

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C52
Core Size	8-Bit
Speed	24MHz
Connectivity	EBI/EMI, Serial Port
Peripherals	POR, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/w78l516a24pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. GENERAL DESCRIPTION

The W77L516A is a fast 8051 compatible microcontroller with a redesigned processor core without wasted clock and memory cycles. As a result, it executes every 8051 instruction faster than the original 8051 for the same crystal speed. Typically, the instruction executing time of W77L516A is 1.5 to 3 times faster then that of traditional 8051, depending on the type of instruction. In general, the overall performance is about 2.5 times better than the original for the same crystal speed. Giving the same throughput with lower clock speed, power consumption has been improved. Consequently, the W77L516A is a fully static CMOS design; it can also be operated at a lower crystal clock. The W77L516A contains In-System Programmable (ISP) 64 KB AP Flash EPROM; 4KB LD Flash EPROM for loader program; operating voltage from 2.7V to 5.5V; on-chip 1 KB MOVX SRAM; two power saving modes.

2. FEATURES

- 8-bit CMOS microcontroller
- High speed architecture of 4 clocks/machine cycle runs up to 20 MHz
- Pin compatible with standard 80C52
- Instruction-set compatible with MCS-51
- Four 8-bit I/O Ports; Port 0 has internal pull-up resisters enabled by software
- One extra 4-bit I/O port and Wait State control signal (available on 44-pin PLCC/QFP package)
- Three 16-bit Timers
- 12 interrupt sources with two levels of priority
- On-chip oscillator and clock circuitry
- Two enhanced full duplex serial ports
- 64KB In-System Programmable Flash EPROM(APFLASH)
- 4KB Auxiliary Flash EPROM for loader program (LDFLASH)
- 256 bytes scratch-pad RAM
- 1 KB on-chip SRAM for MOVX instruction
- Programmable Watchdog Timer
- Software Reset
- Dual 16-bit Data Pointers
- Software programmable access cycle to external RAM/peripherals
- Packages:
 - Lead Free(RoHs) DIP 40: W77L516A25DL
 - Lead Free(RoHs) PLCC 44: W77L516A25PL
 - Lead Free(RoHs) QFP 44: W77L516A25FL

A brief description of the SFRs now follows.

PORT 0

Bit:	7	6	5	4	3	2	1	0
	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
	_			18/	A 731	P		

Mnemonic: P0

Address: 80h

Port 0 is an open-drain bi-directional I/O port. This port also provides a multiplexed low order address/data bus during accesses to external memory. Besides, it has internal pull-up resisters enabled by setting POUP of P4CSIN (A2H) to high.

STACK POINTER

Bit:	7	6	5	4	3	2	21	0
	SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
Mnemoni	c: SP				ŀ	Address: 8	31h	26

The Stack Pointer stores the Scratchpad RAM address where the stack begins. In other words, it always points to the top of the stack.

DATA POINTER LOW

Bit:	7	6	5	4	3	2	1	0	
	DPL.7	DPL.6	DPL.5	DPL.4	DPL.3	DPL.2	DPL.1	DPL.0	
Mnemon	ic: DPL				Address: 82h				
This is the low byte of the standard 8052 16-bit data pointer.									
DATA POINTER HIGH									
Bit:	7	6	5	4	3	2	1	0	
	DPH.7	DPH.6	DPH.5	DPH.4	DPH.3	DPH.2	DPH.1	DPH.0	
Mnemon	ic: DPH				ŀ	Address: 8	33h		
This is the high byte of the	e standard	8052 16-	bit data po	ointer.					
DATA POINTER LOW1									
Bit:	7	6	5	4	3	2	1	0	
	DPL1.7	DPL1.6	DPL1.5	DPL1.4	DPL1.3	DPL1.2	DPL1.1	DPL1.0	

Mnemonic: DPL1

Address: 84h

Publication Release Date: December 4, 2008 Revision A9

- 11 -

This is the low byte of the new additional 16-bit data pointer that has been added to the W77L516A. The user can switch between DPL, DPH and DPL1, DPH1 simply by setting register DPS = 1. The instructions that use DPTR will now access DPL1 and DPH1 in place of DPL and DPH. If they are not required they can be used as conventional register locations by the user.

