAND of P33–P31
		101	F. NOR of P33–P31, P00, P07
		110	G. NAND of P33–P31, P00, P07
		111	H. NAND of P33–P31, P22–P20
Reserved	10	00	Reserved (Must be 0)
*Port pins cont	figured as outputs ar	e ignored	as an SMR recovery source.

[†]Indicates the value upon Power-On Reset.

51

WDT Time Select (D0, D1)

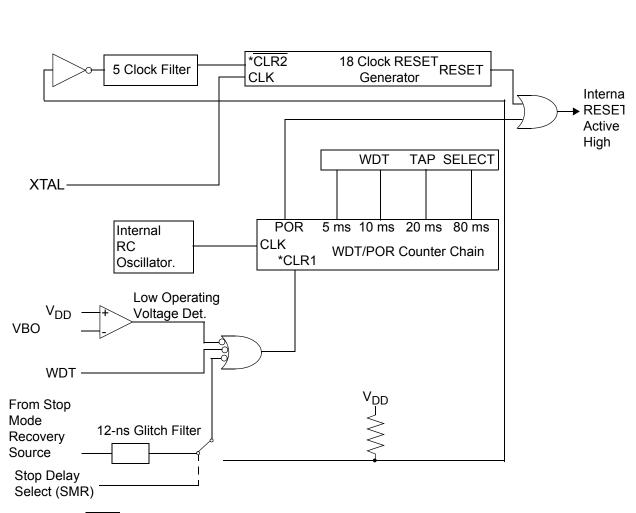

This bit selects the WDT time period. It is configured as indicated in Table 15.

Table 15. Watchdog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5 ms min
0	1	10 ms min
1	0	20 ms min
1	1	80 ms min

WDTMR During Halt (D2)

This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1, see Figure 36.

* CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-High

Figure 36. Resets and WDT

WDTMR During STOP (D3)

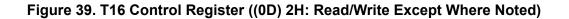
This bit determines whether or not the WDT is active during STOP mode. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These are listed in Table 16.

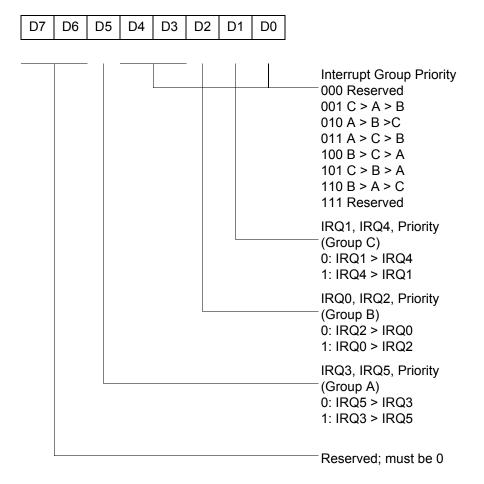
Crimzon[®] ZLP32300 Product Specification

zilog



Ensure to differentiate the TRANSMIT mode from DEMODULATION 1. mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

2. Changing from one mode to another cannot be performed without disabling the counter/timers.


CTR2(0D)02H

D7	D6	D5	D4	D3	D2	D1	D0	
								 0 P35 is Port Output * 1 P35 is TC16 Output 0 Disable T16 Timeout Interrupt* 1 Enable T16 Timeout Interrupt 0 Disable T16 Data Capture Interrupt** 1 Enable T16 Data Capture Interrupt 0 0 SCLK on T16** 0 1 SCLK/2 on T16 1 0 SCLK/4 on T16 1 1 SCLK/8 on T16 R 0 No T16 Timeout** R 1 T16 Timeout Occurs W 0 No Effect W 1 Reset Flag to 0
	ult set ault se Reco	tting a			t reset	t with a	Stop Mo	TRANSMIT Mode 0 Modulo-N for T16* 1 Single Pass for T16 DEMODULATOR Mode 0 T16 Recognizes Edge 1 T16 Does Not Recognize Edge R 0 T16 Disabled * R 1 T16 Enabled W 0 Stop T16 W 1 Enable T16

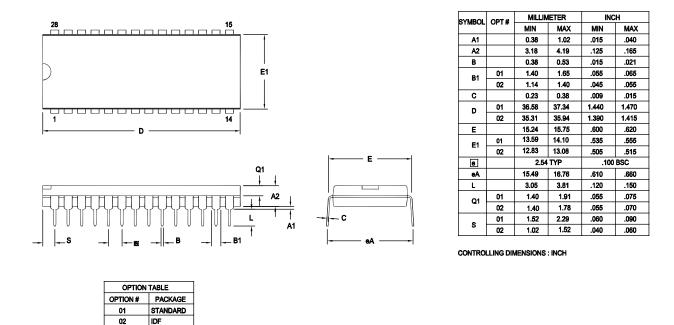
R249 IPR(F9H)

