
E. Analog Devices Inc./Maxim Integrated - <u>ZLP3230052808G Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300s2808g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development Features

Table 2 lists the features of Crimzon ZLP32300 family.

 Table 2. Crimzon ZLP32300 MCU Features

Device	OTP(KB)	RAM* (Bytes)	I/O Lines	Voltage Range
Crimzon ZLP32300	8, 16, 32	237	32, 24 or 16	2.0–3.6 V
*General purpose				

The additional features include:

- Low power consumption–11 mW (typical)
- Three standby modes:
 - STOP—1.7 μA (typical)
 - HALT—0.6 mA (typical)
 - Low-voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One Low-Voltage Detection interrupt
- Low-Voltage Detection and high voltage detection Flags
- Programmable Watchdog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors
 - Port 1: 0–3 pull-up transistors
 - Port 1: 4–7 pull-up transistors

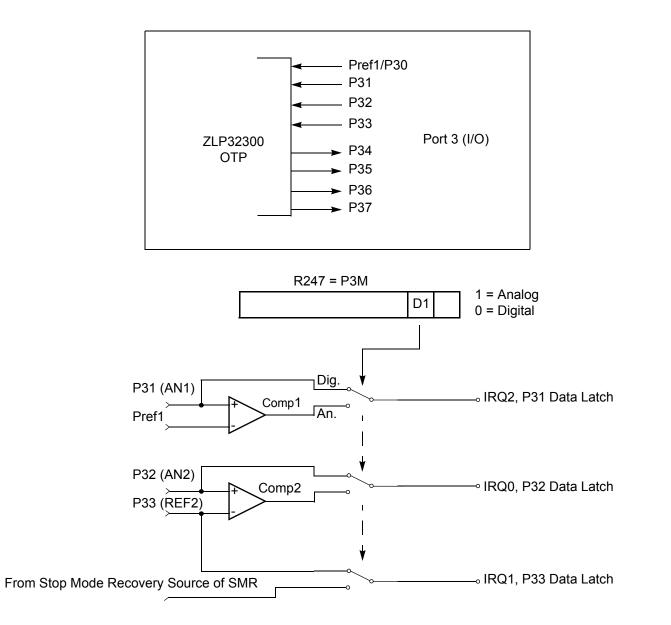


Figure 10. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The Analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edge-detection circuit is through P31 or P20

Location of 3	2768	Not Accessible
first Byte of		On-Chip
instruction		ROM
executed		
after RESET	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
	7	IRQ3
Interrupt Vector (Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vector	4	▪ IRQ2
(Upper Byte)		IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8 register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the ERF (Expanded Register File). Bits 7–4 of

zilog

Table 8. CTR1(0D)01h T8 and T16 Common Functions (Continued)

Field	Bit Position		Value	Description
Initial_T16_Out/	0			TRANSMIT Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				DEMODULATION Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

*Default at Power-On Reset

**Default at Power-On Reset. Not reset with a Stop Mode Recovery.

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

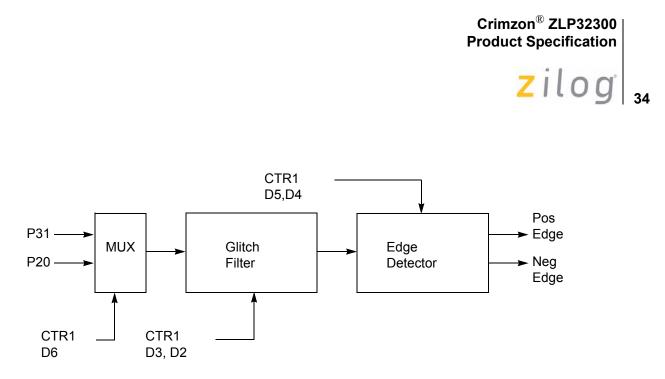
P36_Out/Demodulator_Input

In TRANSMIT mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

T8/T16_Logic/Edge _Detect


In TRANSMIT mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In TRANSMIT mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to normal operation mode terminates the 'PING-PONG Mode' operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION mode, this field defines the width of the glitch that must be filtered out.

T8 TRANSMIT Mode

Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 17.