DATA POINTER HIGH1

Mnemonic: DPH1

Address: 85h

This is the high byte of the new additional 16-bit data pointer that has been added to the W77L516A. The user can switch between DPL, DPH and DPL1, DPH1 simply by setting register DPS = 1. The instructions that use DPTR will now access DPL1 and DPH1 in place of DPL and DPH. If they are not required they can be used as conventional register locations by the user.

DATA POINTER SELECT

Mnemonic: DPS

Address: 86h

DPS.0: This bit is used to select either the DPL,DPH pair or the DPL1,DPH1 pair as the active Data Pointer. When set to 1, DPL1, DPH1 will be selected, otherwise DPL,DPH will be selected.

DPS.1-7:These bits are reserved, but will read 0.

POWER CONTROL

Bit:	7	6	5	4	3	2	1	0
	SM0D	SMOD0	-	-	GF1	GF0	PD	IDL

Mnemonic: PCON

Address: 87h

- SMOD : This bit doubles the serial port baud rate in mode 1, 2, and 3 when set to 1.
- SMOD0: Framing Error Detection Enable: When SMOD0 is set to 1, then SCON.7(SCON1.7) indicates a Frame Error and acts as the FE(FE_1) flag. When SMOD0 is 0, then SCON.7(SCON1.7) acts as per the standard 8052 function.
- GF1-0: These two bits are general purpose user flags.
- PD: Setting this bit causes the W77L516A to go into the POWER DOWN mode. In this mode all the clocks are stopped and program execution is frozen.
- IDL: Setting this bit causes the W77L516A to go into the IDLE mode. In this mode the clocks to the CPU are stopped, so program execution is frozen. But the clock to the serial, timer and interrupt blocks is not stopped, and these blocks continue operating.

SERIAL PORT CONTROL

Bit:	7	6	5	4	3	2	1	0
;	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI

Mnemonic: SCON

Address: 98h

SM0/FE: Serial port 0, Mode 0 bit or Framing Error Flag: The SMOD0 bit in PCON SFR determines whether this bit acts as SM0 or as FE. The operation of SM0 is described below. When used as FE, this bit will be set to indicate an invalid stop bit. This bit must be manually cleared in software to clear the FE condition.

SM1: Serial port Mode bit 1:

SM0	SM1	Mode	Description	Length	Baud rate
0	0	0	Synchronous	8	4/12 Tclk
0	1	1	Asynchronous	10	Variable
1	0	2	Asynchronous	11	64/32 Tclk
1	1	3	Asynchronous	11	Variable

- SM2: Multiple processors communication. Setting this bit to 1 enables the multiprocessor communication feature in mode 2 and 3. In mode 2 or 3, if SM2 is set to 1, then RI will not be activated if the received 9th data bit (RB8) is 0. In mode 1, if SM2 = 1, then RI will not be activated if a valid stop bit was not received. In mode 0, the SM2 bit controls the serial port clock. If set to 0, then the serial port runs at a divide by 12 clock of the oscillator. This gives compatibility with the standard 8052. When set to 1, the serial clock become divide by 4 of the oscillator clock. This results in faster synchronous serial communication.
- REN: Receive enable: When set to 1 serial reception is enabled, otherwise reception is disabled.
- TB8: This is the 9th bit to be transmitted in modes 2 and 3. This bit is set and cleared by software as desired.
- RB8: In modes 2 and 3 this is the received 9th data bit. In mode 1, if SM2 = 0, RB8 is the stop bit that was received. In mode 0 it has no function.
- TI: Transmit interrupt flag: This flag is set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in all other modes during serial transmission. This bit must be cleared by software.
- RI: Receive interrupt flag: This flag is set by hardware at the end of the 8th bit time in mode 0, or halfway through the stop bits time in the other modes during serial reception. However the restrictions of SM2 apply to this bit. This bit can be cleared only by software.

SERIAL DATA BUFFER

Bit:	7	6	5	4	3	2	1	0
	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0

Mnemonic: SBUF

Address: 99h

SBUF.7-0: Serial data on the serial port 0 is read from or written to this location. It actually consists of two separate internal 8-bit registers. One is the receive resister, and the other is the transmit buffer. Any read access gets data from the receive data buffer, while write access is to the transmit data buffer.

