

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, HLVD, POR, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/zlp32300s2832g

Architectural Overview

Zilog's Crimzon[®] ZLP32300 is an OTP-based member of the MCU family of infrared microcontrollers. With 237 B of general-purpose RAM and 8 KB to 32 KB of OTP, Zilog's CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors.

The Crimzon ZLP32300 architecture (see Figure 1 on page 3) is based on Zilog's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] CPU offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications.

There are three basic address spaces available to support a wide range of configurations:

- 1. Program Memory
- 2. Register File
- 3. Expanded Register File

The register file is composed of 256 Bytes of RAM. It includes four I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D).

To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Crimzon ZLP32300 offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2 on page 4). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages.

All signals with an overline, " $\overline{}$ ", are active Low. For example, B/\overline{W} , in which WORD is active Low, and \overline{B}/W , in which BYTE is active Low.

Power connections use the conventional descriptions listed in Table 1.

Table 1. Power Connections

Connection	Circuit	Device	
Power	V_{CC}	V_{DD}	
Ground	GND	V_{SS}	

PS020823-0208 Architectural Overview

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is displayed in Figure 3 and described in Table 3. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 4. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are displayed in Figure 5, Figure 6, and described in Table 5.

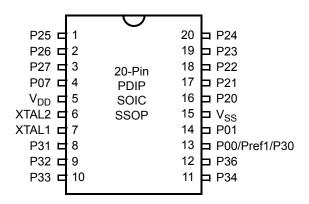


Figure 3. 20-Pin PDIP/SOIC/SSOP Pin Configuration

Table 3. 20-Pin PDIP/SOIC/SSOP Pin Identification

Pin No	Symbol	Function	Direction
1–3	P25-P27	Port 2, Bits 5,6,7	Input/Output
4	P07	Port 0, Bit 7	Input/Output
5	V_{DD}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8–10	P31–P33	Port 3, Bits 1,2,3	Input
11,12	P34, P36	Port 3, Bits 4,6	Output
13	P00/Pref1/P30	Port 0, Bit 0/Analog reference input Port 3 Bit 0	Input/Output for P00 Input for Pref1/P30
14	P01	Port 0, Bit 1	Input/Output
15	V _{SS}	Ground	
16–20	P20-P24	Port 2, Bits 0,1,2,3,4	Input/Output

PS020823-0208 Pin Description

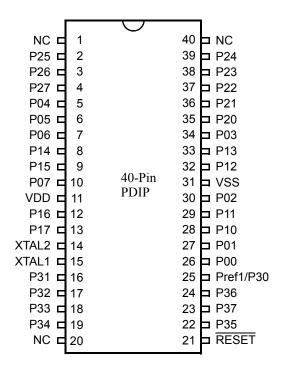


Figure 5. 40-Pin PDIP Pin Configuration

PS020823-0208 Pin Description

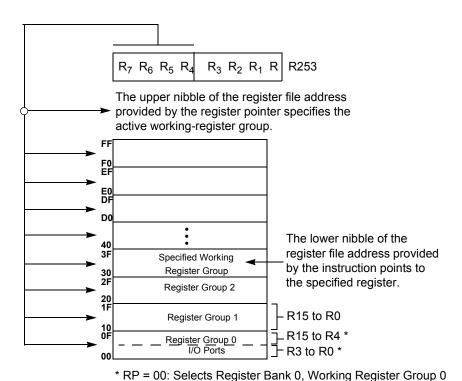


Figure 15. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Timers

T8_Capture_HI—HI8(D)0Bh

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description
T8_Capture_HI	[7:0]	R/W	Captured Data—No Effect

