
E. Analog Devices Inc./Maxim Integrated - <u>ZLP32300P2816G Datasheet</u>

Welcome to E-XFL.COM

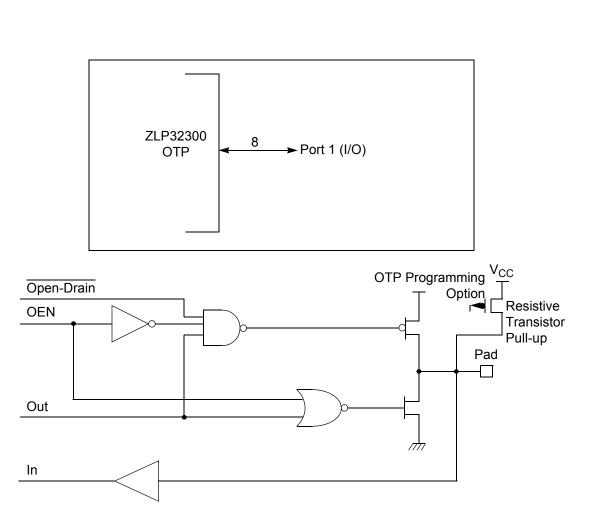
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

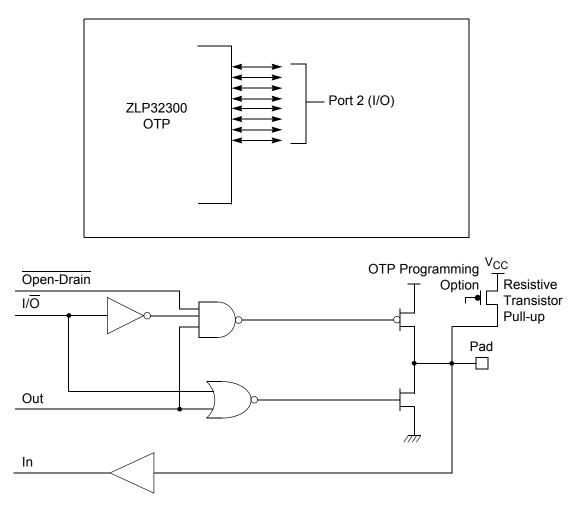
Detalls	
Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	28-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300p2816g


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 5. 40-Pin PDIP Pin Configuration

Port 2 (P27-P20)


Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 9). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A EPROM option bit is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in DEMODULATION mode.

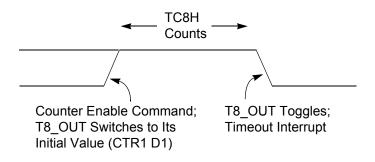
Crimzon[®] ZLP32300 Product Specification

zilog

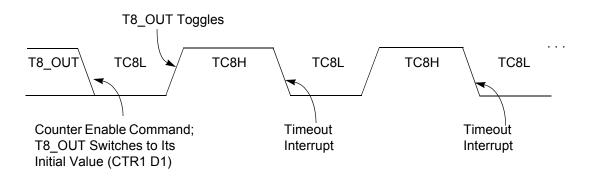
Port 3 (P37-P30)

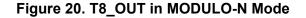
Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 10). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

Location of 3	2768	Not Accessible
first Byte of	2700	On-Chip
instruction		ROM
executed		
after RESET	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
	7	IRQ3
Interrupt Vector (Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vector	4	IRQ2
(Upper Byte		IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

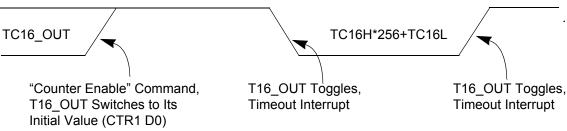

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8 register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the ERF (Expanded Register File). Bits 7–4 of




Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur, see Figure 19 and Figure 20.