SERIAL DATA BUFFER 1

Mnemonic: SBUF1

Bit:	7	6	5	4	3	2	1	0
	SBUF1.7	SBUF1.6	SBUF1.5	SBUF1.4	SBUF1.3	SBUF1.2	SBUF1.1	SBUF1.0
				11/2				

SBUF1.7-0: Serial data of the serial port 1 is read from or written to this location. It actually consists of two separate 8-bit registers. One is the receive resister, and the other is the transmit buffer. Any read access gets data from the receive data buffer, while write accesses are to the transmit data buffer.

WSCON

WS: Wait State Signal Enable. Setting this bit enables the \overline{WAIT} signal on P4.0. The device will sample the wait state control signal \overline{WAIT} via P4.0 during MOVX instruction. This bit is time access protected.

TA REG	С7Н	
WSCON	REG C2H	
CKCON	REG 8EH	
MOV	TA, #AAH	
MOV	TA, #55H	
ORL	WSCON, #10000000B ; Set WS bit and stretch value = 0 to enable wait signal.	

POWER MANAGEMENT REGISTER

Bit:	7	6	5	4	3	2	1	0
	CD1	CD0	SWB	-	-	ALE-OFF	-	DME0

Mnemonic: PMR

Address: C4h

Address: C1h

CD1, CD0: Clock Divide Control. These bit selects the number of clocks required to generate one machine cycle. There are three modes including divide by 4, 64 or 1024. Switching between modes must first go back divide by 4 mode. For instance, to go from 64 to 1024 locks/machine cycle the device must first go from 64 to 4 clocks/machine cycle, and then from 4 to 1024 clocks/machine cycle.

CD1,	CD0	CLOCKS/MACHINE CYCLE
050	0	Reserved
0 🔨	1/1	4
1	0	64
1	101	1024

- 25 -

- SWB: Switchback Enable. Setting this bit allows an enabled external interrupt or serial port activity to force the CD1,CD0 to divide by 4 state (0,1). The device will switch modes at the start of the jump to interrupt service routine while a external interrupt is enabled and actually recongnized by microcontroller. While a serial port reception, the switchback occurs at the start of the instruction following the falling edge of the start bit.
- ALEOFF: This bit disables the expression of the ALE signal on the device pin during all on-board program and data memory accesses. External memory accesses will automatically enable ALE independent of ALEOFF.
 - 0 = ALE expression is enable; 1 = ALE expression is disable
- DME0: This bit determines the on-chip MOVX SRAM to be enabled or disabled. Set this bit to 1 will enable the on-chip 1KB MOVX SRAM.

STATUS REGISTER

	SITA	011010
	SPTAO	SPRAG
2	10	0
	2	2 1 1 SPRA1 SPTA0

Mnemonic: STATUS

Address: C5h

- HIP: High Priority Interrupt Status. When set, it indicates that software is servicing a high priority interrupt. This bit will be cleared when the program executes the corresponding RETI instruction.
- LIP: Low Priority Interrupt Status. When set, it indicates that software is servicing a low priority interrupt. This bit will be cleared when the program executes the corresponding RETI instruction.
- XTUP: Crystal Oscillator Warm-up Status. when set, this bit indicates CPU has detected clock to be ready. Each time the crystal oscillator is restarted by exit from power down mode, hardware will clear this bit. This bit is set to 1 after a power-on reset.
- SPTA1: Serial Port 1 Transmit Activity. This bit is set during serial port 1 is currently transmitting data. It is cleared when TI_1 bit is set by hardware. Changing the Clock Divide Control bits CD0, CD1 will be ignored when this bit is set to 1 and SWB = 1.
- SPRA1: Serial Port 1 Receive Activity. This bit is set during serial port 1 is currently receiving a data. It is cleared when RI_1 bit is set by hardware. Changing the Clock Divide Control bits CD0, CD1 will be ignored when this bit is set to 1 and SWB = 1.
- SPTA0: Serial Port 0 Transmit Activity. This bit is set during serial port 0 is currently transmitting data. It is cleared when TI bit is set by hardware. Changing the Clock Divide Control bits CD0, CD1 will be ignored when this bit is set to 1 and SWB = 1.
- SPRA0: Serial Port 0 Receive Activity. This bit is set during serial port 0 is currently receiving a data. It is cleared when RI bit is set by hardware. Changing the Clock Divide Control bits CD0, CD1 will be ignored when this bit is set to 1 and SWB = 1.

bit is 1, then timer 2 captures will occur when a falling edge is detected on T2EX pin if EXEN2 = 1.