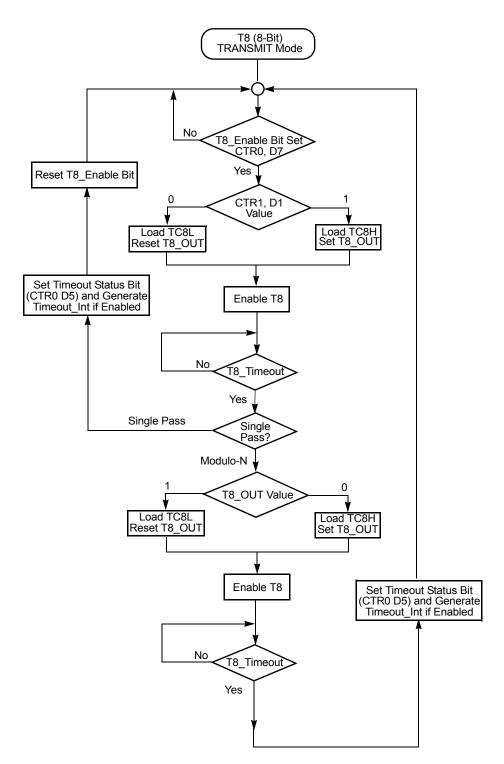


Figure 17. TRANSMIT Mode Flowchart

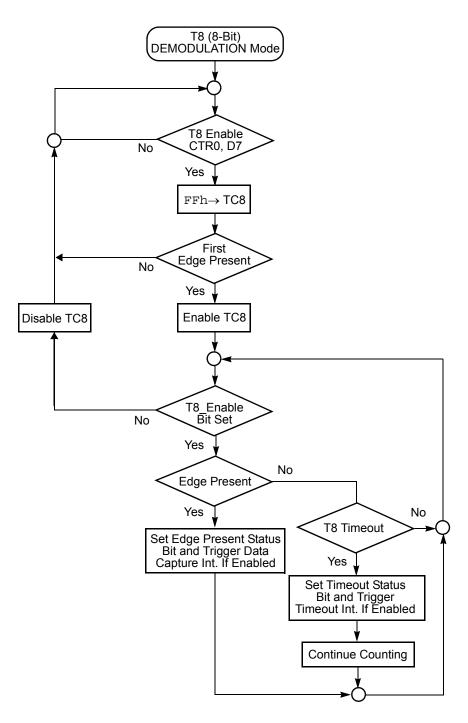


Figure 22. DEMODULATION Mode Flowchart

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

PING-PONG Mode

This operation mode is only valid in TRANSMIT mode. T8 and T16 must be programmed in SINGLE-PASS mode (CTR0, D6; CTR2, D6), and PING-PONG mode must be programmed in CTR1, D3; D2. You can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the Ping-Pong operation, write 00 to bits D3 and D2 of CTR1, see Figure 26.

Note:

Enabling Ping-Pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status Flags before instituting this operation.

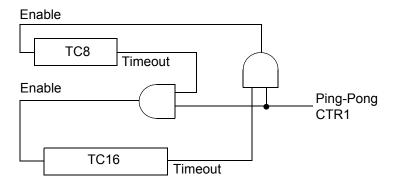
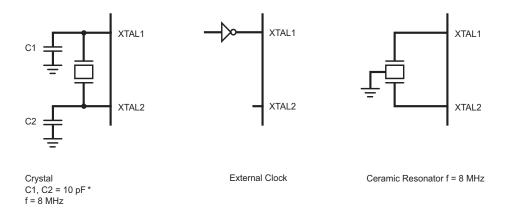



Figure 26. PING-PONG Mode Diagram

Clock

The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to $100~\Omega$. The on-chip oscillator can be driven with a suitable external clock source.

The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors from each pin to ground. The typical capacitor value is 10 pF for 8 MHz. Also check with the crystal supplier for the optimum capacitance.

*Note: preliminary value.