T8 DEMODULATION Mode

You must program TC8L and TC8H to FFh. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the time-out status bit (CTR0, D5) is set, and an

Crimzon[®] ZLP32300 **Product Specification** zilog Do not load these registers at the time the values are to be loaded into the counter/timer Caution: to ensure known operation. An initial count of 1 is not allowed. An initial count of 0causes T16 to count from 0 to FFFFh to FFFFh. Transition from 0 to FFFFh is not a timeout condition. -TC16H*256+TC16L Counts "Counter Enable" Command T16 OUT Toggles, T16 OUT Switches to Its Timeout Interrupt Initial Value (CTR1 D0) Figure 24. T16 OUT in SINGLE-PASS Mode TC16H*256+TC16L TC16H*256+TC16L

Figure 25. T16_OUT in MODULO-N Mode

T16 DEMODULATION Mode

You must program TC16L and TC16H to FFh. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures H116 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFh and starts again.

counter/timers (see Table 11 on page 45) and one for low-voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in DIGITAL mode, Pin P33 is the source. When in ANALOG mode, the output of the Stop Mode Recovery source logic is used as the source for the interrupt, see Figure 33 on page 52.

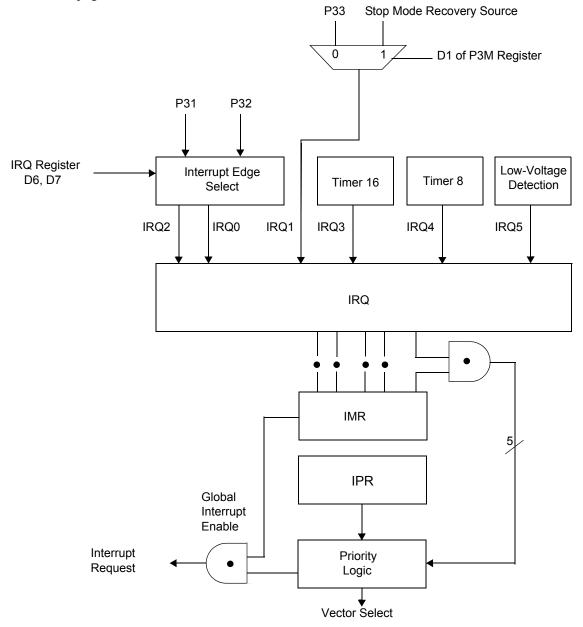


Figure 28. Interrupt Block Diagram

Watchdog Timer Mode

Watchdog Timer Mode Register (WDTMR)

The Watchdog Timer is a retriggerable one-shot timer that resets the $Z8^{\mathbb{R}}$ if it reaches its terminal count. The WDT must initially be enabled by executing the WDT instruction. On subsequent executions of the WDT instruction, the WDT is refreshed. The WDT circuit is driven by an on-board RC-oscillator. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V) Flags.

The POR clock source the internal RC-oscillator. Bits 0 and 1 of the WDT register control a tap circuit that determines the minimum time-out period. Bit 2 determines whether the WDT is active during HALT, and Bit 3 determines WDT activity during Stop. Bits 4 through 7 are reserved (see Figure 35). This register is accessible only during the first 60 processor cycles (120 XTAL clocks) from the execution of the first instruction after Power-on reset, Watchdog Reset, or a Stop Mode Recovery (see Figure 34). After this point, the register cannot be modified by any means (intentional or otherwise). The WDTMR cannot be read. The register is located in Bank F of the Expanded Register Group at address location 0Fh. It is organized as shown in Figure 35.

WDTMR(0F)0Fh

*Default setting after reset

Figure 35. Watchdog Timer Mode Register (Write Only)

WDT Time Select (D0, D1)

This bit selects the WDT time period. It is configured as indicated in Table 15.

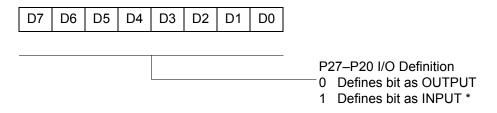
Table 15. Watchdog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5 ms min
0	1	10 ms min
1	0	20 ms min
1	1	80 ms min

WDTMR During Halt (D2)

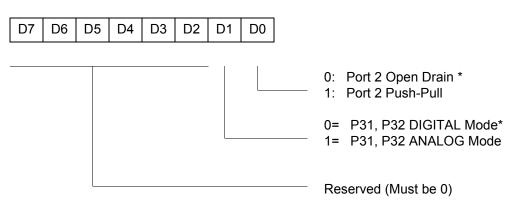
This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1, see Figure 36.