Figure 49. Interrupt Priority Register (F9H: Write Only)

zilog ₇₉

		T _A =0 °C to +70 °C 8.0 MHz						Watchdog Timer Mode	
No	Symbol	Parameter	v _{cc}	/ _{CC} Minimum		Units	Notes	Register	
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1		
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1		
3	TwC	Input Clock Width	2.0–3.6	37		ns	1		
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1		
5	TwTinH	Timer Input High Width	2.0–3.6	3TpC			1		
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1		
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1		
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2		
9	TwlH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2		
10	Twsm	Stop Mode Recovery Width Spec	2.0–3.6	12		ns	3		
		·		10TpC			4		
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4		
12	Twdt	Watchdog Timer	2.0–3.6	5		ms		0, 0	
		Delay Time	2.0–3.6	10		ms		0, 1	
			2.0–3.6	20		ms		1, 0	
			2.0–3.6	80		ms		1, 1	
13	T _{POR}	Power-on reset	2.0–3.6	2.5	10	ms			

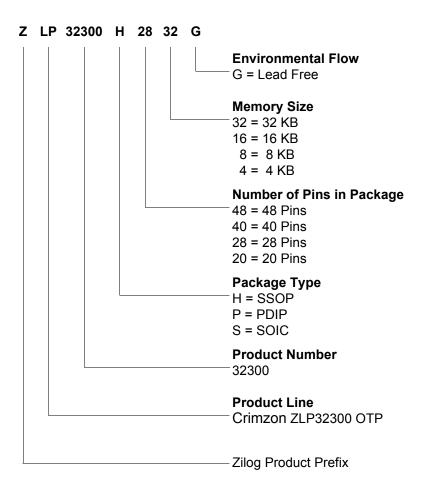
Table 20. AC Characteristics


Notes

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR–D5 = 1.

4. SMR–D5 = 0.


Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Part Number Description

Zilog[®] part numbers consist of a number of components, as shown below. ZLP32300H2832G is a Crimzon ZLP32300 OTP product in a 28-pin SSOP package, with 32 KB of OTP and built with lead-free solder.

93

0

oscillator configuration 46 output circuit, counter/timer 43

Ρ

package information 20-pin DIP package diagram 80 20-pin SSOP package diagram 82 28-pin DIP package diagram 84 28-pin SOIC package diagram 83 28-pin SSOP package diagram 85 40-pin DIP package diagram 85 48-pin SSOP package diagram 86 part number format 89 pin configuration 20-pin DIP/SOIC/SSOP 5 28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP **7** 48-pin SSOP 8 pin functions port 0 (P07 - P00) 11 port 0 (P17 - P10) 12 port 0 configuration 12 port 1 configuration 13 port 2 (P27 - P20) 13 port 2 (P37 - P30) 14 port 2 configuration 14 port 3 configuration 15 port 3 counter/timer configuration 17 reset) 18 XTAL1 (time-based input 10 XTAL2 (time-based output) 10 port 0 configuration 12 port 0 pin function 11 port 1 configuration 13 port 1 pin function 12 port 2 configuration 14 port 2 pin function 13 port 3 configuration 15 port 3 pin function 14 port 3counter/timer configuration 17 port configuration register 48

power connections 1 power supply 5 program memory 19 map 20

R

ratings, absolute maximum 75 register 54 CTR(D)01h 28 CTR0(D)00h 27 CTR2(D)02h 31 CTR3(D)03h 33 flag 73 HI16(D)09h 26 HI8(D)0Bh 25 interrupt priority 71 interrupt request 72 interruptmask 72 L016(D)08h 26 L08(D)0Ah 26 LVD(D)0Ch 58 pointer 73 port 0 and 1 70 port 2 configuration 69 port 3 mode 69 port configuration 48, 69 SMR2(F)0Dh 33 stack pointer high 74 stack pointer low 74 stop mode recovery 49 stop mode recovery 2 54 stop mode recovery 66 stop mode recovery 2 67 T16 control 62 T8 and T16 common control functions 61 T8/T16 control 63 TC16H(D)07h 26 TC16L(D)06h 26 TC8 control 60 TC8H(D)05h 27 TC8L(D)04h 27 voltage detection 64 watch-dog timer 68

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.