

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

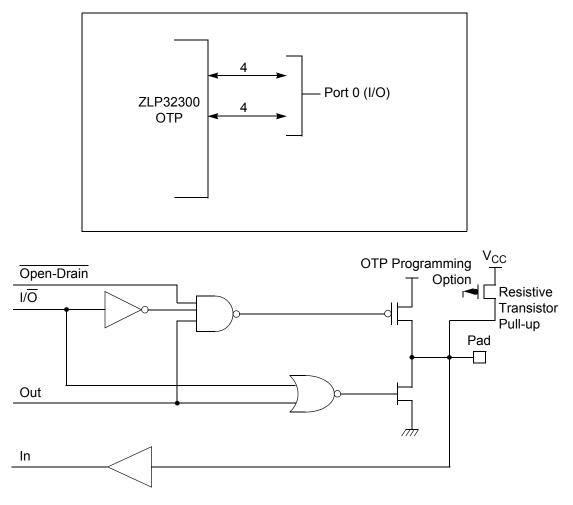
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key				
Core Processor	Z8				
Core Size	8-Bit				
Speed	8MHz				
Connectivity	-				
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT				
Number of I/O	32				
Program Memory Size	8KB (8K x 8)				
Program Memory Type	OTP				
EEPROM Size	-				
RAM Size	237 x 8				
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V				
Data Converters	-				
Oscillator Type	Internal				
Operating Temperature	0°C ~ 70°C (TA)				
Mounting Type	Through Hole				
Package / Case	40-DIP (0.600", 15.24mm)				
Supplier Device Package	40-PDIP				
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300p4008g				

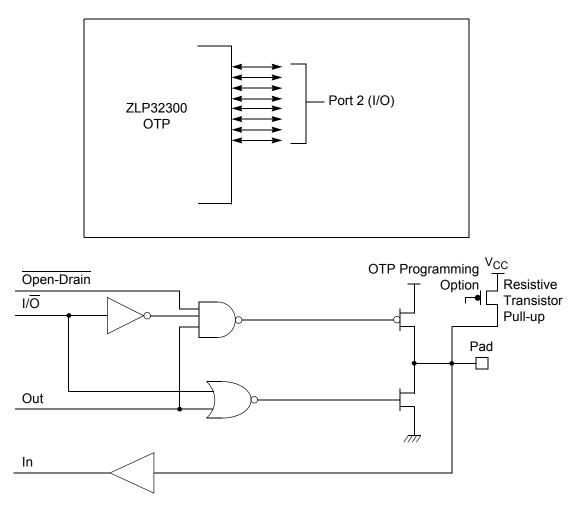
Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



40-Pin PDIP No	48-Pin SSOP No	Symbol		
32	39	P12		
33	40	P13		
8	9	P14		
9	10	P15		
12	15	P16		
13	16	P17		
35	42	P20		
36	43	P21		
37	44	P22		
38	45	P23		
39	46	P24		
2	2	P25		
3	3	P26		
4	4	P27		
16	19	P31		
17	20	P32		
18	21	P33		
19	22	P34		
22	26	P35		
24	28	P36		
23	27	P37		
20	23	NC		
40	47	NC		
1	1	NC		
21	25	RESET		
15	18	XTAL1		
14	17	XTAL2		
11	12, 13	V _{DD}		
31	24, 37, 38	V _{SS}		
25	29	Pref1/P30		
	48	NC		
	6	NC		

Table 5. 40- and 48-Pin Configuration (Continued)



Port 1 (P17–P10)

Port 1 can be configured for standard port input or output mode (see Figure 8). After POR or Stop Mode Recovery, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

- **Notes:** 1. *The Port 1 direction is reset to be input following an SMR.*
 - 2. In 20- and 28-pin packages, Port 1 is reserved. A write to this register will have no effect and will always read FF.

Port 3 (P37-P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 10). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

18

Comparator Inputs

In ANALOG mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as displayed in Figure 10 on page 15. In DIGITAL mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

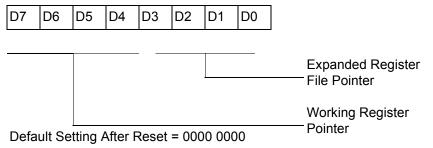
Note: Comparators are powered down by entering STOP mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into DIGITAL mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watchdog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watchdog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.