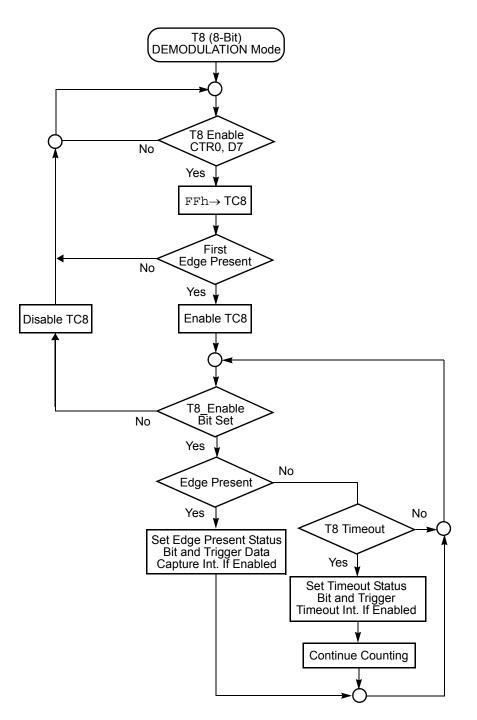


Figure 22. DEMODULATION Mode Flowchart

40

T16 TRANSMIT Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NOR-MAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set, see Figure 23.

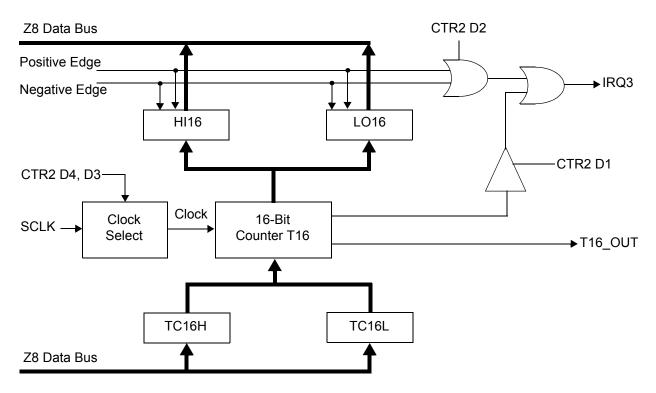


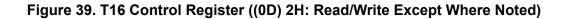
Figure 23. 16-Bit Counter/Timer Circuits

Note: *Global interrupts override this function as described in* Interrupts on page 43.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 24). If it is in MODULO-N mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 25).

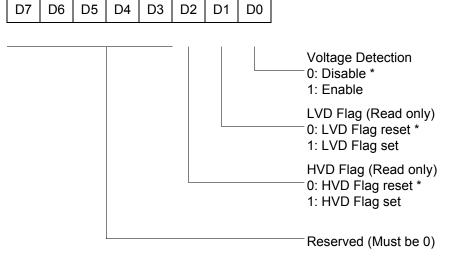
You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

)7	D6	D5	D4	D3	D2	D1	D0	
								TRANSMIT Mode* R/W 0 T16_OUT is 0 initially* 1 T16_OUT is 1 initially DEMODULATION Mode R 0 No Falling Edge Detection W 1 Falling Edge Detection W 1 Reset Flag to 0 TRANSMIT Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially DEMODULATION Mode R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially DEMODULATION Mode R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 TRANSMIT Mode* 0 No Rising Edge Detection W 1 Reset Flag to 0 TRANSMIT Mode* 0 0 Normal Operation* 0 1 PING-PONG Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 DEMODULATION Mode 0 0 No Filter 0 1 4 SCLK Cycle Filter
								1 0 8 SCLK Cycle Filter 1 1 Reserved TRANSMIT Mode/T8/T16 Logic 0 0 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND DEMODULATION Mode 0 0 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved TRANSMIT Mode 0 P36 as Port Output *
	ault set	ing afte						1 P36 as T8/T16_OUT DEMODULATION Mode 0 P31 as Demodulator Inp 1 P20 as Demodulator Inp TRANSMIT/DEMODULATION Mode 0 TRANSMIT Mode * 1 DEMODULATION Mode



Ensure to differentiate the TRANSMIT mode from DEMODULATION 1. mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

2. Changing from one mode to another cannot be performed without disabling the counter/timers.


CTR2(0D)02H

D7	D6	D5	D4	D3	D2	D1	D0	
								 0 P35 is Port Output * 1 P35 is TC16 Output 0 Disable T16 Timeout Interrupt* 1 Enable T16 Timeout Interrupt 0 Disable T16 Data Capture Interrupt** 1 Enable T16 Data Capture Interrupt 0 0 SCLK on T16** 0 0 SCLK/2 on T16 1 0 SCLK/2 on T16 1 0 SCLK/8 on T16 1 SCLK/8 on T16 R 0 No T16 Timeout** -R 1 T16 Timeout Occurs W 0 No Effect W 1 Reset Flag to 0
	*Default setting after reset **Default setting after reset. Not reset with a Stop Mode Recovery.					: with a	TRANSMIT Mode 0 Modulo-N for T16* 1 Single Pass for T16 DEMODULATOR Mode 0 T16 Recognizes Edge 1 T16 Does Not Recognize Edge R 0 T16 Disabled * R 1 T16 Enabled W 0 Stop T16 W 1 Enable T16	

