E·XFL

Zilog - ZLP32300S2032C00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zlp32300s2032c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development Features

Table 2 lists the features of Crimzon ZLP32300 family.

 Table 2. Crimzon ZLP32300 MCU Features

Device	OTP(KB)	RAM* (Bytes)	I/O Lines	Voltage Range
Crimzon ZLP32300	8, 16, 32	237	32, 24 or 16	2.0–3.6 V
*General purpose				

The additional features include:

- Low power consumption–11 mW (typical)
- Three standby modes:
 - STOP—1.7 µA (typical)
 - HALT—0.6 mA (typical)
 - Low-voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One Low-Voltage Detection interrupt
- Low-Voltage Detection and high voltage detection Flags
- Programmable Watchdog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors
 - Port 1: 0–3 pull-up transistors
 - Port 1: 4–7 pull-up transistors

open-drain output with output logic as ONE, it is a floating port and reads back as ZERO. The following instruction sets P00-P07 all Low.

AND P0,#%F0

Port 0 (P00–P07)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or opendrain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 01 mode register (P01M). After a hardware reset or Stop Mode Recovery, Port 0 is configured as an input port.

An optional pull-up transistor is available as a OTP option bit on all Port 0 bits with nibble select.

Note: *The Port 0 direction is reset to be input following an SMR.*

Location of 32	2768	Not Accessible
first Byte of	.100	On-Chip ROM
executed		
after RESET	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
Interrupt Viector	7	IRQ3
(Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vector	4	IRQ2
(Upper Byte)	3	IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8 register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the ERF (Expanded Register File). Bits 7–4 of

register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

Note: An expanded register bank is also referred to as an expanded register group (see Figure 13).

Figure 17. TRANSMIT Mode Flowchart

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur, see Figure 19 and Figure 20.

T8 DEMODULATION Mode

You must program TC8L and TC8H to FFh. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the time-out status bit (CTR0, D5) is set, and an

Figure 22. DEMODULATION Mode Flowchart

Crimzon[®] ZLP32300 **Product Specification** zilog Do not load these registers at the time the values are to be loaded into the counter/timer Caution: to ensure known operation. An initial count of 1 is not allowed. An initial count of 0causes T16 to count from 0 to FFFFh to FFFFh. Transition from 0 to FFFFh is not a timeout condition. -TC16H*256+TC16L Counts "Counter Enable" Command T16 OUT Toggles, T16 OUT Switches to Its Timeout Interrupt Initial Value (CTR1 D0) Figure 24. T16 OUT in SINGLE-PASS Mode TC16H*256+TC16L TC16H*256+TC16L

Figure 25. T16_OUT in MODULO-N Mode

T16 DEMODULATION Mode

You must program TC16L and TC16H to FFh. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures H116 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFh and starts again.

zilog 4

For both resonator and crystal oscillator, the oscillation ground must go directly to the ground pin of the microcontroller. The oscillation ground must use the shortest distance from the microcontroller ground pin and it must be isolated from other connections.

Power Management

Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

The POR timer is 2.5 ms minimum. Bit 5 of the Stop Mode Register determines whether the POR timer is bypassed after Stop Mode Recovery (typical for external clock).

HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns OFF the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP mode is terminated only by a reset, such as WDT time-out, POR or SMR. This condition causes the processor to restart the application program at address 000Ch. To enter STOP (or HALT) mode, first flush the instruction pipe-line to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFh) immediately before the appropriate sleep instruction, as follows:

	FF	NOP	;	clear	the pipeline
	6F	STOP	;	enter	Stop Mode
or					
	FF	NOP	;	clear	the pipeline
	7F	HALT	;	enter	HALT Mode

Table 16. EPROM Selectable Options

Port 00–03 Pull-Ups	ON/OFF
Port 04–07 Pull-Ups	ON/OFF
Port 10–13 Pull-Ups	ON/OFF
Port 14–17 Pull-Ups	ON/OFF
Port 20–27 Pull-Ups	ON/OFF
EPROM Protection	ON/OFF
Watchdog Timer at Power-On Reset	ON/OFF

Voltage Brownout/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO} . A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM} , the RAM content is preserved. When the power level is returned to above V_{BO} , the device performs a POR and functions normally.