When the ZLP32300 asserts (Low) the RESET pin, the internal pull-up is disabled. The ZLP32300 does not assert the RESET pin when under VBO.

Note: *The external Reset does not initiate an exit from STOP mode.*

23

The upper nibble of the register pointer (see Figure 14) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Crimzon ZLP32300 family, banks 0, F, and D are implemented. A 0h in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1h to Fh exchanges the lower 16 registers to an expanded register bank.

Example: Crimzon ZLP32300 (see Figure 13 on page 22)

R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0DhR0 = CTR0R1 = CTR1R2 = CTR2R3 = CTR3

The counter/timers are mapped into ERF group D. Access is easily performed using the following:

LD	RP, #0Dh	; Select ERF D
for access to bank D		
		; (working
register group 0)		
LD	R0,#xx	; load CTR0
LD	1, #xx	; load CTR1

T8 Enable

This field enables T8 when set (written) to 1.

Single/Modulo-N

When set to 0 (Modulo-N), the counter reloads the initial value when the terminal count is reached. When set to 1 (single-pass), the counter stops when the terminal count is reached.

Timeout

This bit is set when T8 times out (terminal count reached). To reset this bit, write a 1 to its location.

Caution: Writing a 1 is the only way to reset the Terminal Count status condition. Reset this bit before using/enabling the counter/timers. The first clock of T8 might not have complete clock width and can occur any time when enabled.

Note: Ensure to manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (DEMODULATION mode) when using the OR or AND commands. These instructions use a Read-Modify-Write sequence in which the current status from the CTR0 and CTR1 registers is ORed or ANDed with the designated value and then written back into the registers.

T8 Clock

These bits define the frequency of the input signal to T8.

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in DEMODULATION mode.

Counter_INT_Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01h

This register controls the functions in common with the T8 and T16.

Table 8 lists and briefly describes the fields for this register.

Table 8. CTR1(0D)01h T8 and T16 Common Functions

Field	Bit Position		Value	Description
Mode	7	R/W	0*	TRANSMIT Mode
			1	DEMODULATION Mode
P36_Out/	-б	R/W		TRANSMIT Mode
Demodulator Input			0*	Port Output
			1	T8/T16 Output
				DEMODULATION Mode
			0*	P31
			1	P20
T8/T16_Logic/	54	R/W		TRANSMIT Mode
Edge _Detect			00**	AND
			01	OR
			10	NOR
			11	NAND
				DEMODULATION Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved
Transmit_Submode/	32	R/W		TRANSMIT Mode
Glitch_Filter			00*	Normal Operation
			01	PING-PONG Mode
			10	T16_Out = 0
			11	T16_Out = 1
				DEMODULATION Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			TRANSMIT Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				DEMODULATION Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

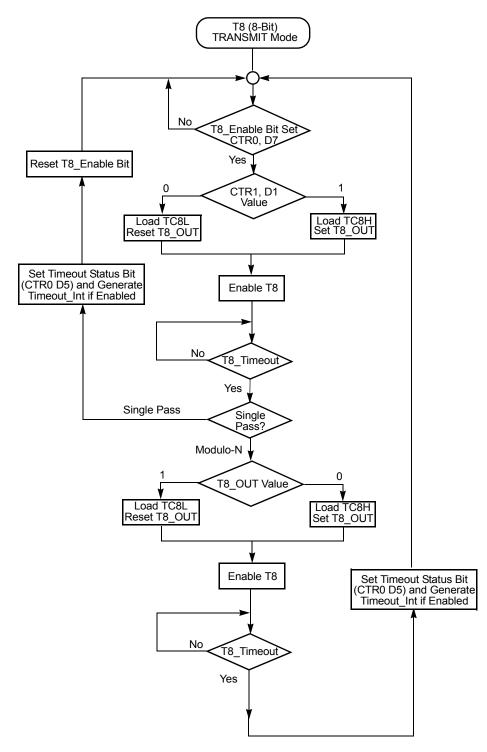


Figure 17. TRANSMIT Mode Flowchart

40

T16 TRANSMIT Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NOR-MAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set, see Figure 23.