Figure 29. Oscillator Configuration

Zilog's IR MCU supports crystal, resonator, and oscillator. Most resonators have a frequency tolerance of less than $\pm 0.5\%$, which is enough for remote control application. Resonator has a very fast startup time, which is around few hundred microseconds. Most crystals have a frequency tolerance of less than 50 ppm ($\pm 0.005\%$). However, crystal needs longer startup time than the resonator. The large loading capacitance slows down the oscillation startup time. Zilog® suggests not to use more than 10 pF loading capacitor for the crystal. If the stray capacitance of the PCB or the crystal is high, the loading capacitance C1 and C2 must be reduced further to ensure stable oscillation before the TPOR (Power-On Reset time is typically 5-6 ms, see Table 20 on page 79).

For Stop Mode Recovery operation, bit 5 of SMR register allows you to select the Stop Mode Recovery delay, which is the T_{POR} . If Stop Mode Recovery delay is not selected, the MCU executes instruction immediately after it wakes up from the STOP mode. If resonator or crystal is used as a clock source then Stop Mode Recovery delay needs to be selected (bit 5 of SMR = 1).

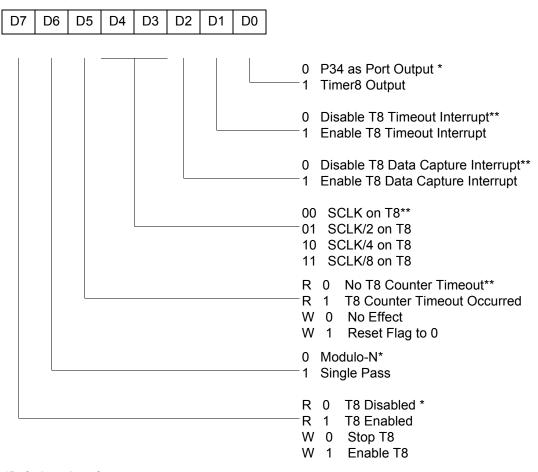
56

WDT Time Select (D0, D1)

This bit selects the WDT time period. It is configured as indicated in Table 15.

Table 15. Watchdog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5 ms min
0	1	10 ms min
1	0	20 ms min
1	1	80 ms min


WDTMR During Halt (D2)

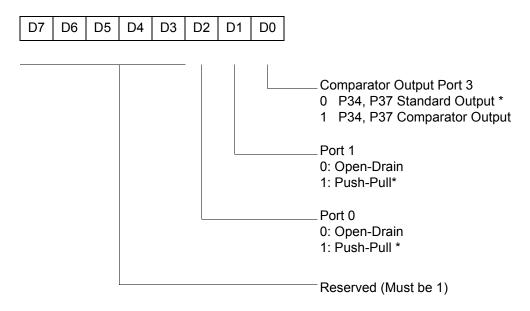
This bit determines whether or not the WDT is active during HALT mode. A 1 indicates active during HALT. The default is 1, see Figure 36.

Expanded Register File Control Registers (0D)

The expanded register file control registers (0D) are displayed in Figure 37 through Figure 41.

CTR0(0D)00H

^{*}Default setting after reset.


Figure 37. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)

^{**}Default setting after reset. Not reset with a Stop Mode Recovery.

Expanded Register File Control Registers (0F)

The expanded register file control registers (0F) are displayed in Figure 42 through Figure 55 on page 74.

PCON(0F)00H

*Default setting after reset

Figure 42. Port Configuration Register (PCON)(0F)00H: Write Only)

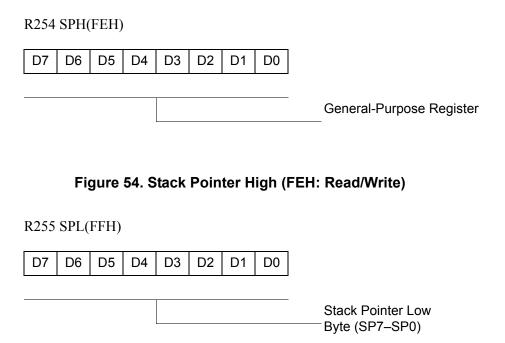


Figure 55. Stack Pointer Low (FFH: Read/Write)

AC Characteristics

Figure 57 and Table 20 describe the Alternating Current (AC) characteristics.