TIMER 2 MODE CONTROL

Bit:	7	6	5	4	3	2	1	0
	HC5	HC4	HC3	HC2	T2CR	-	T2OE	DCEN
				1	1			

Mnemonic: T2MOD

Address: C9h

- HC5: Hardware Clear INT5 flag. Setting this bit allows the flag of external interrupt 5 to be automatically cleared by hardware while entering the interrupt service routine.
- HC4: Hardware Clear INT4 flag. Setting this bit allows the flag of external interrupt 4 to be automatically cleared by hardware while entering the interrupt service routine.
- HC3: Hardware Clear INT3 flag. Setting this bit allows the flag of external interrupt 3 to be automatically cleared by hardware while entering the interrupt service routine.
- HC3: Hardware Clear INT2 flag. Setting this bit allows the flag of external interrupt 3 to be automatically cleared by hardware while entering the interrupt service routine.
- T2CR: Timer 2 Capture Reset. In the Timer 2 Capture Mode this bit enables/disables hardware automatically reset Timer 2 while the value in TL2 and TH2 have been transferred into the capture register.
- T2OE: Timer 2 Output Enable. This bit enables/disables the Timer 2 clock out function.
- DCEN: Down Count Enable: This bit, in conjunction with the T2EX pin, controls the direction that timer 2 counts in 16-bit auto-reload mode.

TIMER 2 CAPTURE LSB

Bit:	7	6	5	4	3	2	1	0
	RCAP2L.7	RCAP2L.6	RCAP2L.5	RCAP2L.4	RCAP2L.3	RCAP2L.2	RCAP2L.1	RCAP2L.0

Mnemonic: RCAP2L

Address: CAh

RCAP2L:This register is used to capture the TL2 value when a timer 2 is configured in capture mode. RCAP2L is also used as the LSB of a 16-bit reload value when timer 2 is configured in autoreload mode.

TIMER 2 CAPTURE MSB

Bit:	7	6	5	4	3	2	1	0
	RCAP2H.7	RCAP2H.6	RCAP2H.5	RCAP2H.4	RCAP2H.3	RCAP2H.2	RCAP2H.1	RCAP2H.0
	Mnemonic: RCAP2H					Address	: CBh	

RCAP2H: This register is used to capture the TH2 value when a timer 2 is configured in capture mode. RCAP2H is also used as the MSB of a 16-bit reload value when timer 2 is configured in auto-reload mode.

- 31 -

- PX3: External Interrupt 3 Priority. 0 = Low priority, 1 = High priority.
- PX2: External Interrupt 2 Priority. 0 = Low priority, 1 = High priority.

Figure 8. Data Memory Write with Stretch Value = 0

Figure 9. Data Memory Write with Stretch Value = 1

Publication Release Date: December 4, 2008 Revision A9

nuvoton

Figure 10. Data Memory Write with Stretch Value = 2

Wait State Control Signal

Either with the software using stretch value to change the required machine cycle of MOVX instruction, the W77L516A provides another hardware signal WAIT to implement the wider duration of external data access timing. This wait state control signal is the alternate function of P4.0 such that it can only be invoked to 44-pin PLCC/QFP package type. The wait state control signal can be enabled by setting WS (WSCON.7) bit. When enabled, the setting of stretch value decides the minimum length of MOVX instruction cycle and the device will sample the WAIT pin at each C3 state before the rising edge of read/write strobe signal during MOVX instruction. Once this signal being recognized, one more machine cycle (wait state cycle) will be inserted into next cycle. The inserted wait state cycles are unlimited, so the MOVX instruction cycle will end in which the wait state control signal is deactivated. Using wait state control signal allows a dynamically access timing to a selected external peripheral. The WS bit is accessed by the Timed Access Protection procedure.