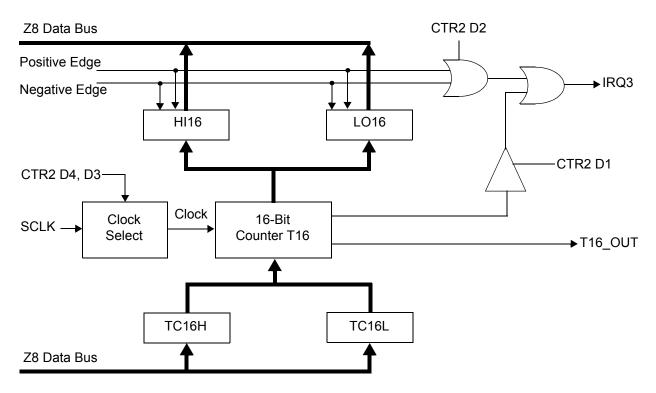


Figure 23. 16-Bit Counter/Timer Circuits

Note: *Global interrupts override this function as described in* Interrupts on page 43.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 24). If it is in MODULO-N mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 25).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into SINGLE-PASS mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the PING-PONG mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7), see Figure 26.

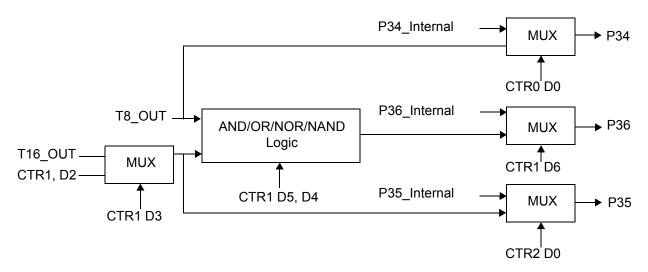


Figure 27. Output Circuit

The initial value of T8 or T16 must not be 1. If you stop the timer and restart the timer, reload the initial value to avoid an unknown previous value.

During PING-PONG Mode

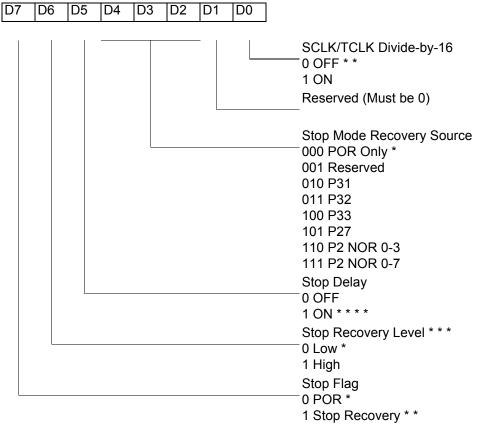
The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Timer Output

The output logic for the timers is displayed in Figure 27. P34 is used to output T8-OUT when D0 of CTR0 is set. P35 is used to output the value of TI6-OUT when D0 of CTR2 is set. When D6 of CTR1 is set, P36 outputs the logic combination of T8-OUT and T16-OUT determined by D5 and D4 of CTR1.

Interrupts

The Crimzon ZLP32300 features six different interrupts (see Table 11 on page 45). The interrupts are maskable and prioritized (see Figure 28). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the



Stop Mode Recovery

Stop Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (see Figure 31). All bits are write only except bit 7, which is read only. Bit 7 is a Flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XOR-gate input (see Figure 33 on page 52) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBh.

*Default after Power-On Reset or Watchdog Reset

- * *Default setting after Reset and Stop Mode Recovery.
- * * *At the XOR gate input
- * * * *Default setting after reset. Must be 1 if using a crystal or resonator clock source.

Figure 31. Stop Mode Recovery Register

Table 14. Stop Mode Recovery Source

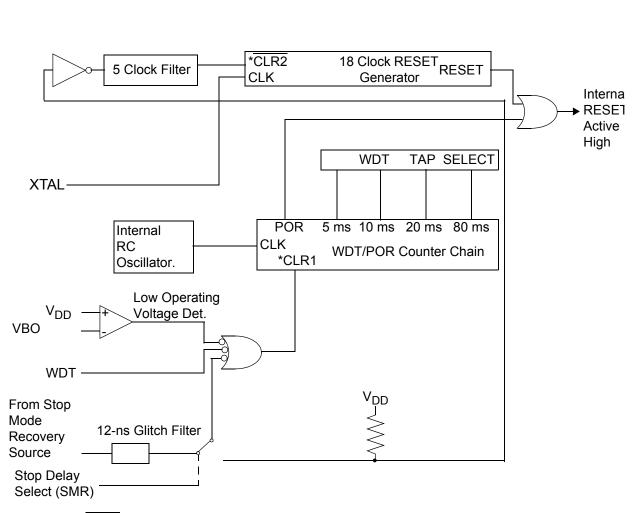
SMR:432			Operation		
D4	D3	D2	Description of Action		
0	0	0	POR and/or external reset recovery		
0	0	1	Reserved		
0	1	0	P31 transition		
0	1	1	P32 transition		
1	0	0	P33 transition		
1	0	1	P27 transition		
1	1	0	Logical NOR of P20 through P23		
1	1	1	Logical NOR of P20 through P27		

