
E. Analog Devices Inc./Maxim Integrated - <u>ZLP3230052804G Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

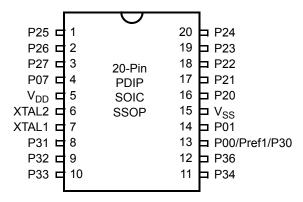
Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300s2804g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History


Each instance in the Revision History table reflects a change to this document from its previous revision. For more details, refer to the corresponding pages or appropriate link in the table.

Date	Revision Level	Description	Page Number
February 2008	23	Updated Ordering Information section.	87
January 2008	22	Updated Ordering Information section.	87
July 2007	21	Updated Disclaimer section and implemented style guide.	All
February 2007	20	Updated Low-Voltage Detection.	58
May 2006	19	Updated Figure 33 with pin P22 in SMR block input.	52
December 2005	18	Updated Clock and Input/Output Ports sections.	15 and 51

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is displayed in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are displayed in Figure 5, Figure 6, and described in Table 5.

Figure 3. 20-P	in PDIP/SOIC/SSOP	Pin Configuration
----------------	-------------------	--------------------------

Table 3. 20-P	in PDIP/SOIC/S	SOP Pin Ide	ntification
---------------	----------------	-------------	-------------

Pin No	Symbol	Function	Direction
1–3	P25–P27	Port 2, Bits 5,6,7	Input/Output
4	P07	Port 0, Bit 7	Input/Output
5	V _{DD}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8–10	P31–P33	Port 3, Bits 1,2,3	Input
11,12	P34, P36	Port 3, Bits 4,6	Output
13	P00/Pref1/P30	Port 0, Bit 0/Analog reference input Port 3 Bit 0	Input/Output for P00 Input for Pref1/P30
14	P01	Port 0, Bit 1	Input/Output
15	V _{SS}	Ground	
16–20	P20–P24	Port 2, Bits 0,1,2,3,4	Input/Output

Figure 5. 40-Pin PDIP Pin Configuration

NC	– 1	\smile	48 🗖 ו	NC
P25	E 2		47 🗖 1	NC
P26	– 3		46 🗆 I	P24
P27	□ 4		45 🗖 I	P23
P04	- 5		44 🗖 I	P22
N/C	– 6		43 □ I	P21
P05	⊏ 7		42 🗖 I	P20
P06	□ 8		41 🗆 🛙	P03
P14	- 9		40 🗖 I	P13
P15	□ 10		39 🗖 I	P12
P07	C 11	48-Pin	38 🗖 👌	VSS
VDD	– 12	SSOP	37 🗖 🕚	VSS
	□ 13	0001	36 🗖 🛛	N/C
10.0	- 14			P02
P16	□ 15		34 🗖 I	P11
P17	□ 16		00 - 1	P10
XTAL2	- 17		32 🗖 🛛	P01
XTAL1	□ 18		31 🗖 🛛	P00
P31	□ 19		30 🗖 🛛	N/C
P32	2 0		29 🗖 I	PREF1/P30
P33	L 21		28 🗖 I	P36
P34	2 2		27 🗖 🛛	P37
	2 3			P35
VSS	□ 24		25 🗆 I	RESET

Figure 6. 48-Pin SSOP Pin Configuration

Table 5. 40- and 48-Pin Configuration

40-Pin PDIP No	48-Pin SSOP No	Symbol
26	31	P00
27	32	P01
30	35	P02
34	41	P03
5	5	P04
6	7	P05
7	8	P06
10	11	P07
28	33	P10
29	34	P11

(see T8 and T16 Common Functions—CTR1(0D)01h on page 28). Other edge detect and IRQ modes are described in Table 6.

Note: Comparators are powered down by entering STOP mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into DIGITAL mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

 Table 6. Port 3 Pin Function Summary

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 11). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

16

18

Comparator Inputs

In ANALOG mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as displayed in Figure 10 on page 15. In DIGITAL mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering STOP mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into DIGITAL mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watchdog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watchdog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the ZLP32300 asserts (Low) the RESET pin, the internal pull-up is disabled. The ZLP32300 does not assert the RESET pin when under VBO.

Note: *The external Reset does not initiate an exit from STOP mode.*

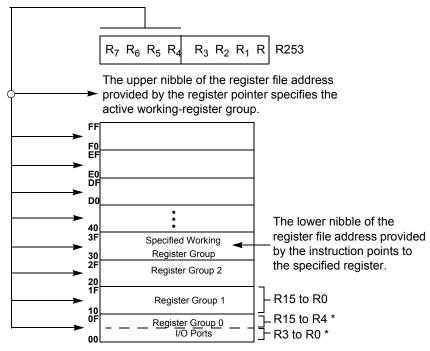
register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

Note: An expanded register bank is also referred to as an expanded register group (see Figure 13).