Set WS bit and stretch value = 0 to enable wait signal.

nuvoton

The Timer 0 and 1 Interrupts are generated by the TF0 and TF1 flags. These flags are set by the overflow in the Timer 0 and Timer 1. The TF0 and TF1 flags are automatically cleared by the hardware when the timer interrupt is serviced. The Timer 2 interrupt is generated by a logical OR of the TF2 and the EXF2 flags. These flags are set by overflow or capture/reload events in the timer 2 operation. The hardware does not clear these flags when a timer 2 interrupt is executed. Software has to resolve the cause of the interrupt between TF2 and EXF2 and clear the appropriate flag.

The Watchdog timer can be used as a system monitor or a simple timer. In either case, when the timeout count is reached, the Watchdog timer interrupt flag WDIF (WDCON.3) is set. If the interrupt is enabled by the enable bit EIE.4, then an interrupt will occur.

The Serial block can generate interrupts on reception or transmission. There are two interrupt sources from the Serial block, which are obtained by the RI and TI bits in the SCON SFR and RI 1 and TI 1 in the SCON1 SFR. These bits are not automatically cleared by the hardware, and the user will have to clear these bits using software.

All the bits that generate interrupts can be set or reset by hardware, and thereby software initiated interrupts can be generated. Each of the individual interrupts can be enabled or disabled by setting or clearing a bit in the IE SFR. IE also has a global enable/disable bit EA, which can be cleared to disable all the interrupts, except PFI, at once.

Priority Level Structure

There are three priority levels for the interrupts, highest, high and low. The interrupt sources can be individually set to either high or low levels. Naturally, a higher priority interrupt cannot be interrupted by a lower priority interrupt. However there exists a pre-defined hierarchy amongst the interrupts themselves. This hierarchy comes into play when the interrupt controller has to resolve simultaneous requests having the same priority level. This hierarchy is defined as shown below; the interrupts are numbered starting from the highest priority to the lowest.

Table 7. Priority structure of interrupts

SOURCE	FLAG	PRIORITY LEVEL				
External Interrupt 0	IE0	1(highest)				
Timer 0 Overflow	TF0	2				
External Interrupt 1	IE1	3				
Timer 1 Overflow	TF1	4				
Serial Port	RI + TI	5				
Timer 2 Overflow	TF2 + EXF2	6				
Serial Port 1	RI_1 + TI_1	7				
External Interrupt 2	IE2	8				
External Interrupt 3	IE3	9				
External Interrupt 4	IE4	10				
External Interrupt 5	IE5	11				
Watchdog Timer	WDIF	12 (lowest)				
- 46 -						

Interrupt Response Time

The response time for each interrupt source depends on several factors, such as the nature of the interrupt and the instruction underway. In the case of external interrupts $\overline{\text{INT0}}$ to $\overline{\text{INT5}}$, they are sampled at C3 of every machine cycle and then their corresponding interrupt flags IEx will be set or reset. The Timer 0 and 1 overflow flags are set at C3 of the machine cycle in which overflow has occurred. These flag values are polled only in the next machine cycle. If a request is active and all three conditions are met, then the hardware generated LCALL is executed. This LCALL itself takes four machine cycles to be completed. Thus there is a minimum time of five machine cycles between the interrupt flag being set and the interrupt service routine being executed.

A longer response time should be anticipated if any of the three conditions are not met. If a higher or equal priority is being serviced, then the interrupt latency time obviously depends on the nature of the service routine currently being executed. If the polling cycle is not the last machine cycle of the instruction being executed, then an additional delay is introduced. The maximum response time (if no other interrupt is in service) occurs if the W77L516A is performing a write to IE, IP, EIE or EIP and then executes a MUL or DIV instruction. From the time an interrupt source is activated, the longest reaction time is 12 machine cycles. This includes 1 machine cycle to detect the interrupt, 2 machine cycles to complete the IE, IP, EIE or EIP access, 5 machine cycles to complete the MUL or DIV instruction and 4 machine cycles to complete the hardware LCALL to the interrupt vector location.