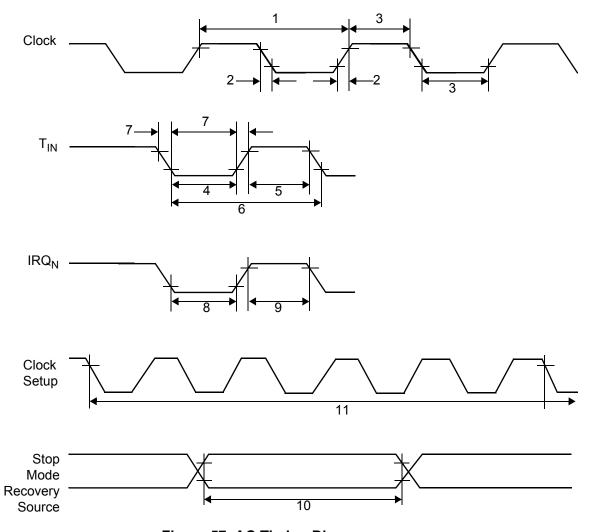
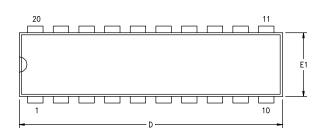
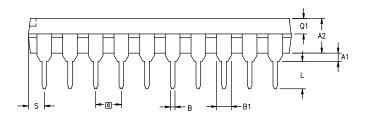



Figure 57. AC Timing Diagram

PS020823-0208 Electrical Characteristics


Packaging

Package information for all versions of Crimzon ZLP32300 is displayed in Figure 58 through Figure 65.

SYMBOL	MILLIN	METER	INC	Н
STWIDOL	MIN	MAX	MIN	MAX
A1	0.38	0.81	.015	.032
A2	3.25	3.68	.128	.145
В	0.41	0.51	.016	.020
B1	1.47	1.57	.058	.062
С	0.20	0.30	.008	.012
D	25.65	26.16	1.010	1.030
E	7.49	8.26	.295	.325
E1	6.10	6.65	.240	.262
e	2.54	BSC	.100	BSC
eA	7.87	9.14	.310	.360
L	3.18	3.43	.125	.135
Q1	1.42	1.65	.056	.065
S	1.52	1.65	.060	.065

CONTROLLING DIMENSIONS : INCH

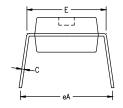
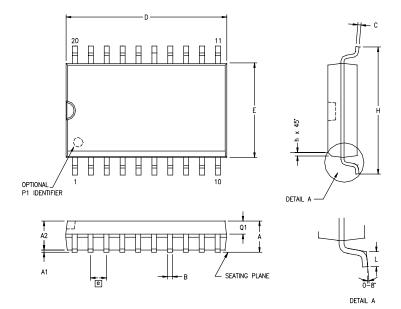
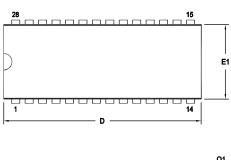
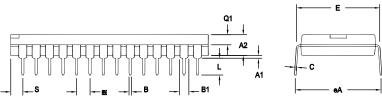



Figure 58. 20-Pin PDIP Package Diagram



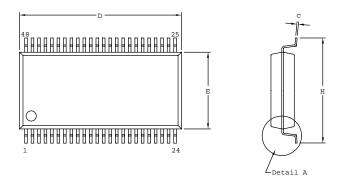

SYMBOL	MILL	MILLIMETER		INCH	
SIMBOL	MIN	MAX	MIN	MAX	
Α	2.40	2.65	.094	.104	
A1	0.10	0.30	.004	.012	
A2	2.24	2.44	.088	.096	
В	0.36	0.46	.014	.018	
С	0.23	0.30	.009	.012	
D	12.60	12.95	.496	.510	
Ε	7.40	7.60	.291	.299	
е	1.27	BSC	.050	BSC	
Н	10.00	10.65	.394	.419	
h	0.30	0.40	.012	.016	
L	0.60	1.00	.024	.039	
Q1	0.97	1.07	.038	.042	