Low-Voltage Detection

Low-Voltage Detection Register—LVD(D)0Ch

Note: *Voltage detection does not work at STOP mode.*

Field	Bit Position			Description
LVD	76543			Reserved No Effect
	2	R	1 0*	HVD Flag set HVD Flag reset
	1-	R	1 0*	LVD Flag set LVD Flag reset
	0	R/W	1 0*	Enable VD Disable VD
*Default a	fter POR			

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both Ports 0 and 1 together might trigger the LVD Flag.

59

Voltage Detection and Flags

The Voltage Detection register (LVD, register 0Ch at the expanded register bank 0Dh) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the V_{CC} level is monitored in real time. The HVD Flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD} . The LVD Flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD} . When Voltage Detection is enabled, the LVD Flag also triggers IRQ5. The IRQ bit 5 latches the low-voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a Flag only.

Note:

If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt (EI) instruction prior to enabling the voltage detection.

Ensure to differentiate the TRANSMIT mode from DEMODULATION 1. mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

2. Changing from one mode to another cannot be performed without disabling the counter/timers.

CTR2(0D)02H

D7	D6	D5	D4	D3	D2	D1	D0	
								 0 P35 is Port Output * 1 P35 is TC16 Output 0 Disable T16 Timeout Interrupt* 1 Enable T16 Timeout Interrupt 0 Disable T16 Data Capture Interrupt** 1 Enable T16 Data Capture Interrupt* 0 0 SCLK on T16** 0 0 SCLK/2 on T16 1 SCLK/2 on T16 1 SCLK/8 on T16 1 SCLK/8 on T16 R 0 No T16 Timeout** R 1 T16 Timeout Occurs W 0 No Effect W 1 Reset Flag to 0
								TRANSMIT Mode 0 Modulo-N for T16* 1 Single Pass for T16 DEMODULATOR Mode
								0 T16 Recognizes Edge 1 T16 Does Not Recognize Edge
*Default setting after reset **Default setting after reset. Not reset with a Stop Mode Recovery.					t reset	R 0 T16 Disabled * R 1 T16 Enabled W 0 Stop T16 Wode W 1 Enable T16		

69

Standard Control Registers

The standard control registers are displayed in Figure 46 through Figure 55 on page 74. R246 P2M(F6H)

*Default setting after reset. Not Reset with a Stop Mode Recovery.

R247 P3M(F7H)

*Default setting after reset. Not Reset with a Stop Mode Recovery.

Figure 47. Port 3 Mode Register (F7H: Write Only)

R248 P01M(F8H)

*Default setting after reset; only P00, P01 and P07 are available on Crimzon ZLP32300 20-pin configurations.

Figure 48. Port 0 and 1 Mode Register (F8H: Write Only)

zilog ₇₉

		T _A =0 °C to +70 °C V 8.0 MHz 7						
No	Symbol	Parameter	V _{cc}	Minimum	Maximum	Units	Notes	Register (D1, D0)
1	ТрС	Input Clock Period	2.0–3.6	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–3.6		25	ns	1	
3	TwC	Input Clock Width	2.0–3.6	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 3.6	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–3.6	3ТрС			1	
6	TpTin	Timer Input Period	2.0–3.6	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–3.6		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 3.6	100 70		ns	1, 2	
9	TwIH	Interrupt Request Input High Time	2.0–3.6	5TpC			1, 2	
10	Twsm	Stop Mode Recovery Width Spec	2.0–3.6	12		ns	3	
				10TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–3.6		5TpC		4	
12	Twdt	Watchdog Timer Delay Time	2.0–3.6 2.0–3.6 2.0–3.6 2.0–3.6	5 10 20 80		ms ms ms ms		0, 0 0, 1 1, 0 1, 1
13	T _{POR}	Power-on reset	2.0–3.6	2.5	10	ms		

Table 20. AC Characteristics

Notes

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR–D5 = 1.

4. SMR–D5 = 0.

80

Packaging

Package information for all versions of Crimzon ZLP32300 is displayed in Figure 58 through Figure 65.