7	D6	D5	D4	D3	D2	D1	D0	
								TRANSMIT Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially DEMODULATION Mode R 0 No Falling Edge Detection W 1 Reset Flag to 0 TRANSMIT Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially DEMODULATION Mode R 0 No Effect W 1 Reset Flag to 0 TRANSMIT Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially DEMODULATION Mode R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 TRANSMIT Mode* 0 0 Normal Operation* 0 1 PING-PONG Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 DEMODULATION Mode 0 0 No Filter 0 1 4 SCLK Cycle Filter
								1 0 8 SCLK Cycle Filter 1 1 Reserved TRANSMIT Mode/T8/T16 Logic 0 0 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND DEMODULATION Mode 0 0 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved TRANSMIT Mode 0 P36 as Port Output *
	ault set	ing afte						1 P36 as T8/T16_OUT DEMODULATION Mode 0 P31 as Demodulator Inp 1 P20 as Demodulator Inp TRANSMIT/DEMODULATION Mode 0 TRANSMIT Mode * 1 DEMODULATION Mode



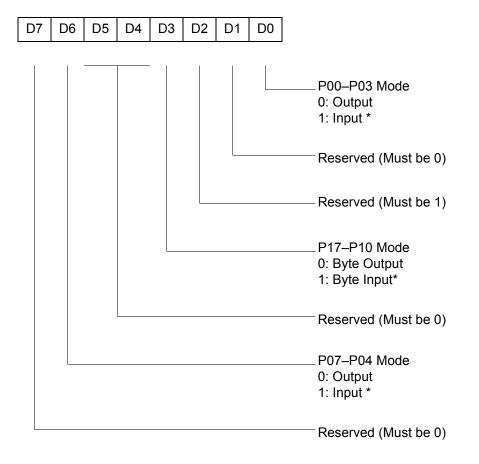
69

Standard Control Registers


The standard control registers are displayed in Figure 46 through Figure 55 on page 74. R246 P2M(F6H)

*Default setting after reset. Not Reset with a Stop Mode Recovery.

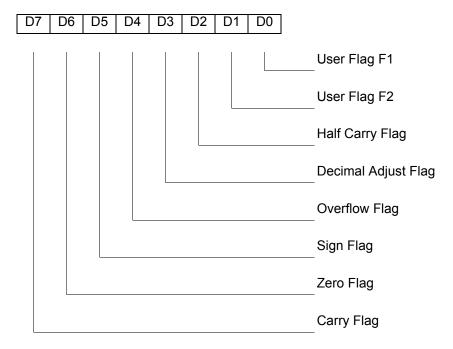
R247 P3M(F7H)



*Default setting after reset. Not Reset with a Stop Mode Recovery.

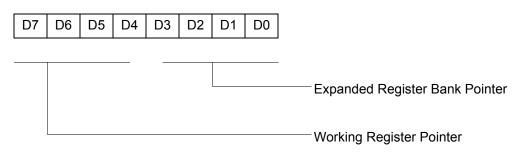
Figure 47. Port 3 Mode Register (F7H: Write Only)

R248 P01M(F8H)



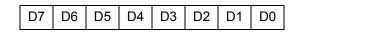
*Default setting after reset; only P00, P01 and P07 are available on Crimzon ZLP32300 20-pin configurations.

Figure 48. Port 0 and 1 Mode Register (F8H: Write Only)


Crimzon[®] ZLP32300 Product Specification Zilog ₇₃

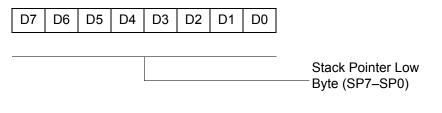
R252 Flags(FCH)

Figure 52. Flag Register (FCH: Read/Write)

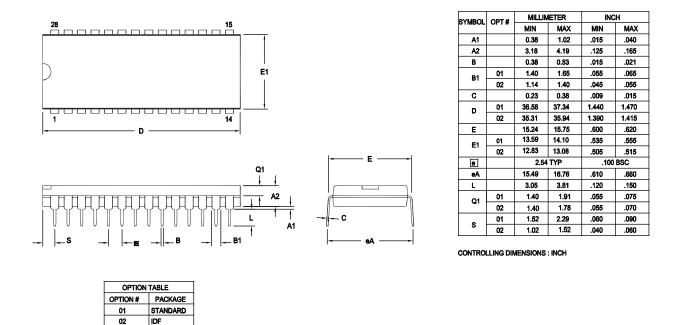

R253 RP(FDH)

Default setting after reset = 0000 0000

Figure 53. Register Pointer (FDH: Read/Write)


R254 SPH(FEH)

General-Purpose Register


Figure 54. Stack Pointer High (FEH: Read/Write)