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

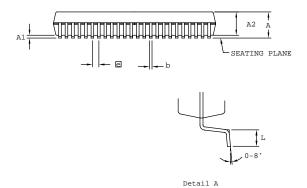
Figure 59. 20-Pin SOIC Package Diagram

INCH

STMBUL	OF 1 #	MIN	MAX	MIN	MAX
A1		0.38	1.02	.015	.040
A2		3.18	4.19	.125	.165
В		0.38	0.53	.015	.021
B1	01	1.40	1.65	.055	.065
ы	02	1.14	1.40	.045	.055
С		0.23	0.38	.009	.015
D	01	36.58	37.34	1.440	1.470
	02	35.31	35.94	1.390	1.415
Е		15.24	15.75	.600	.620
E1	01	13.59	14.10	.535	.555
E1	02	12.83	13.08	.505	.515
0		2.54 TYP		.100	BSC
eA		15.49	16.76	.610	.660
L		3.05	3.81	.120	.150
Q1	01	1.40	1.91	.055	.075
Q.I	02	1.40	1.78	.055	.070
_	01	1.52	2.29	.060	.090
S	02	1.02	1.52	.040	.060


MILLIMETER

CONTROLLING DIMENSIONS: INCH


OPTION TABLE	
OPTION#	PACKAGE
01	STANDARD
02	IDF

Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 62. 28-Pin PDIP Package Diagram

SYMBOL	MILLIMETER		IN	СН
21 MBOL	MIN	MAX	MIN	MAX
A	2.41	2.79	0.095	0.110
A1	0.23	0.38	0.009	0.015
A2	2.18	2.39	0.086	0.094
ь	0.20	0.34	0.008	0.0135
С	0.13	0.25	0.005	0.010
D	15.75	16.00	0.620	0.630
E	7.39	7.59	0.291	0.299
е	0.635 BSC		0.0	25 BSC
Н	10.16	10.41	0.400	0.410
L	0.51	1.016	0.020	0.040

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH

Figure 65. 48-Pin SSOP Package Design

Note: Contact Zilog[®] on the actual bonding diagram and coordinate for chip-on-board assembly.

Device	Part Number	Description
	ZLP32300P2008G	20-pin PDIP 8 K OTP
	ZLP32300S2008G	20-pin SOIC 8 K OTP
	ZLP32300H4804G	48-pin SSOP 4 K OTP
	ZLP32300P4004G	40-pin PDIP 4 K OTP
	ZLP32300H2804G	28-pin SSOP 4 K OTP
	ZLP32300P2804G	28-pin PDIP 4 K OTP
	ZLP32300S2804G	28-pin SOIC 4 K OTP
	ZLP32300H2004G	20-pin SSOP 4 K OTP
	ZLP32300P2004G	20-pin PDIP 4 K OTP
	ZLP32300S2004G	20-pin SOIC 4 K OTP
	ZLP323ICE01ZAC*	40-PDIP/48-SSOP Accessory Kit
	Note: *ZLP323ICE01ZAC h ZCRMZNICE02ZAC0	as been replaced by an improved version, G.
	ZLP128ICE01ZEMG	In-Circuit Emulator
	Note: *ZLP128ICE01ZEMG ZCRMZNICE01ZEM	has been replaced by an improved version, G.
	ZCRMZNICE01ZEMG	Crimzon In-Circuit Emulator
	ZCRMZN00100KITG	Crimzon In-Circuit Emulator Development Kit
	ZCRMZNICE01ZACG	20-Pin Accessory Kit
	ZCRMZNICE02ZACG	40/48-Pin Accessory Kit

Notes

- 1. Replace C with G for Lead-Free Packaging.
- 2. Contact <u>www.zilog.com</u> for the die form.

