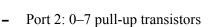

E. Analog Devices Inc./Maxim Integrated - <u>ZLP32300P2832G Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

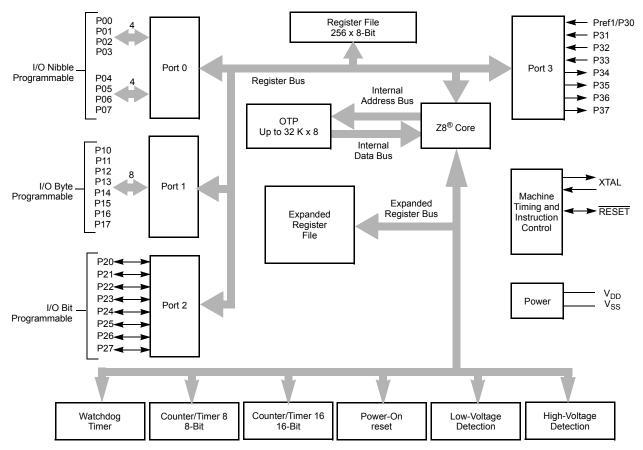
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	28-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300p2832g

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- EPROM Protection
- WDT enabled at POR

Functional Block Diagram

Figure 1 displays the Crimzon ZLP32300 MCU functional block diagram.

Note: Refer to the specific package for available pins.

Figure 1. Crimzon ZLP32300 MCU Functional Block Diagram

Crimzon[®] ZLP32300 Product Specification

zilog

3

40-Pin PDIP No	48-Pin SSOP No	Symbol		
	14	NC		
	30	NC		
	36	NC		

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Input/Output Ports

 \wedge

Caution: The CMOS input buffer for each Port 0, 1, or 2 pin is always connected to the pin, even when the pin is configured as an output. If the pin is configured as an open-drain output and no external signal is applied, a High output state can cause the CMOS input buffer to float. This might lead to excessive leakage current of more than 100 μ A. To prevent this leakage, connect the pin to an external signal with a defined logic level or ensure its output state is Low, especially during STOP mode.

Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

Port 0, 1, and 2 have both input and output capability. The input logic is always present no matter whether the port is configured as input or output. When doing a READ instruction, the MCU reads the actual value at the input logic but not from the output buffer. In addition, the instructions of OR, AND, and XOR have the Read-Modify-Write sequence. The MCU first reads the port, and then modifies the value and load back to the port.

Precaution must be taken if the port is configured as open-drain output or if the port is driving any circuit that makes the voltage different from the desired output logic. For example, pins P00–P07 are not connected to anything else. If it is configured as

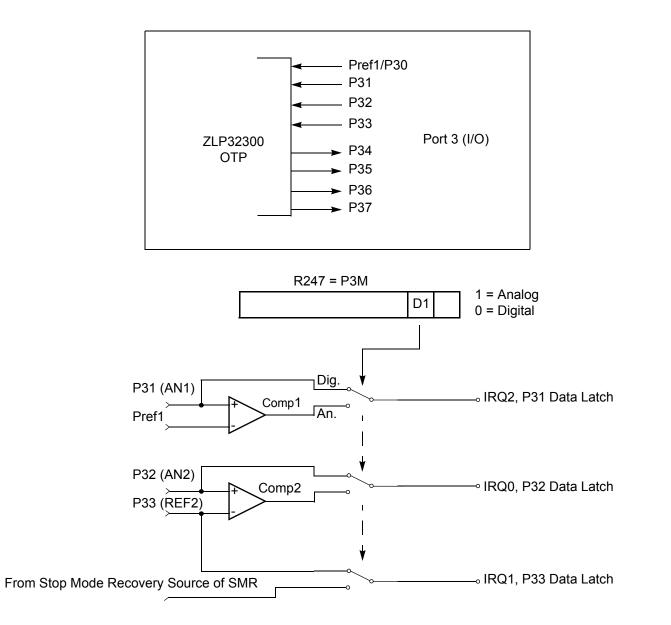


Figure 10. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The Analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edge-detection circuit is through P31 or P20