R1, 2 LD; CTR2→CTR1 LD RP, #0Dh ; Select ERF D for access to bank D ; (working register group 0) ; Select LDRP, #7Dh expanded register bank D and working ; register group 7 of bank 0 for access. LD 71h, 2 ; CTRL2 \rightarrow register 71h LD R1, 2 ; CTRL2 \rightarrow register 71h

Register File

The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose registers, 16 control and status registers (R0–R3, R4–R239, and R240–R255, respectively), and two expanded registers groups in Banks D (see Table 7 on page 27) and F. Instructions can access registers directly or indirectly through an 8-bit address field, thereby allowing a short, 4-bit register address to use the Register Pointer (see Figure 15). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group.



Working register group E0–EF can only be accessed through working registers and indirect addressing modes.

Crimzon[®] ZLP32300 Product Specification

zilog

* RP = 00: Selects Register Bank 0, Working Register Group 0

Figure 15. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Timers

T8_Capture_HI—HI8(D)0Bh

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description
T8_Capture_HI	[7:0]	R/W	Captured Data—No Effect

zilog

Table 8. CTR1(0D)01h T8 and T16 Common Functions (Continued)

Field	Bit Position		Value	Description
Initial_T16_Out/	0			TRANSMIT Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				DEMODULATION Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

*Default at Power-On Reset

**Default at Power-On Reset. Not reset with a Stop Mode Recovery.

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

T8/T16_Logic/Edge _Detect

In TRANSMIT mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In TRANSMIT mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to normal operation mode terminates the 'PING-PONG Mode' operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION mode, this field defines the width of the glitch that must be filtered out.

40

T16 TRANSMIT Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NOR-MAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set, see Figure 23.

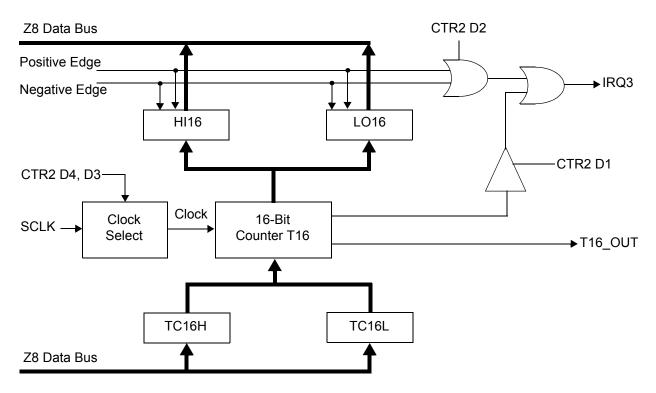


Figure 23. 16-Bit Counter/Timer Circuits

Note: *Global interrupts override this function as described in* Interrupts on page 43.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 24). If it is in MODULO-N mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 25).

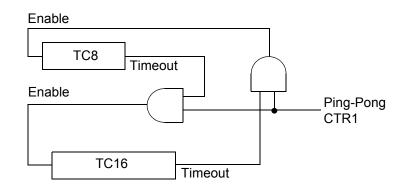
You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

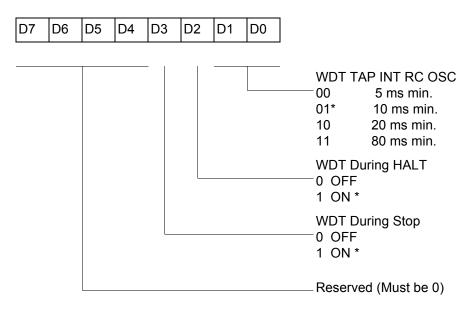

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

PING-PONG Mode

This operation mode is only valid in TRANSMIT mode. T8 and T16 must be programmed in SINGLE-PASS mode (CTR0, D6; CTR2, D6), and PING-PONG mode must be programmed in CTR1, D3; D2. You can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the Ping-Pong operation, write 00 to bits D3 and D2 of CTR1, see Figure 26.

Note:

Enabling Ping-Pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status Flags before instituting this operation.