R255 SPL(FFH)

Figure 55. Stack Pointer Low (FFH: Read/Write)

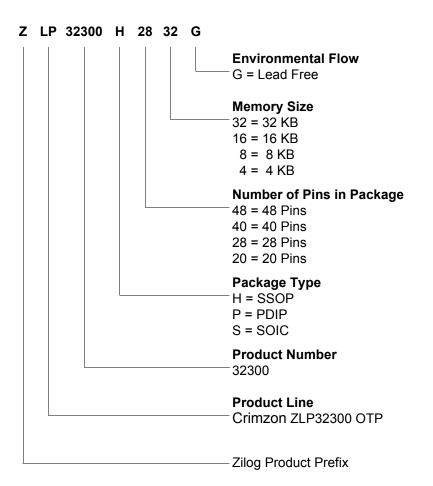
Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.

zilog

88

Device	Part Number	Description				
	ZLP32300P2008G	20-pin PDIP 8 K OTP				
	ZLP32300S2008G	20-pin SOIC 8 K OTP				
	ZLP32300H4804G	48-pin SSOP 4 K OTP				
	ZLP32300P4004G	40-pin PDIP 4 K OTP				
	ZLP32300H2804G	28-pin SSOP 4 K OTP				
	ZLP32300P2804G	28-pin PDIP 4 K OTP				
	ZLP32300S2804G	28-pin SOIC 4 K OTP				
	ZLP32300H2004G	20-pin SSOP 4 K OTP				
	ZLP32300P2004G	20-pin PDIP 4 K OTP				
	ZLP32300S2004G	20-pin SOIC 4 K OTP				
	ZLP323ICE01ZAC*	40-PDIP/48-SSOP Accessory Kit				
	Note: *ZLP323ICE01ZAC has been replaced by an improved v ZCRMZNICE02ZACG.					
	ZLP128ICE01ZEMG	In-Circuit Emulator				
	Note: *ZLP128ICE01ZEMG has been replaced by an improved vers ZCRMZNICE01ZEMG.					
	ZCRMZNICE01ZEMG	Crimzon In-Circuit Emulator				
	ZCRMZN00100KITG	Crimzon In-Circuit Emulator Development Kit				
	ZCRMZNICE01ZACG	20-Pin Accessory Kit				
	ZCRMZNICE02ZACG	40/48-Pin Accessory Kit				

1. Replace C with G for Lead-Free Packaging.


2. Contact <u>www.zilog.com</u> for the die form.

For fast results, contact your local Zilog[®] sales office for assistance in ordering the part(s) desired.

Part Number Description

Zilog[®] part numbers consist of a number of components, as shown below. ZLP32300H2832G is a Crimzon ZLP32300 OTP product in a 28-pin SSOP package, with 32 KB of OTP and built with lead-free solder.

T8 37 description functional 19 general 3 pin 5

Ε

EPROM selectable options 58 expanded register file 20 expanded register file architecture 22 expanded register file control registers 64 flag 73 interrupt mask register 72 interrupt priority register 71 interrupt request register 72 port 0 and 1 mode register 70 port 2 configuration register 69 port 3 mode register 69 port configuration register 69 register pointer 73 stack pointer high register 74 stack pointer low register 74 stop mode recovery register 66 stop mode recovery register 2 67 T16 control register 62 T8 and T16 common control functions register 61 T8/T16 control register 63 TC8 control register 60 watchdog timer register 68

F

features standby modes 2 ZLP32300 2 functional description counter/timer functional blocks 33 CTR(D)01h register 28 CTR0(D)00h register 27 CTR2(D)02h register 31 CTR3(D)03h register 33 expanded register file 20 expanded register file architecture 22 HI16(D)09h register 26 HI8(D)0Bh register 25 L08(D)0Ah register 26 L0I6(D)08h register 26 program memory map 20 **RAM 19** register description 58 register file 24 register pointer 23 register pointer detail 25 SMR2(F)0D1h register 33 stack 25 TC16H(D)07h register 26 TC16L(D)06h register 26 TC8H(D)05h register 27 TC8L(D)04h register 27

G

glitch filter circuitry 34

Η

halt instruction, counter/timer 47

input circuit 33 interrupt block diagram, counter/timer 44 interrupt types, sources and vectors 45

L

low-voltage detection register 58

Μ

memory, program 19 modulo-N mode T16_OUT 41 T8_OUT 37

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.