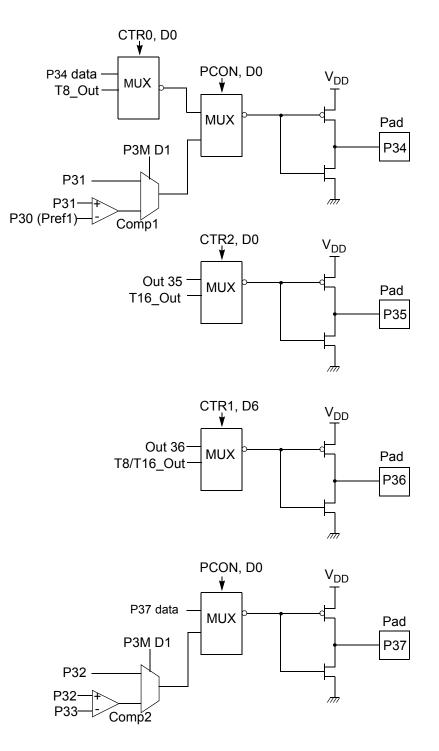


Figure 11. Port 3 Counter/Timer Output Configuration

18

Comparator Inputs

In ANALOG mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as displayed in Figure 10 on page 15. In DIGITAL mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering STOP mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into DIGITAL mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watchdog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watchdog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the ZLP32300 asserts (Low) the RESET pin, the internal pull-up is disabled. The ZLP32300 does not assert the RESET pin when under VBO.

Note: *The external Reset does not initiate an exit from STOP mode.*

Location of 3	2768	Not Accessible				
first Byte of	2700	On-Chip				
instruction		ROM				
executed						
after RESET	12	Reset Start Address				
	11	IRQ5				
	10	IRQ5				
	9	IRQ4				
	8	IRQ4				
	7	IRQ3				
Interrupt Vector (Lower Byte)	6	IRQ3				
	5	IRQ2				
Interrupt Vector	4	IRQ2				
(Upper Byte)		IRQ1				
	2	IRQ1				
	1	IRQ0				
	0	IRQ0				

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8 register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the ERF (Expanded Register File). Bits 7–4 of

Field	Bit Position		Value	Description
T16_Clock	43	R/W	00**	SCLK
—			01	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Int.
			1	Enable Data Capture Int.
Counter_INT_Mask	1-	R/W	0	Disable Timeout Int.
			1	Enable Timeout Int.
P35_Out	0	R/W	0*	P35 as Port Output
—			1	T16 Output on P35

Table 9. CTR2(D)02h: Counter/Timer16 Control Register (Continued)

*Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset. Not reset with a Stop Mode Recovery.

T16_Enable

This field enables T16 when set to 1.

Single/Modulo-N

In TRANSMIT mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached.

In DEMODULATION mode, when set to 0, T16 captures and reloads on detection of all the edges. When set to 1, T16 captures and detects on the first edge but ignores the subsequent edges. For details, see T16 DEMODULATION Mode on page 41.

Time_Out

This bit is set when T16 times out (terminal count reached). To reset the bit, write a 1 to this location.

T16_Clock

This bit defines the frequency of the input signal to Counter/Timer16.

Capture_INT_Mask

This bit is set to allow an interrupt when data is captured into LO16 and HI16.

Counter_INT_Mask

Set this bit to allow an interrupt when T16 times out.

33

P35_Out

This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03h

Table 10 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

Table 10.CTR3 (D)03h: T8/T16 Control Register

Field	Bit Position		Value	Description
T ₁₆ Enable	7	R	0*	Counter Disabled
10		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
T ₈ Enable	-6	R	0*	Counter Disabled
C C		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
Sync Mode	5	R/W	0**	Disable Sync Mode
-			1	Enable Sync Mode
Reserved	43210	R	1	Always reads 11111
		W	х	No Effect

*Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset. Not reset with a Stop Mode Recovery.

Counter/Timer Functional Blocks

Input Circuit

The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5–D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 16).

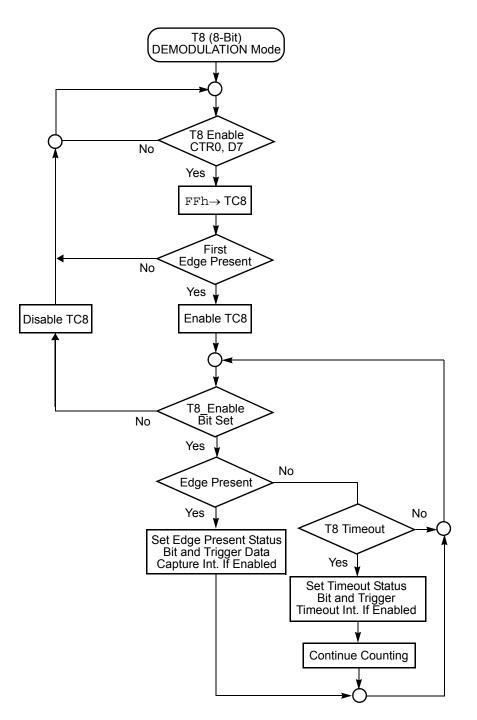
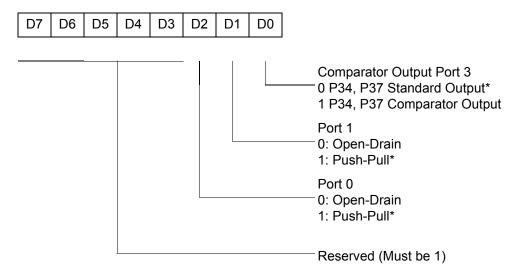