Watchdog Timer Mode

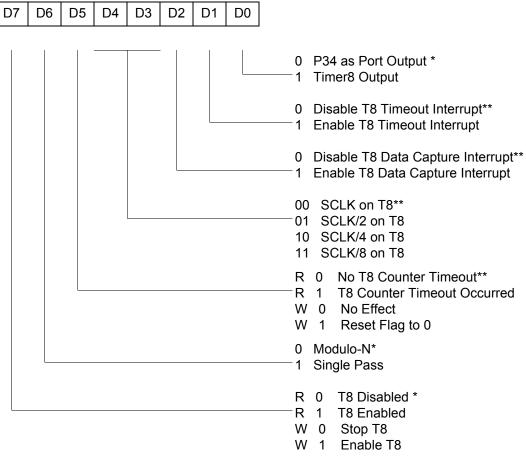
Watchdog Timer Mode Register (WDTMR)

The Watchdog Timer is a retriggerable one-shot timer that resets the $Z8^{\mathbb{R}}$ if it reaches its terminal count. The WDT must initially be enabled by executing the WDT instruction. On subsequent executions of the WDT instruction, the WDT is refreshed. The WDT circuit is driven by an on-board RC-oscillator. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V) Flags.

The POR clock source the internal RC-oscillator. Bits 0 and 1 of the WDT register control a tap circuit that determines the minimum time-out period. Bit 2 determines whether the WDT is active during HALT, and Bit 3 determines WDT activity during Stop. Bits 4 through 7 are reserved (see Figure 35). This register is accessible only during the first 60 processor cycles (120 XTAL clocks) from the execution of the first instruction after Power-on reset, Watchdog Reset, or a Stop Mode Recovery (see Figure 34). After this point, the register cannot be modified by any means (intentional or otherwise). The WDTMR cannot be read. The register is located in Bank F of the Expanded Register Group at address location 0Fh. It is organized as shown in Figure 35.

WDTMR(0F)0Fh

*Default setting after reset


Figure 35. Watchdog Timer Mode Register (Write Only)

Expanded Register File Control Registers (0D)

The expanded register file control registers (0D) are displayed in Figure 37 through Figure 41.

CTR0(0D)00H

*Default setting after reset.

**Default setting after reset. Not reset with a Stop Mode Recovery.

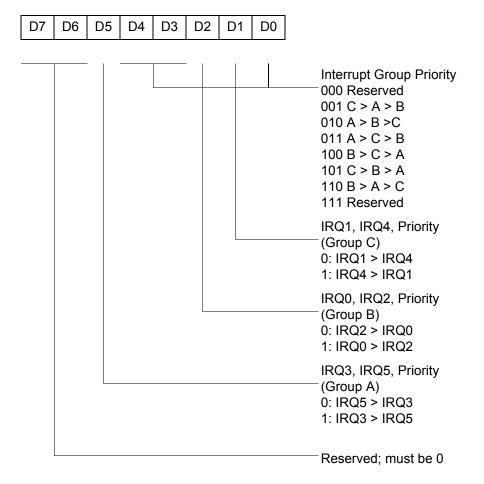
Figure 37. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)

SMR2(0F)0DH D7 D6 D5 D4 D3 D2 D1 D0 Reserved (Must be 0) Reserved (Must be 0) Stop Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07 111 NAND P31, P32, P33, P20, P21, P22 Reserved (Must be 0) Recovery Level * * 0 Low 1 High Reserved (Must be 0)

If used in conjunction with SMR, either of the two specified events causes a Stop Mode Recovery.

*Default setting after reset. Not Reset with a Stop Mode Recovery.

* *At the XOR gate input


Figure 44. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)

Crimzon[®] ZLP32300 Product Specification

zilog

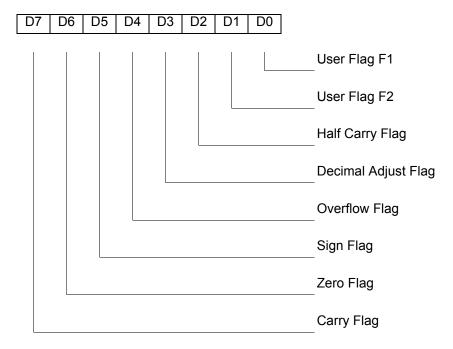
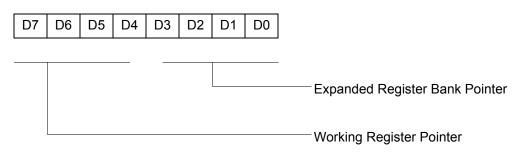

R249 IPR(F9H)

Figure 49. Interrupt Priority Register (F9H: Write Only)


Crimzon[®] ZLP32300 Product Specification Zilog ₇₃

R252 Flags(FCH)

Figure 52. Flag Register (FCH: Read/Write)

R253 RP(FDH)