Note:

Any Port 2 bit defined as an output drives the corresponding input to the default state. For example, if the NOR of P23-P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23-P21) form the NOR equation. This condition allows the remaining inputs to control the AND/OR function, refer to SMR2 register on page 54 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the 'fast' wake up is selected, the Stop Mode Recovery source must be kept active for at least 10 TpC.


Note: This bit must be set to 1 if a crystal or resonator clock source is used. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the Crimzon ZLP32300 from STOP mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from STOP mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery.

* CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-High

Figure 36. Resets and WDT

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP mode. A 1 indicates active during Stop. The default is 1.

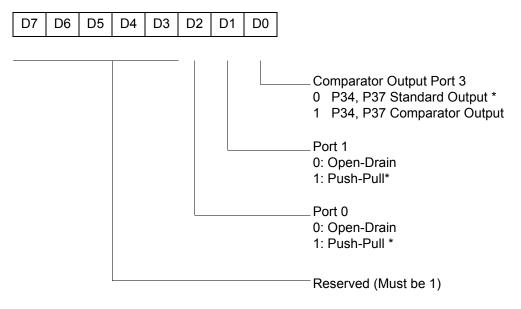
EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These are listed in Table 16.

Crimzon[®] ZLP32300 Product Specification

zilog

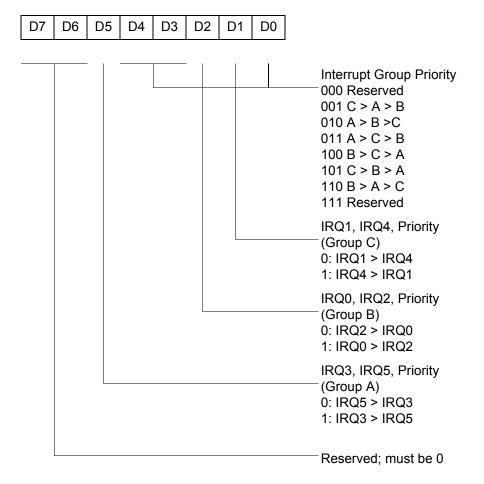
7	D6	D5	D4	D3	D2	D1	D0	
								TRANSMIT Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially DEMODULATION Mode R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 TRANSMIT Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially DEMODULATION Mode R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially DEMODULATION Mode R 0 No Rising Edge Detection R 1 Rising Edge Detection R 0 No Effect W 1 Reset Flag to 0 TRANSMIT Mode* 0 No No Effect W 1 Reset Flag to 0 TRANSMIT Mode* 0 0 Normal Operation* 0 1 PING-PONG Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 DEMODULATION Mode 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter
Defa	ult set	ing afte	r resel					1 1 Reserved TRANSMIT Mode/T8/T16 Logic 0 0 AND** 0 1 OR 1 0 NOR 1 0 NOR 1 1 NAND DEMODULATION Mode 0 0 Falling Edge Detection 1 1 NAND DEMODULATION Mode 0 Falling Edge Detection 1 1 Reserved TRANSMIT Mode 0 P36 as Port Output * 1 P36 as T8/T16_OUT DEMODULATION Mode 0 P31 as Demodulator Ing 1 P20 as Demodulator Ing 1 RANSMIT/DEMODULATION Mode 0 TRANSMIT/DEMODULATION Mode *



Expanded Register File Control Registers (0F)

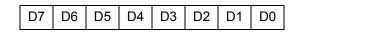
The expanded register file control registers (0F) are displayed in Figure 42 through Figure 55 on page 74.