LVD(0D)0CH

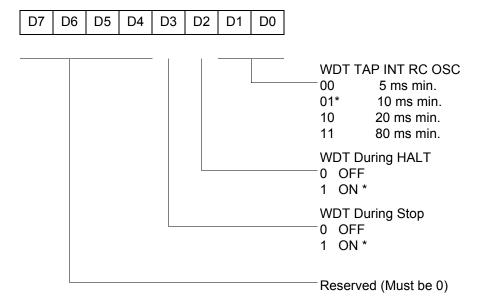
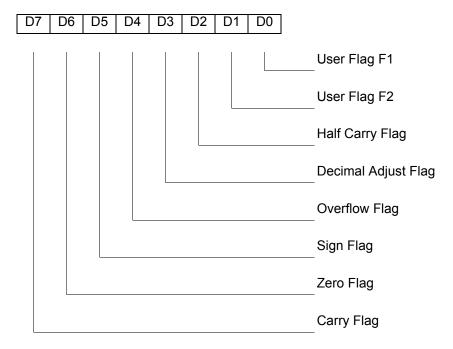

*Default setting after reset.

Figure 41. Voltage Detection Register

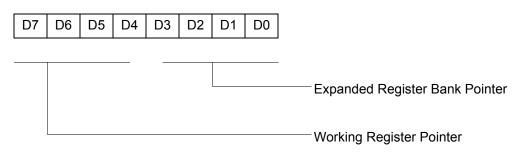
Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both Ports 0 and 1 together might trigger the LVD Flag.

WDTMR(0F)0FH



*Default setting after reset. Not Reset with a Stop Mode Recovery.

Figure 45. Watchdog Timer Register ((0F) 0FH: Write Only)


Crimzon[®] ZLP32300 Product Specification Zilog ₇₃

R252 Flags(FCH)

Figure 52. Flag Register (FCH: Read/Write)

R253 RP(FDH)

Default setting after reset = 0000 0000

Figure 53. Register Pointer (FDH: Read/Write)

Capacitance

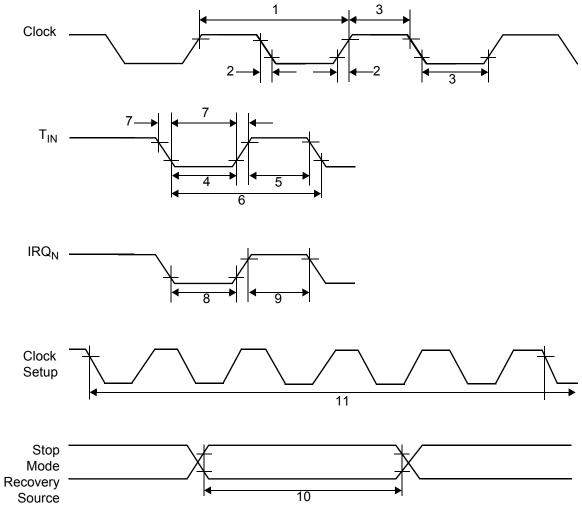
Table 18 lists the capacitances.

Table 18. Capacitance

Parameter	Maximum		
Input capacitance	12 pF		
Output capacitance	12 pF		
I/O capacitance	12 pF		
T_{A} = 25 °C, V_{CC} = GND = 0 V, f = 1.0 MHz, unmeasured pins returned to GND			

DC Characteristics

Table 19 describes the DC characteristics.