Thus in a single-interrupt system the interrupt response time will always be more than 5 machine cycles and not more than 12 machine cycles. The maximum latency of 12 machine cycle is 48 clock cycles. Note that in the standard 8051 the maximum latency is 8 machine cycles which equals 96 machine cycles. This is a 50% reduction in terms of clock periods.

- 48 -

used as a timer, the time-base may be either clock cycles/12 or clock cycles/4 as selected by the bits TxM of the CKCON SFR.

The 16 states of the counter effectively divide the bit time into 16 slices. The bit detection is done on a best of three basis. The bit detector samples the RxD pin, at the 8th, 9th and 10th counter states. By using a majority 2 of 3 voting system, the bit value is selected. This is done to improve the noise rejection feature of the serial port. If the first bit detected after the falling edge of RxD pin is not 0, then this indicates an invalid start bit, and the reception is immediately aborted. The serial port again looks for a falling edge in the RxD line. If a valid start bit is detected, then the rest of the bits are also detected and shifted into the SBUF.

After shifting in 8 data bits, there is one more shift to do, after which the SBUF and RB8 are loaded and RI is set. However certain conditions must be met before the loading and setting of RI can be done.

- 1. RI must be 0 and
- 2. Either SM2 = 0, or the received stop bit = 1.

If these conditions are met, then the stop bit goes to RB8, the 8 data bits go into SBUF and RI is set. Otherwise the received frame may be lost. After the middle of the stop bit, the receiver goes back to looking for a 1-to-0 transition on the RxD pin.

Figure 21. Serial Port Mode 1

MODE 2

This mode uses a total of 11 bits in asynchronous full-duplex communication. The functional description is shown in the figure below. The frame consists of one start bit (0), 8 data bits (LSB first), a programmable 9th bit (TB8) and a stop bit (0). The 9th bit received is put into RB8. The baud rate is programmable to 1/32 or 1/64 of the oscillator frequency, which is determined by the SMOD bit in PCON SFR. Transmission begins with a write to SBUF. The serial data is brought out on to TxD pin at C1 following the first roll-over of the divide by 16 counter. Thus the transmission is synchronized to the

MODE 3

This mode is similar to Mode 2 in all respects, except that the baud rate is programmable. The user must first initialize the Serial related SFR SCON before any communication can take place. This involves selection of the Mode and baud rate. The Timer 1 should also be initialized if modes 1 and 3 are used. In all four modes, transmission is started by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. This will generate a clock on the TxD pin and shift in 8 bits on the RxD pin. Reception is initiated in the other modes by the incoming start bit if REN = 1. The external device will start the communication by transmitting the start bit.

Figure 23. Serial Port Mode 3

Table 10. Serial Ports Mo	des
---------------------------	-----

SM1	SM0	MODE	TYPE	BAUD CLOCK	FRAME SIZE	START BIT	STOP BIT	9TH BIT FUNCTION
0	0	0	Synch.	4 or 12 TCLKS	8 bits	No	No	None
0	1	5	Asynch.	Timer 1 or 2	10 bits	1	1	None
1	0	2	Asynch.	32 or 64 TCLKS	11 bits	1	1	0, 1
1	1	3	Asynch.	Timer 1 or 2	11 bits	1	1	0, 1

15. IN-SYSTEM PROGRAMMING

15.1 The Loader Program locates at LDFLASH memory.

CPU is Free Run at APFLASH memory. CHPCON register had been set #03H value before CPU has entered idle state. CPU will switch to LDFLASH memory and execute a reset action. H/W reboot mode will switch to LDFLASH memory, too. Set SFRCN register where it locates at user's loader program to update APFLASH memory. Set a SWRESET (CHPCON = #83H) to switch back APFLASH after CPU has updated APFLASH program. CPU will restart to run program from reset state.

15.2 The Loader Program locates at APFLASH memory.

CPU is Free Run at APFLASH memory. CHPCON register had been set #01H value before CPU has entered idle state. Set SFRCN register to update LDFLASH. CPU will continue to run user's APFLASH program after CPU has updated program. Please refer demonstrative code to understand other detail description.

18.3 AC Characteristics

Note: Duty cycle is 50%.