PCON(0F)00H



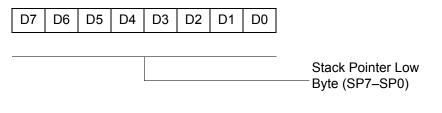
*Default setting after reset

Figure 42. Port Configuration Register (PCON)(0F)00H: Write Only)



R249 IPR(F9H)

Figure 49. Interrupt Priority Register (F9H: Write Only)


R254 SPH(FEH)

General-Purpose Register

Figure 54. Stack Pointer High (FEH: Read/Write)

R255 SPL(FFH)

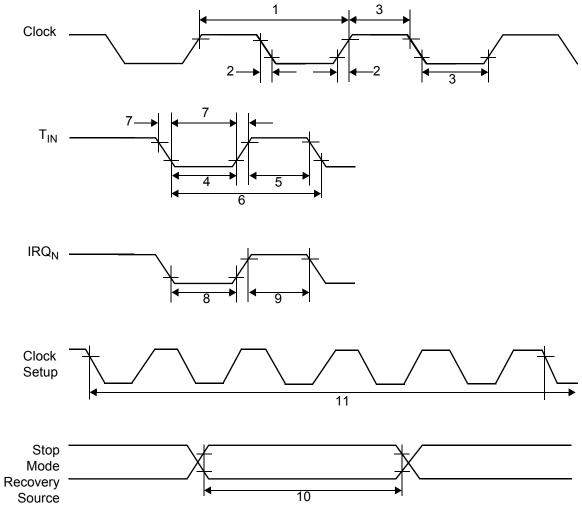


Figure 55. Stack Pointer Low (FFH: Read/Write)

AC Characteristics

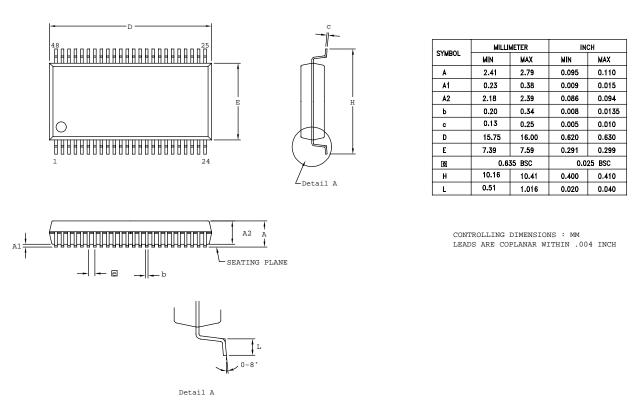


Figure 65. 48-Pin SSOP Package Design

Note: Contact $Zilog^{\mathbb{R}}$ on the actual bonding diagram and coordinate for chip-on-board assembly.

Ordering Information

The Crimzon ZLP32300 is available for the following parts:

Device	Part Number	Description
Crimzon	ZLP32300H4832G	48-pin SSOP 32 K OTP
ZLP32300	ZLP32300P4032G	40-pin PDIP 32 K OTP
	ZLP32300H2832G	28-pin SSOP 32 K OTP
	ZLP32300P2832G	28-pin PDIP 32 K OTP
	ZLP32300S2832G	28-pin SOIC 32 K OTP
	ZLP32300H2032G	20-pin SSOP 32 K OTP
	ZLP32300P2032G	20-pin PDIP 32 K OTP
	ZLP32300S2032G	20-pin SOIC 32 K OTP
	7. 5000001100400	
	ZLP32300H4816G	48-pin SSOP 16 K OTP
	ZLP32300P4016G	40-pin PDIP 16 K OTP
	ZLP32300H2816G	28-pin SSOP 16 K OTP
	ZLP32300P2816G	28-pin PDIP 16 K OTP
	ZLP32300S2816G	28-pin SOIC 16 K OTP
	ZLP32300H2016G	20-pin SSOP 16 K OTP
	ZLP32300P2016G	20-pin PDIP 16 K OTP
	ZLP32300S2016G	20-pin SOIC 16 K OTP
	ZLP32300H4808G	48-pin SSOP 8 K OTP
	ZLP32300P4008G	40-pin PDIP 8 K OTP
	ZLP32300H2808G	28-pin SSOP 8 K OTP
	ZLP32300P2808G	28-pin PDIP 8 K OTP
	ZLP32300S2808G	28-pin SOIC 8 K OTP
	ZLP32300H2008G	20-pin SSOP 8 K OTP