For fast results, contact your local Zilog® sales office for assistance in ordering the part(s) desired.

PS020823-0208 Ordering Information

Index

Numerics

16-bit counter/timer circuits 40 20-pin DIP package diagram 80 20-pin SSOP package diagram 82 28-pin DIP package diagram 84 28-pin SOIC package diagram 83 28-pin SSOP package diagram 85 40-pin DIP package diagram 85 48-pin SSOP package diagram 86 8-bit counter/timer circuits 36

Α

absolute maximum ratings 75 ACcharacteristics 78 timing diagram 78 address spaces, basic 1 architecture 1 expanded register file 22

В

basic address spaces 1 block diagram, ZLP32300 functional 3

C

capacitance 76 characteristics AC 78 DC 76 clock 46 comparator inputs/outputs 18 configuration port 0 12 port 1 13 port 2 14 port 3 15

port 3 counter/timer 17 counter/timer 16-bit circuits 40 8-bit circuits 36 brown-out voltage/standby 58 clock 46 demodulation mode count capture flowchart 38 demodulation mode flowchart 39 EPROM selectable options 58 glitch filter circuitry 34 halt instruction 47 input circuit 33 interrupt block diagram 44 interrupt types, sources and vectors 45 oscillator configuration 46 output circuit 43 port configuration register 48 resets and WDT 57 SCLK circuit 50 stop instruction 47 stop mode recovery register 49 stop mode recovery register 2 54 stop mode recovery source 52 T16 demodulation mode 41 T16 transmit mode 40 T16 OUT in modulo-N mode 41 T16 OUT in single-pass mode 41 T8 demodulation mode 37 T8 transmit mode 34 T8 OUT in modulo-N mode 37 T8 OUT in single-pass mode 37 transmit mode flowchart 35 voltage detection and flags 59 watch-dog timer mode register 55 watch-dog timer time select 56 CTR(D)01h T8 and T16 Common Functions 29

D

DC characteristics 76 demodulation mode count capture flowchart 38 flowchart 39 T16 41

PS020823-0208 Index

18 37	expanded register file 20
description	expanded register file architecture 22
functional 19	HI16(D)09h register 26
general 3	HI8(D)0Bh register 25
pin 5	L08(D)0Ah register 26
r	L0I6(D)08h register 26
	program memory map 20
E	RAM 19
EPROM	register description 58
selectable options 58	register file 24
expanded register file 20	register pointer 23
expanded register file architecture 22	register pointer detail 25
expanded register file control registers 64	SMR2(F)0D1h register 33
flag 73	stack 25
interrupt mask register 72	TC16H(D)07h register 26
interrupt mask register 72 interrupt priority register 71	TC16L(D)06h register 26
interrupt priority register 71	TC8H(D)05h register 27
port 0 and 1 mode register 70	TC8L(D)04h register 27
port 2 configuration register 69	1002(2)0 1111081001 21
port 3 mode register 69	
port configuration register 69	G
register pointer 73	glitch filter circuitry 34
stack pointer high register 74	gitten inter eneutity 34
stack pointer low register 74	Н
stop mode recovery register 66	
stop mode recovery register 2 67	halt instruction, counter/timer 47
T16 control register 62	
T8 and T16 common control functions register	
61	l
T8/T16 control register 63	input circuit 33
TC8 control register 60	interrupt block diagram, counter/timer 44
watchdog timer register 68	interrupt types, sources and vectors 45
_	_
F	L
features	low-voltage detection register 58
standby modes 2	-
ZLP32300 2	
functional description	M
counter/timer functional blocks 33	memory, program 19
CTR(D)01h register 28	modulo-N mode
CTR0(D)00h register 27	T16 OUT 41
CTR2(D)02h register 31	T8 OUT 37
CTR3(D)03h register 33	10_001 01

PS020823-0208 Index