Figure 22. DEMODULATION Mode Flowchart



Port Configuration

Port Configuration Register

The Port Configuration (PCON) register (see Figure 30) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00h

* Default setting after reset

Figure 30. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

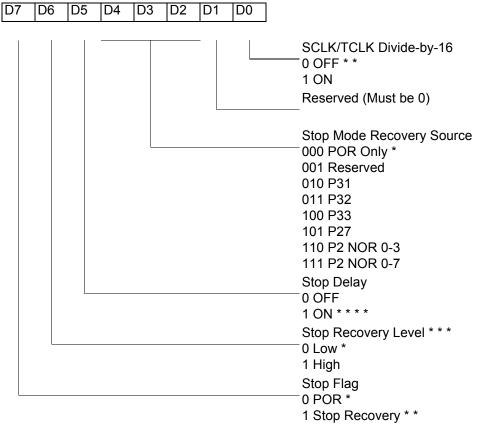
Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of Port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Port 0 Output Mode (D2)

Bit 2 controls the output mode of Port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.



Stop Mode Recovery

Stop Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (see Figure 31). All bits are write only except bit 7, which is read only. Bit 7 is a Flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XOR-gate input (see Figure 33 on page 52) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBh.

*Default after Power-On Reset or Watchdog Reset

- * *Default setting after Reset and Stop Mode Recovery.
- * * *At the XOR gate input
- * * * *Default setting after reset. Must be 1 if using a crystal or resonator clock source.

Figure 31. Stop Mode Recovery Register

SCLK/TCLK Divide-by-16 Select (D0)

D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (see Figure 32). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0.

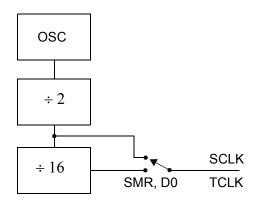


Figure 32. SCLK Circuit

Stop Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (see Figure 33 and Table 14).

Stop Mode Recovery Register 2—SMR2(F)0Dh

Table 13 lists and briefly describes the fields for this register.

Field	Bit Position	Value	Description
Reserved	7	0	Reserved (Must be 0)
Recovery Level	-6 W	0 [†] 1	Low High
Reserved	5	0	Reserved (Must be 0)

Table 14. Stop Mode Recovery Source

SMR:432			Operation			
D4 D3 D2			Description of Action			
0	0	0	POR and/or external reset recovery			
0	0	1	Reserved			
0	1	0	P31 transition			
0	1	1	P32 transition			
1	0	0	P33 transition			
1	0	1	P27 transition			
1	1	0	Logical NOR of P20 through P23			
1	1	1	Logical NOR of P20 through P27			

Note:

Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function, refer to SMR2 register on page 54 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the 'fast' wake up is selected, the Stop Mode Recovery source must be kept active for at least 10 TpC.

Note: This bit must be set to 1 if a crystal or resonator clock source is used. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

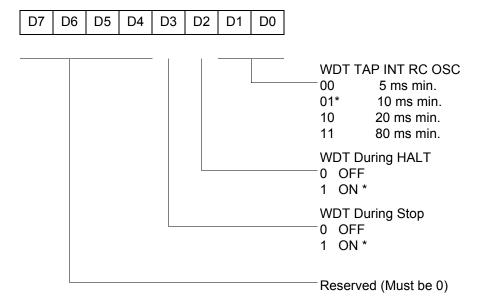
A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the Crimzon ZLP32300 from STOP mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from STOP mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery.

59

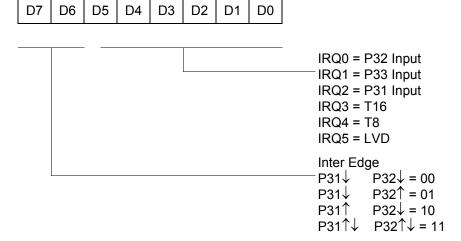
Voltage Detection and Flags


The Voltage Detection register (LVD, register 0Ch at the expanded register bank 0Dh) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the V_{CC} level is monitored in real time. The HVD Flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD} . The LVD Flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD} . When Voltage Detection is enabled, the LVD Flag also triggers IRQ5. The IRQ bit 5 latches the low-voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a Flag only.

