E. Analog Devices Inc./Maxim Integrated - <u>ZLP32300S2008G Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300s2008g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Architectural Overview
Development Features
Functional Block Diagram
Pin Description
Pin Functions
XTAL1 Crystal 1 (Time-Based Input) 10
XTAL2 Crystal 2 (Time-Based Output) 10
Input/Output Ports
RESET (Input, Active Low) 18
Functional Description
Program Memory
RAM
Expanded Register File 20
Register File
Stack
Timers
Counter/Timer Functional Blocks
Interrupts
Clock
Power Management
Port Configuration
Stop Mode Recovery
Watchdog Timer Mode
Expanded Register File Control Registers (0D)
Expanded Register File Control Registers (0F) 65
Standard Control Registers 69
Electrical Characteristics
Absolute Maximum Ratings
Standard Test Conditions
Capacitance
DC Characteristics
AC Characteristics
Packaging
Ordering Information
Part Number Description 89
Index 91
Customer Support

Development Features

Table 2 lists the features of Crimzon ZLP32300 family.

 Table 2. Crimzon ZLP32300 MCU Features

Device	OTP(KB)	RAM* (Bytes)	I/O Lines	Voltage Range
Crimzon ZLP32300	8, 16, 32	237	32, 24 or 16	2.0–3.6 V
*General purpose				

The additional features include:

- Low power consumption–11 mW (typical)
- Three standby modes:
 - STOP—1.7 µA (typical)
 - HALT—0.6 mA (typical)
 - Low-voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One Low-Voltage Detection interrupt
- Low-Voltage Detection and high voltage detection Flags
- Programmable Watchdog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors
 - Port 1: 0–3 pull-up transistors
 - Port 1: 4–7 pull-up transistors

Figure 2. Counter/Timers Diagram

zilog 4

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is displayed in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are displayed in Figure 5, Figure 6, and described in Table 5.

	Figure 3.	20-Pin	PDIP/SO	IC/SSOP	Pin	Confia	uration
--	-----------	--------	---------	---------	-----	--------	---------

Table 3. 20-P	in PDIP/S	OIC/SSOP	Pin	Identification
---------------	-----------	----------	-----	----------------

Pin No	Symbol	Function	Direction
1–3	P25–P27	Port 2, Bits 5,6,7	Input/Output
4	P07	Port 0, Bit 7	Input/Output
5	V _{DD}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8–10	P31–P33	Port 3, Bits 1,2,3	Input
11,12	P34, P36	Port 3, Bits 4,6	Output
13	P00/Pref1/P30	Port 0, Bit 0/Analog reference input Port 3 Bit 0	Input/Output for P00 Input for Pref1/P30
14	P01	Port 0, Bit 1	Input/Output
15	V _{SS}	Ground	
16–20	P20–P24	Port 2, Bits 0,1,2,3,4	Input/Output

					1	
NC		1	-	48		NC
P25		2		47		NC
P26		3		46	Þ	P24
P27		4		45		P23
P04		5		44	Þ	P22
N/C		6		43	Þ	P21
P05		7		42	Þ	P20
P06	С	8		41	Þ	P03
P14		9		40		P13
P15		10		39		P12
P07		11	48-Pin	38		VSS
VDD		12		37	Þ	VSS
VDD		13	3301	36	Þ	N/C
N/C		14		35		P02
P16		15		34		P11
P17		16		33		P10
XTAL2		17		32	Þ	P01
XTAL1	С	18		31	Þ	P00
P31		19		30	Þ	N/C
P32		20		29	Þ	PREF1/P30
P33		21		28	Þ	P36
P34		22		27	Þ	P37
NC		23		26	Þ	P35
VSS		24		25	Þ	RESET

Figure 6. 48-Pin SSOP Pin Configuration

Table 5. 40- and 48-Pin Configuration

40-Pin PDIP No	48-Pin SSOP No	Symbol
26	31	P00
27	32	P01
30	35	P02
34	41	P03
5	5	P04
6	7	P05
7	8	P06
10	11	P07
28	33	P10
29	34	P11

Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 9). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A EPROM option bit is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in DEMODULATION mode.