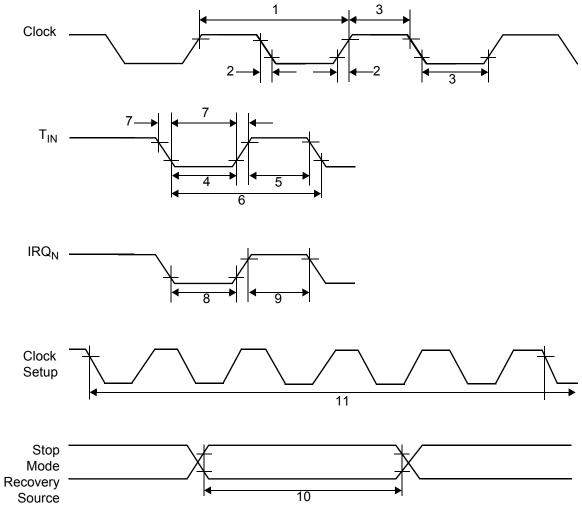

Default setting after reset = 0000 0000

Figure 53. Register Pointer (FDH: Read/Write)

AC Characteristics

93

0

oscillator configuration 46 output circuit, counter/timer 43

Ρ

package information 20-pin DIP package diagram 80 20-pin SSOP package diagram 82 28-pin DIP package diagram 84 28-pin SOIC package diagram 83 28-pin SSOP package diagram 85 40-pin DIP package diagram 85 48-pin SSOP package diagram 86 part number format 89 pin configuration 20-pin DIP/SOIC/SSOP 5 28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP **7** 48-pin SSOP 8 pin functions port 0 (P07 - P00) 11 port 0 (P17 - P10) 12 port 0 configuration 12 port 1 configuration 13 port 2 (P27 - P20) 13 port 2 (P37 - P30) 14 port 2 configuration 14 port 3 configuration 15 port 3 counter/timer configuration 17 reset) 18 XTAL1 (time-based input 10 XTAL2 (time-based output) 10 port 0 configuration 12 port 0 pin function 11 port 1 configuration 13 port 1 pin function 12 port 2 configuration 14 port 2 pin function 13 port 3 configuration 15 port 3 pin function 14 port 3counter/timer configuration 17 port configuration register 48

power connections 1 power supply 5 program memory 19 map 20

R

ratings, absolute maximum 75 register 54 CTR(D)01h 28 CTR0(D)00h 27 CTR2(D)02h 31 CTR3(D)03h 33 flag 73 HI16(D)09h 26 HI8(D)0Bh 25 interrupt priority 71 interrupt request 72 interruptmask 72 L016(D)08h 26 L08(D)0Ah 26 LVD(D)0Ch 58 pointer 73 port 0 and 1 70 port 2 configuration 69 port 3 mode 69 port configuration 48, 69 SMR2(F)0Dh 33 stack pointer high 74 stack pointer low 74 stop mode recovery 49 stop mode recovery 2 54 stop mode recovery 66 stop mode recovery 2 67 T16 control 62 T8 and T16 common control functions 61 T8/T16 control 63 TC16H(D)07h 26 TC16L(D)06h 26 TC8 control 60 TC8H(D)05h 27 TC8L(D)04h 27 voltage detection 64 watch-dog timer 68

register description Counter/Timer2 LS-Byte Hold 26 Counter/Timer2 MS-Byte Hold 26 Counter/Timer8 Control 27 Counter/Timer8 High Hold 27 Counter/Timer8 Low Hold 27 CTR2 Counter/Timer 16 Control 31 CTR3 T8/T16 Control 33 Stop Mode Recovery2 33 T16 Capture LO 26 T8 and T16 Common functions 28 T8 Capture HI 25 T8 Capture LO 26 register file 24 expanded 20 register pointer 23 detail 25 reset pin function 18 resets and WDT 57

S

SCLK circuit 50 single-pass mode T16 OUT 41 T8 OUT 37 stack 25 standard test conditions 75 standby modes 2 stop instruction, counter/timer 47 stop mode recovery 2 register 54 source 52 stop mode recovery 2 54 stop mode recovery register 49

Т

T16 transmit mode 40 T16 Capture HI 26 T8 transmit mode 34 T8 Capture HI 25 test conditions, standard 75 test load diagram 75

timing diagram, AC 78 transmit mode flowchart 35

V

VCC 5 voltage brown-out/standby 58 detection and flags 59 voltage detection register 64

W

watchdog timer mode register watchdog timer mode register 55 time select 56

Х

XTAL1 5 XTAL1 pin function 10 XTAL2 5 XTAL2 pin function 10

Ζ

ZLP32300 family members 2