Table 19. DC Characteristics

			T _A = 0 °C	to +70	°C			
Symbol	Parameter	V _{cc}	Min	Тур ⁽⁷⁾	Мах	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		3.6	V	See Notes	5
V _{CH}	Clock Input High Voltage	2.0-3.6	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-3.6	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-3.6	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-3.6	V _{SS} -0.3		$0.2 V_{CC}$	V		
V _{OH1}	Output High Voltage	2.0-3.6	V _{CC} -0.4			V	I _{OH} = -0.5 mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-3.6	V _{CC} -0.8			V	I _{OH} = -7 mA	
V _{OL1}	Output Low Voltage	2.0-3.6			0.4	V	I _{OL} = 4.0 mA	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-3.6			0.8	V	I _{OL} = 10 mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-3.6			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-3.6	0		V _{CC} -1.75	V		

AC Characteristics

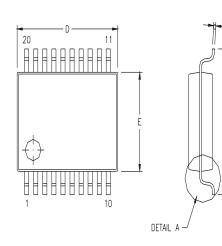


zilog ₈₀

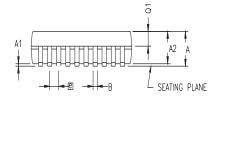
Packaging

Package information for all versions of Crimzon ZLP32300 is displayed in Figure 58 through Figure 65.

P		Q1	-
	╾╔╾ [╡] ╶ ╞╎ ┹ _┣ ╶ ╞ ╎╼	⊷B1	ļ <u> </u>

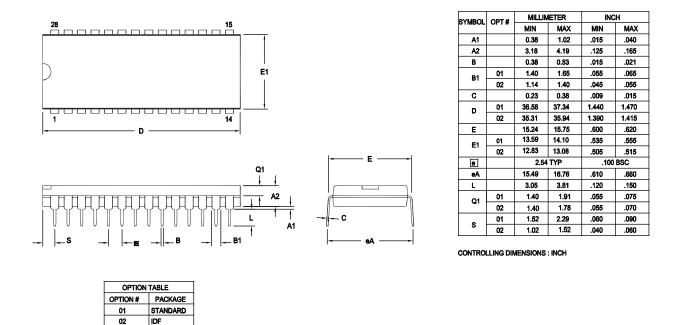

SYMBOL	MILLIN	ETER	INCH		
STMDUL	MIN	MAX	MIN	MAX	
A1	0.38	0.81	.015	.032	
A2	3.25	3.68	.128	.145	
В	0.41	0.51	.016	.020	
B1	1.47	1.57	.058	.062	
С	0.20	0.30	.008	.012	
D	25.65	26.16	1.010	1.030	
E	7.49	8.26	.295	.325	
E1	6.10	6.65	.240	.262	
e	2.54	BSC	.100	BSC	
eA	7.87	9.14	.310	.360	
L	3.18	3.43	.125	.135	
Q1	1.42	1.65	.056	.065	
S	1.52	1.65	.060	.065	

-е-


CONTROLLING DIMENSIONS : INCH

0141001		MILLIMETER		INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.73	1.85	1.98	0.068	0.073	0.078	
A1	0.05	0.13	0.21	0.002	0.005	0.008	
A2	1.68	1.73	1.83	0.066	0.068	0.072	
В	0.25	0.30	0.38	0.010	0.012	0.015	
С	0.13	0.15	0.22	0.005	0.006	0.009	
D	7.07	7.20	7.33	0.278	0.283	0.289	
E	5.20	5.30	5.38	0.205	0.209	0.212	
е		0.65 BSC			0.0256 BSC	,	
Н	7.65	7.80	7.90	0.301	0.307	0.311	
L	0.56	0.75	0.94	0.022	0.030	0.037	
Q1	0.74	0.78	0.82	0.029	0.031	0.032	

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.


DETAIL A

Н

0-8

Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.

INCH

NOM

0.073

0.005

0.068

0.006

0.402

0.209

0.307

0.030

0.0256 TYP

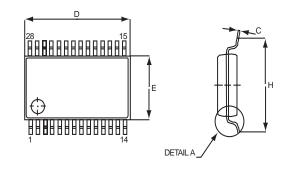
MAX

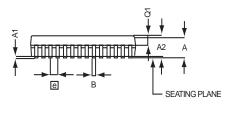
0.078

0.008

0.070

0.015


0.008


0.407

0.212

0.311

0.037

l	
	0-8°
	0-8°

SYMBOL

А

A1

A2

В

С

D

Е

е

Н

L

MIN

1.73

0.05

1.68

0.25

0.09

10.07

5.20

7.65

0.63

CONTROLLING DIMENSIONS: MM LEADS ARE COPLANAR WITHIN .004 INCHES.