SYMBOL	MILLIN	ETER	INCH		
STWDOL	MIN	MAX	MIN	MAX	
A1	0.38	0.81	.015	.032	
A2	3.25	3.68	.128	.145	
В	0.41	0.51	.016	.020	
B1	1.47	1.57	.058	.062	
С	0.20	0.30	.008	.012	
D	25.65	26.16	1.010	1.030	
E	7.49	8.26	.295	.325	
E1	6.10	6.65	.240	.262	
e	2.54	BSC	.100 BSC		
eA	7.87	9.14	.310	.360	
L	3.18	3.43	.125	.135	
Q1	1.42	1.65	.056	.065	
S	1.52	1.65	.060	.065	

F

L___

CONTROLLING	DIMENSIONS	:	INCH

044004		MILLIMETER		INCH		
SIMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	1.73	1.85	1.98	0.068	0.073	0.078
A1	0.05	0.13	0.21	0.002	0.005	0.008
A2	1.68	1.73	1.83	0.066	0.068	0.072
В	0.25	0.30	0.38	0.010	0.012	0.015
С	0.13	0.15	0.22	0.005	0.006	0.009
D	7.07	7.20	7.33	0.278	0.283	0.289
E	5.20	5.30	5.38	0.205	0.209	0.212
e		0.65 BSC			0.0256 BSC	;
Н	7.65	7.80	7.90	0.301	0.307	0.311
L	0.56	0.75	0.94	0.022	0.030	0.037
Q1	0.74	0.78	0.82	0.029	0.031	0.032

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

DETAIL A

Н

0-8

INCH

NOM

0.073

0.005

0.068

0.006

0.402

0.209

0.307

0.030

0.0256 TYP

MAX

0.078

0.008

0.070

0.015

0.008

0.407

0.212

0.311

0.037

	7
ų_	J ^L
0-8-	

SYMBOL

А

A1

A2

В

С

D

Е

е

Н

L

MIN

1.73

0.05

1.68

0.25

0.09

10.07

5.20

7.65

0.63

CONTROLLING DIMENSIONS: MM LEADS ARE COPLANAR WITHIN .004 INCHES.

MILLIMETER

NOM

1.86

0.13

1.73

_

10.20

5.30

0.65 TYP

7.80

0.75

MAX

1.99

0.21

1.78

0.38

0.20

10.33

5.38

7.90

0.95

MIN

0.068

0.002

0.066

0.010

0.004

0.397

0.205

0.301

0.025

DETAIL 'A'

SYMBOL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A1	0.51	1.02	.020	.040
A2	3.18	3.94	.125	.155
В	0.38	0.53	.015	.021
B1	1.02	1.52	.040	.060
С	0.23	0.38	.009	.015
D	52.07	52.58	2.050	2.070
E	15.24	15.75	.600	.620
E1	13.59	14.22	.535	.560
e	2.54 TYP		.100 TYP	
eA	15.49	16.76	.610	.660
L	3.05	3.81	.120	.150
Q1	1.40	1.91	.055	.075
S	1.52	2.29	.060	.090

CONTROLLING DIMENSIONS : INCH

Figure 64. 40-Pin PDIP Package Diagram

Index

Numerics

16-bit counter/timer circuits 40 20-pin DIP package diagram 80 20-pin SSOP package diagram 82 28-pin DIP package diagram 84 28-pin SOIC package diagram 83 28-pin SSOP package diagram 85 40-pin DIP package diagram 85 48-pin SSOP package diagram 86 8-bit counter/timer circuits 36

Α

absolute maximum ratings 75 AC characteristics 78 timing diagram 78 address spaces, basic 1 architecture 1 expanded register file 22

В

basic address spaces 1 block diagram, ZLP32300 functional 3

С

capacitance 76 characteristics AC 78 DC 76 clock 46 comparator inputs/outputs 18 configuration port 0 12 port 1 13 port 2 14 port 3 15

port 3 counter/timer 17 counter/timer 16-bit circuits 40 8-bit circuits 36 brown-out voltage/standby 58 clock 46 demodulation mode count capture flowchart 38 demodulation mode flowchart 39 EPROM selectable options 58 glitch filter circuitry 34 halt instruction 47 input circuit 33 interrupt block diagram 44 interrupt types, sources and vectors 45 oscillator configuration 46 output circuit 43 port configuration register 48 resets and WDT 57 SCLK circuit 50 stop instruction 47 stop mode recovery register 49 stop mode recovery register 2 54 stop mode recovery source 52 T16 demodulation mode **41** T16 transmit mode 40 T16 OUT in modulo-N mode 41 T16 OUT in single-pass mode 41 T8 demodulation mode 37 T8 transmit mode 34 T8 OUT in modulo-N mode **37** T8 OUT in single-pass mode 37 transmit mode flowchart 35 voltage detection and flags 59 watch-dog timer mode register 55 watch-dog timer time select 56 CTR(D)01h T8 and T16 Common Functions 29

D

DC characteristics 76 demodulation mode count capture flowchart 38 flowchart 39 T16 41