Crimzon[®] ZLP32300 Product Specification

zilog

Port 3 (P37-P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 10). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

Location of 32	2768	Not Accessible
first Byte of	.100	On-Chip ROM
executed		
after RESET	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
Interrupt Viector	7	IRQ3
(Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vector	4	IRQ2
(Upper Byte)	3	IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8 register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the ERF (Expanded Register File). Bits 7–4 of

28

T8 Enable

This field enables T8 when set (written) to 1.

Single/Modulo-N

When set to 0 (Modulo-N), the counter reloads the initial value when the terminal count is reached. When set to 1 (single-pass), the counter stops when the terminal count is reached.

Timeout

This bit is set when T8 times out (terminal count reached). To reset this bit, write a 1 to its location.

Caution: Writing a 1 is the only way to reset the Terminal Count status condition. Reset this bit before using/enabling the counter/timers. The first clock of T8 might not have complete clock width and can occur any time when enabled.

Note: Ensure to manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (DEMODULATION mode) when using the OR or AND commands. These instructions use a Read-Modify-Write sequence in which the current status from the CTR0 and CTR1 registers is ORed or ANDed with the designated value and then written back into the registers.

T8 Clock

These bits define the frequency of the input signal to T8.

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in DEMODULATION mode.

Counter_INT_Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01h

This register controls the functions in common with the T8 and T16.

Table 8 lists and briefly describes the fields for this register.

zilog

Table 8. CTR1(0D)01h T8 and T16 Common Functions (Continued)

Field	Bit Position		Value	Description
Initial_T16_Out/	0			TRANSMIT Mode
Falling Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				DEMODULATION Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

*Default at Power-On Reset

**Default at Power-On Reset. Not reset with a Stop Mode Recovery.

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

T8/T16_Logic/Edge _Detect

In TRANSMIT mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In TRANSMIT mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to normal operation mode terminates the 'PING-PONG Mode' operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION mode, this field defines the width of the glitch that must be filtered out.

zilog

Clock

The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source.

The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors from each pin to ground. The typical capacitor value is 10 pF for 8 MHz. Also check with the crystal supplier for the optimum capacitance.

*Note: preliminary value.

Figure 29. Oscillator Configuration

Zilog's IR MCU supports crystal, resonator, and oscillator. Most resonators have a frequency tolerance of less than $\pm 0.5\%$, which is enough for remote control application. Resonator has a very fast startup time, which is around few hundred microseconds. Most crystals have a frequency tolerance of less than 50 ppm ($\pm 0.005\%$). However, crystal needs longer startup time than the resonator. The large loading capacitance slows down the oscillation startup time. Zilog[®] suggests not to use more than 10 pF loading capacitor for the crystal. If the stray capacitance of the PCB or the crystal is high, the loading capacitance C1 and C2 must be reduced further to ensure stable oscillation before the T_{POR} (Power-On Reset time is typically 5-6 ms, see Table 20 on page 79).

For Stop Mode Recovery operation, bit 5 of SMR register allows you to select the Stop Mode Recovery delay, which is the T_{POR} . If Stop Mode Recovery delay is not selected, the MCU executes instruction immediately after it wakes up from the STOP mode. If resonator or crystal is used as a clock source then Stop Mode Recovery delay needs to be selected (bit 5 of SMR = 1).

zilog ,

Table 13. SMR2(F)0Dh:Stop Mode Recovery Register 2* (Continued)

Field	Bit Position		Value	Description			
Source	432	W	000†	A. POR Only			
			001	B. NAND of P23–P20			
			010	C. NAND of P27–P20			
			011	D. NOR of P33–P31			
			100	E. NAND of P33–P31			
			101	F. NOR of P33–P31, P00, P07			
			110	G. NAND of P33–P31, P00, P07			
			111	H. NAND of P33–P31, P22–P20			
Reserved	10		00	Reserved (Must be 0)			
*Port pins configured as outputs are ignored as an SMR recovery source.							

[†]Indicates the value upon Power-On Reset.

51

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (see Figure 34).

SMR2(0F)Dh

D7	D6	D5	D4	D3	D2	D1	D0	
								Reserved (Must be 0) Reserved (Must be 0) Stop Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07
								111 NAND P31, P32, P33, P20, P21, P22 Reserved (Must be 0) Recovery Level * * 0 Low * 1 High
								Reserved (Must be 0)

If used in conjunction with SMR, either of the two specified events causes a Stop Mode Recovery.