Note:

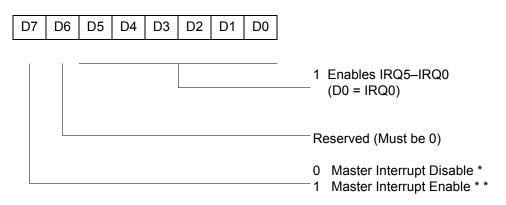
If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt (EI) instruction prior to enabling the voltage detection.

WDTMR(0F)0FH



*Default setting after reset. Not Reset with a Stop Mode Recovery.

Figure 45. Watchdog Timer Register ((0F) 0FH: Write Only)



R250 IRQ(FAH)

Figure 50. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)

*Default setting after reset

* *Only by using EI, DI instruction; DI is required before changing the IMR register

Figure 51. Interrupt Mask Register (FBH: Read/Write)

zilog ₇₉

			T _A =0 °C to +70 °C 8.0 MHz				Watchdog Timer	
No	Symbol	Parameter	v _{cc}	Minimum	Maximum	Units	Notes	[−] Mode Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3TpC			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwlH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop Mode Recovery Width Spec	2.0–3.6	12		ns	3	
		·		10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watchdog Timer	2.0–3.6	5		ms		0, 0
		Delay Time	2.0–3.6	10		ms		0, 1
			2.0–3.6	20		ms		1, 0
			2.0–3.6	80		ms		1, 1
13	T _{POR}	Power-on reset	2.0–3.6	2.5	10	ms		

Table 20. AC Characteristics

Notes

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR–D5 = 1.

4. SMR–D5 = 0.

T8 37 description functional 19 general 3 pin 5

Ε

EPROM selectable options 58 expanded register file 20 expanded register file architecture 22 expanded register file control registers 64 flag 73 interrupt mask register 72 interrupt priority register 71 interrupt request register 72 port 0 and 1 mode register 70 port 2 configuration register 69 port 3 mode register 69 port configuration register 69 register pointer 73 stack pointer high register 74 stack pointer low register 74 stop mode recovery register 66 stop mode recovery register 2 67 T16 control register 62 T8 and T16 common control functions register 61 T8/T16 control register 63 TC8 control register 60 watchdog timer register 68

F

features standby modes 2 ZLP32300 2 functional description counter/timer functional blocks 33 CTR(D)01h register 28 CTR0(D)00h register 27 CTR2(D)02h register 31 CTR3(D)03h register 33 expanded register file 20 expanded register file architecture 22 HI16(D)09h register 26 HI8(D)0Bh register 25 L08(D)0Ah register 26 L0I6(D)08h register 26 program memory map 20 **RAM 19** register description 58 register file 24 register pointer 23 register pointer detail 25 SMR2(F)0D1h register 33 stack 25 TC16H(D)07h register 26 TC16L(D)06h register 26 TC8H(D)05h register 27 TC8L(D)04h register 27

G

glitch filter circuitry 34

Η

halt instruction, counter/timer 47

input circuit 33 interrupt block diagram, counter/timer 44 interrupt types, sources and vectors 45

L

low-voltage detection register 58

Μ

memory, program 19 modulo-N mode T16_OUT 41 T8_OUT 37

register description Counter/Timer2 LS-Byte Hold 26 Counter/Timer2 MS-Byte Hold 26 Counter/Timer8 Control 27 Counter/Timer8 High Hold 27 Counter/Timer8 Low Hold 27 CTR2 Counter/Timer 16 Control 31 CTR3 T8/T16 Control 33 Stop Mode Recovery2 33 T16 Capture LO 26 T8 and T16 Common functions 28 T8 Capture HI 25 T8 Capture LO 26 register file 24 expanded 20 register pointer 23 detail 25 reset pin function 18 resets and WDT 57

S

SCLK circuit 50 single-pass mode T16 OUT 41 T8 OUT 37 stack 25 standard test conditions 75 standby modes 2 stop instruction, counter/timer 47 stop mode recovery 2 register 54 source 52 stop mode recovery 2 54 stop mode recovery register 49

Т

T16 transmit mode 40 T16 Capture HI 26 T8 transmit mode 34 T8 Capture HI 25 test conditions, standard 75 test load diagram 75

timing diagram, AC 78 transmit mode flowchart 35

V

VCC 5 voltage brown-out/standby 58 detection and flags 59 voltage detection register 64

W

watchdog timer mode register watchdog timer mode register 55 time select 56

Х

XTAL1 5 XTAL1 pin function 10 XTAL2 5 XTAL2 pin function 10

Ζ

ZLP32300 family members 2