External Clock Characteristics

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	NOTES
Clock High Time	t _{CHCX}	25	-	-	nS	20
Clock Low Time	t _{CLCX}	25	-	-	nS	RO1
Clock Rise Time	t _{CLCH}	-	-	10	nS	000
Clock Fall Time	t _{CHCL}	-	-	10	nS	1 25

AC Specification

PARAMETER	SYMBOL	VARIABLE CLOCK MIN.	VARIABLE CLOCK MAX.	UNITS
Oscillator Frequency	1/t _{CLCL}	0	20	MHz
ALE Pulse Width	t _{LHLL}	1.5t _{CLCL} - 5		nS
Address Valid to ALE Low	t _{AVLL}	0.5t _{CLCL} - 5		nS
Address Hold After ALE Low	t _{LLAX1}	0.5t _{CLCL} - 5		nS
Address Hold After ALE Low for MOVX Write	t _{LLAX2}	0.5t _{CLCL} - 5		nS
ALE Low to Valid Instruction In	t _{LLIV}		2.5t _{CLCL} - 20	nS
ALE Low to PSEN Low	t _{LLPL}	0.5t _{CLCL} - 5		nS
PSEN Pulse Width	t _{PLPH}	2.0t _{CLCL} - 5		nS
PSEN Low to Valid Instruction In	t _{PLIV}		2.0t _{CLCL} - 20	nS
Input Instruction Hold After PSEN	t _{PXIX}	0		nS
Input Instruction Float After PSEN	t _{PXIZ}		t _{CLCL} - 5	nS
Port 0 Address to Valid Instr. In	t _{AVIV1}		3.0t _{CLCL} - 20	nS
Port 2 Address to Valid Instr. In	t _{AVIV2}		3.5t _{CLCL} - 20	nS
PSEN Low to Address Float	t _{PLAZ}	0		nS
Data Hold After Read	t _{RHDX}	0		nS
Data Float After Read	t _{RHDZ}		t _{CLCL} - 5	nS
RD Low to Address Float	t _{RLAZ}		0.5t _{CLCL} - 5	nS

- 75 -

MOV TA,#55H	
MOV CHPCON, #03H	; CHPCON = 03H, ENTER IN-SYSTEM PROGRAMMING MODE
MOV SFRCN, #0H	
MOV TCON, #00H	; TR = 0 TIMER0 STOP
MOV IP, #00H	: IP = 00H
MOV IE, #82H	TIMER0 INTERRUPT ENABLE FOR WAKE-UP FROM IDLE MODE
MOV R6, #F0H	; TL0 = F0H
MOV R7, #FFH	; TH0 = FFH
MOV TL0, R6	
MOV THO, R7	
MOV TMOD, #01H	; TMOD = 01H, SET TIMER0 A 16-BIT TIMER
MOV TCON, #10H	; TCON = 10H, TR0 = 1,GO
MOV PCON, #01H	; ENTER IDLE MODE FOR LAUNCHING THE IN-SYSTEM PROGRAMMING
***********	***************************************

;* Normal mode 64KB APFLASH program: depending user's application

NORMAL_MODE:

; User's application program

EXAMPLE 2:

.....

.chip 8052 .RAMCHK OFF .symbols

CHPCON	EQU	9FH
ТА	EQU	C7H
SFRAL	EQU	ACH
SFRAH	EQU	ADH
SFRFD	EQU	AEH
SFRCN	EQU	AFH

ORG 000H LJMP 100H

; JUMP TO MAIN PROGRAM

* 1. TIMER0 SERVICE VECTOR ORG = 0BH

ORG 000BH

CLR TR0 ; TR MOV TL0, R6 MOV TH0, R7

; TR0 = 0, STOP TIMER0

RETI

* 4KB LDFLASH MAIN PROGRAM

ORG 100H

MAIN_4K:

* PROGRAMMING COMPLETLY, SOFTWARE RESET CPU

MOV TA, #AAH MOV TA, #55H MOV CHPCON, #83H ; SOFTWARE RESET. CPU will restart from APFLASH

ERROR_64K:

DJNZ R4, UPDATE_64K ; IF ERROR OCCURS, REPEAT 3 TIMES.

; IN-SYST PROGRAMMING FAIL, USER'S PROCESS TO DEAL WITH IT.