*Default setting after reset.

* *At the XOR gate input.

Figure 34. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

WDT Time Select (D0, D1)

This bit selects the WDT time period. It is configured as indicated in Table 15.

Table 15. Watchdog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5 ms min
0	1	10 ms min
1	0	20 ms min
1	1	80 ms min

WDTMR During Halt (D2)

This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1, see Figure 36.

CTR3(0D)03H

**Default setting after reset. Not reset with a Stop Mode Recovery.

Figure 40. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

Note: If Sync Mode is enabled, the first pulse of T8 carrier is always synchronized with T16 (demodulated signal). It can always provide a full carrier pulse.

Capacitance

Table 18 lists the capacitances.

Table 18. Capacitance

Parameter	Maximum			
Input capacitance	12 pF			
Output capacitance	12 pF			
I/O capacitance	12 pF			
$T_A = 25 \text{ °C}, V_{CC} = GND = 0 \text{ V}, \text{ f}$ pins returned to GND	V_{CC} = GND = 0 V, f = 1.0 MHz, unmeasured d to GND			

DC Characteristics

Table 19 describes the DC characteristics.

Table 19. DC Characteristics

T _A = 0 °C to +70 °C								
Symbol	Parameter	V _{cc}	Min	Typ ⁽⁷⁾	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		3.6	V	See Notes	5
V _{CH}	Clock Input High Voltage	2.0-3.6	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-3.6	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-3.6	V _{SS} -0.3		$0.2 V_{CC}$	V		
V _{OH1}	Output High Voltage	2.0-3.6	V _{CC} -0.4			V	I _{OH} = -0.5 mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-3.6	V _{CC} -0.8			V	I _{OH} = -7 mA	
V _{OL1}	Output Low Voltage	2.0-3.6			0.4	V	I _{OL} = 4.0 mA	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-3.6			0.8	V	I _{OL} = 10 mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-3.6			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-3.6	0		V _{CC} -1.75	V		

Table 19. DC Characteristics (Continued)

T _A = 0 °C to +70 °C									
Symbol	Parameter	V _{cc}	Min	Тур ⁽⁷⁾	Max	Units	Conditions	Notes	
IIL	Input Leakage	2.0-3.6	–1		1	μA	V _{IN} = 0 V, V _{CC} Pull-ups disabled		
R _{PU}	Pull-Up Resistance	2.0	225		675	kΩ	V _{IN} = 0 V, Pull-ups		
		3.6	75		275	kΩ	selected by mask option		
I _{OL}	Output Leakage	2.0-3.6	-1		1	μA	V_{IN} = 0 V, V_{CC}		
I _{CC}	Supply Current	2.0		1	3	mA	at 8.0 MHz	1, 2	
		3.6		5	10	mA	at 8.0 MHz	1, 2	
I _{CC1}	Standby Current	2.0		0.5	1.6	mA	V _{IN} = 0V, V _{CC} at 8.0	1, 2, 6	
	(HALT Mode)	3.6		0.8	2.0		MHz	1, 2, 6	
							Same as above		
I _{CC2}	Standby Current	2.0		1.6	8	μA	V_{IN} = 0 V, V_{CC} WDT is	3	
	(STOP Mode)	3.6		1.8	10	μA	not Running	3	
		2.0		5	20	μA	Same as above	3	
		3.6		8	30	μA	V _{IN} = 0 V, V _{CC} WDT is Running	3	
							Same as above		
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3 V	4	
V _{BO}	V _{CC} Low Voltage Protection			1.9	2.0	V	8 MHz maximum Ext. CLK Freq.		
V_{LVD}	Vcc Low Voltage Detection			2.4		V			
V _{HVD}	Vcc High Voltage Detection			2.7		V			

Notes

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit.

 It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VDD and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an infrared LED.

6. Comparator and Timers are on. Interrupt disabled.

7. Typical values shown are at 25 °C.

Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 65. 48-Pin SSOP Package Design

Note: Contact $Zilog^{\mathbb{R}}$ on the actual bonding diagram and coordinate for chip-on-board assembly.

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <u>http://support.zilog.com</u>.