MILLIMETER

NOM

1.86

0.13

1.73

_

10.20

5.30

0.65 TYP

7.80

0.75

MAX

1.99

0.21

1.78

0.38

0.20

10.33

5.38

7.90

0.95

MIN

0.068

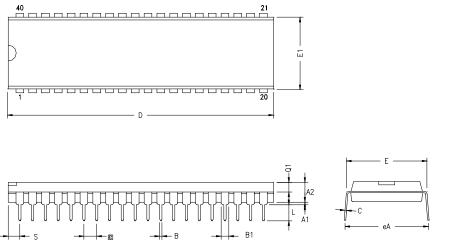
0.002

0.066

0.010

0.004

0.397


0.205

0.301

0.025

SYMBOL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A1	0.51	1.02	.020	.040
A2	3.18	3.94	.125	.155
В	0.38	0.53	.015	.021
B1	1.02	1.52	.040	.060
С	0.23	0.38	.009	.015
D	52.07	52.58	2.050	2.070
E	15.24	15.75	.600	.620
E1	13.59	14.22	.535	.560
e	2.54 TYP		.100 TYP	
eA	15.49	16.76	.610	.660
L	3.05	3.81	.120	.150
Q1	1.40	1.91	.055	.075
S	1.52	2.29	.060	.090

CONTROLLING DIMENSIONS : INCH

Figure 64. 40-Pin PDIP Package Diagram

zilog

88

Device	Part Number	Description			
	ZLP32300P2008G	20-pin PDIP 8 K OTP			
	ZLP32300S2008G	20-pin SOIC 8 K OTP			
	ZLP32300H4804G	48-pin SSOP 4 K OTP			
	ZLP32300P4004G	40-pin PDIP 4 K OTP			
	ZLP32300H2804G	28-pin SSOP 4 K OTP			
	ZLP32300P2804G	28-pin PDIP 4 K OTP			
	ZLP32300S2804G	28-pin SOIC 4 K OTP			
	ZLP32300H2004G	20-pin SSOP 4 K OTP			
	ZLP32300P2004G	20-pin PDIP 4 K OTP			
	ZLP32300S2004G	20-pin SOIC 4 K OTP			
	ZLP323ICE01ZAC*	40-PDIP/48-SSOP Accessory Kit			
		Note: *ZLP323ICE01ZAC has been replaced by an improved versio ZCRMZNICE02ZACG.			
	ZLP128ICE01ZEMG	In-Circuit Emulator			
		Note: *ZLP128ICE01ZEMG has been replaced by an improved version ZCRMZNICE01ZEMG.			
	ZCRMZNICE01ZEMG	Crimzon In-Circuit Emulator			
	ZCRMZN00100KITG	Crimzon In-Circuit Emulator Development Kit			
	ZCRMZNICE01ZACG	20-Pin Accessory Kit			
	ZCRMZNICE02ZACG	40/48-Pin Accessory Kit			

1. Replace C with G for Lead-Free Packaging.

2. Contact <u>www.zilog.com</u> for the die form.

For fast results, contact your local Zilog[®] sales office for assistance in ordering the part(s) desired.

T8 37 description functional 19 general 3 pin 5

Ε

EPROM selectable options 58 expanded register file 20 expanded register file architecture 22 expanded register file control registers 64 flag 73 interrupt mask register 72 interrupt priority register 71 interrupt request register 72 port 0 and 1 mode register 70 port 2 configuration register 69 port 3 mode register 69 port configuration register 69 register pointer 73 stack pointer high register 74 stack pointer low register 74 stop mode recovery register 66 stop mode recovery register 2 67 T16 control register 62 T8 and T16 common control functions register 61 T8/T16 control register 63 TC8 control register 60 watchdog timer register 68

F

features standby modes 2 ZLP32300 2 functional description counter/timer functional blocks 33 CTR(D)01h register 28 CTR0(D)00h register 27 CTR2(D)02h register 31 CTR3(D)03h register 33 expanded register file 20 expanded register file architecture 22 HI16(D)09h register 26 HI8(D)0Bh register 25 L08(D)0Ah register 26 L0I6(D)08h register 26 program memory map 20 **RAM 19** register description 58 register file 24 register pointer 23 register pointer detail 25 SMR2(F)0D1h register 33 stack 25 TC16H(D)07h register 26 TC16L(D)06h register 26 TC8H(D)05h register 27 TC8L(D)04h register 27

G

glitch filter circuitry 34

Η

halt instruction, counter/timer 47

input circuit 33 interrupt block diagram, counter/timer 44 interrupt types, sources and vectors 45

L

low-voltage detection register 58

Μ

memory, program 19 modulo-N mode T16_OUT 41 T8_OUT 37