

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are **Embedded - System On Chip (SoC)**?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	512KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	80MHz
Primary Attributes	ProASIC®3 FPGA, 500K Gates, 11520 D-Flip-Flops
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f500m3g-fg484m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Microsemi

Military Grade SmartFusion Customizable System-on-Chip (cSoC)

SmartFusion cSoC Family Product Table

SmartFusion [®] cSoC		A2F060	A2F500
FPGA Fabric	System Gates	vstem Gates 60,000 5	
	Tiles (D-flip-flops)	1,536	11,520
	RAM Blocks (4,608 bits)	8	24
Microcontroller Subsystem (MSS)	Flash (Kbytes)	128	512
	SRAM (Kbytes)	16	64
	Cortex-M3 with memory protection unit (MPU)	Ye	S
	10/100 Ethernet MAC	No	Yes
	External Memory Controller (EMC)	24-bit address	s,16-bit data
	DMA	8 C	h
	l ² C 2		
	SPI 2		
	16550 UART	2	
	32-Bit Timer	2	
	PLL	1	2 ¹
	32 KHz Low Power Oscillator	1	
	100 MHz On-Chip RC Oscillator	n-Chip RC Oscillator 1	
	Main Oscillator (32 KHz to 20 MHz)	1	
Programmable Analog	ADCs (8-/10-/12-bit SAR)	1	3 ³
	DACs (12-bit sigma-delta)	1	3 ³
	Signal Conditioning Blocks (SCBs)	1	5 ³
	Comparator ²	2	10 ³
	Current Monitors ²	1	5 ³
	Temperature Monitors ²	1	5 ³
	Bipolar High Voltage Monitors ²	2	10 ³

Notes:

 Two PLLs are available in FG484 (one PLL in FG256).
 These functions share I/O pins and may not all be available at the same time. See the "Analog Front-End Overview" section in the SmartFusion Programmable Analog User's Guide for details.

3. Available on FG484 only.

Package I/Os: MSS + FPGA I/Os

Device	A2F060	A2F	500
Package	FG256	FG256	FG484
Direct Analog Inputs	11	8	12
Shared Analog Inputs ¹	4	16	20
Total Analog Inputs	15	24	32
Total Analog Outputs	1	2	3
MSS I/Os ^{2,3}	26 ⁴	25	41
FPGA I/Os	66	66	128
Total I/Os	108	117	204

Notes:

1. These pins are shared between direct analog inputs to the ADCs and voltage/current/temperature monitors.

2. 16 MSS I/Os are multiplexed and can be used as FPGA I/Os, if not needed for MSS. These I/Os support Schmitt triggers and support only LVTTL and LVCMOS (1.5 / 1.8 / 2.5, 3.3 V) standards.

3. 9 MSS I/Os are primarily for 10/100 Ethernet MAC and are also multiplexed and can be used as FPGA I/Os if Ethernet MAC is not used in a design. These I/Os support Schmitt triggers and support only LVTTL and LVCMOS (1.5 / 1.8 / 2.5, 3.3 V standards.

4. 10/100 Ethernet MAC is not available on A2F060.

SmartFusion cSoC Device Status

Device	Status
A2F060	Production
A2F500	Production

SmartFusion cSoC System Architecture

Note: Generic Architecture for the SmartFusion Family

Table of Contents

Datasheet Information

List of Changes	6-1
Microsemi SoC Products Group Safety Critical, Life Support, and High-Reliability Applications Policy	6-2

detection devices from the PCB design. Flash-based SmartFusion cSoCs simplify total system design and reduce cost and design risk, while increasing system reliability.

Immunity to Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O configuration behavior in an unpredictable way.

Another source of radiation-induced firm errors is alpha particles. For alpha radiation to cause a soft or firm error, its source must be in very close proximity to the affected circuit. The alpha source must be in the package molding compound or in the die itself. While low-alpha molding compounds are being used increasingly, this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not occur in SmartFusion cSoCs. Once it is programmed, the flash cell configuration element of SmartFusion cSoCs cannot be altered by high energy neutrons and is therefore immune to errors from them. Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-1 on page 1-4).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

2 – SmartFusion DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond the operating conditions listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-3 on page 2-3 is not implied.

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	–0.3 to 3.75	V
VPP	Programming voltage	–0.3 to 3.75	V
VCCPLLx	Analog power supply (PLL)	–0.3 to 1.65	V
VCCFPGAIOBx	DC FPGA I/O buffer supply voltage	–0.3 to 3.75	V
VCCMSSIOBx	DC MSS I/O buffer supply voltage	–0.3 to 3.75	V
VI	I/O input voltage	–0.3 V to 3.6 V	V
		(when I/O hot insertion mode is enabled) -0.3 V to (VCCxxxxIOBx + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot- insertion mode is disabled)	
VCC33A	Analog clean 3.3 V supply to the analog circuitry	–0.3 to 3.75	V
VCC33ADCx	Analog 3.3 V supply to ADC	-0.3 to 3.75	V
VCC33AP	Analog clean 3.3 V supply to the charge pump	-0.3 to 3.75	V
VCC33SDDx	Analog 3.3 V supply to the sigma-delta DAC	–0.3 to 3.75	V
VAREFx	Voltage reference for ADC	1.0 to 3.75	V
VCCRCOSC	Analog supply to the integrated RC oscillator	–0.3 to 3.75	V
VDDBAT	External battery supply	–0.3 to 3.75	V
VCCMAINXTAL	Analog supply to the main crystal oscillator	–0.3 to 3.75	V
VCCLPXTAL	Analog supply to the low power 32 kHz crystal oscillator	–0.3 to 3.75	V
VCCENVM	Embedded nonvolatile memory supply	–0.3 to 1.65	V
VCCESRAM	Embedded SRAM supply	–0.3 to 1.65	V
VCC15A	Analog 1.5 V supply to the analog circuitry	–0.3 to 1.65	V
VCC15ADCx	Analog 1.5 V supply to the ADC	–0.3 to 1.65	V
T _{STG} ¹	Storage temperature	–65 to +150	°C
T _J ¹	Junction temperature	125	°C

Table 2-1 • Absolute Maximum Ratings

Notes:

1. For flash programming and retention maximum limits, refer to Table 2-4 on page 2-4. For recommended operating conditions, refer to Table 2-3 on page 2-3.

2. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-5 on page 2-4.

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs/CCCs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- · The number of RAM blocks used in the design
- The number of eNVM blocks used in the design
- The analog block used in the design, including the temperature monitor, current monitor, ABPS, sigma-delta DAC, comparator, low power crystal oscillator, RC oscillator and the main crystal oscillator
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-17 on page 2-19.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-18 on page 2-19.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-18 on page 2-19.
- Read rate to the eNVM blocks

The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—P_{TOTAL}

SoC Mode, Standby Mode, and Time Keeping Mode.

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

SoC Mode

 $\mathsf{P}_{\mathsf{STAT}} = \mathsf{P}_{\mathsf{DC1}} + (\mathsf{N}_{\mathsf{INPUTS}} * \mathsf{P}_{\mathsf{DC7}}) + (\mathsf{N}_{\mathsf{OUTPUTS}} * \mathsf{P}_{\mathsf{DC8}}) + (\mathsf{N}_{\mathsf{PLLS}} * \mathsf{P}_{\mathsf{DC9}})$

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{PLLS} is the number of PLLs available in the device.

Standby Mode

 $P_{STAT} = P_{DC2}$

Time Keeping Mode

 $P_{STAT} = P_{DC3}$

Total Dynamic Power Consumption—P_{DYN}

SoC Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{eNVM} + P_{XTL-OSC} + P_{RC-OSC} + P_{AB} + P_{LPXTAL-OSC} + P_{MSS}

SmartFusion DC and Switching Characteristics

Table 2-28 • I/O Output Buffer Maximum Resistances¹ Applicable to MSS I/O Banks

Standard	Drive Strength	$R_{PULL ext{-}DOWN}$ $(\Omega)^2$	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	8mA	50	150
2.5 V LVCMOS	8 mA	50	100
1.8 V LVCMOS	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCxxxxIOBx, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the SoC Products Group website at http://www.microsemi.com/soc/download/ibis/default.aspx.

- 2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec
- 3. R_(PULL-UP-MAX) = (VCCImax VOHspec) / IOHspec

Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _(WEAK PULL-UP) 1 (Ω)		R _{(WEAK PU}	ILL-DOWN) ² 2)
VCCxxxxlOBx	Min.	Max.	Min.	Max.
3.3 V	10 k	90 k	10 k	90 k
2.5 V	11 k	100 k	12 k	105 k
1.8 V	18 k	110 k	17 k	150 k
1.5 V	19 k	150 k	19 k	180 k

Notes:

R_(WEAK PULL-DOWN-MAX) = (VOLspec) / I_(WEAK PULL-DOWN-MIN)
 R_(WEAK PULL-UP-MAX) = (VCCImax - VOHspec) / I_(WEAK PULL-UP-MIN)

Military Grade SmartFusion Customizable System-on-Chip (cSoC)

	Drive Strength	IOSL (mA) [*]	IOSH (mA) [*]
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	127	132
	24 mA	181	268
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
	12 mA	74	65
	16 mA	87	83
	24 mA	124	169
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	51	45
	12 mA	74	91
	16 mA	74	91
1.5 V LVCMOS	2 mA	16	13
	4 mA	33	25
	6 mA	39	32
	8 mA	55	66
	12 mA	55	66
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	109	103

Table 2-30 • I/O Short Currents IOSH/IOSL Applicable to FPGA I/O Banks

Note: $*T_J = 100^{\circ}C$.

Table 2-31 • I/O Short Currents IOSH/IOSL Applicable to MSS I/O Banks

	Drive Strength	I _{OSL} (mA)*	I _{OSH} (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	54	51
2.5 V LVCMOS	8 mA	37	32
1.8 V LVCMOS	4 mA	22	17
1.5 V LVCMOS	2 mA	16	13

Note: $^{*}T_{J} = 100^{\circ}C$

The length of time an I/O can withstand I_{OSH}/I_{OSL} events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than 2200 operation hours to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-32 • Duration of Short Circuit Event before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	6 months
125°C	1 month

Table 2-33 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (typical) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typical)
3.3 V LVTTL / LVCMOS / PCI / PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV

Table 2-34 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer Input Rise/Fall Time (min.)		Input Rise/Fall Time (max.)	Reliability		
LVTTL/LVCMOS	No requirement	10 ns *	20 years (110°C)		
LVDS/B-LVDS/ M-LVDS/LVPECL	No requirement	10 ns *	10 years (100°C)		

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi SoC Products Group recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

Timing Characteristics

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Worst Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCxxxxIOBx = 3.0 V
Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.62	7.71	0.04	1.04	0.41	7.85	6.61	2.70	2.64	10.06	8.82	ns
	-1	0.52	6.43	0.03	0.86	0.34	6.55	5.51	2.25	2.20	8.38	7.35	ns
8 mA	Std.	0.62	4.97	0.04	1.04	0.41	5.06	4.11	3.05	3.24	7.27	6.31	ns
	-1	0.52	4.14	0.03	0.86	0.34	4.22	3.42	2.54	2.70	6.05	5.26	ns
12 mA	Std.	0.62	3.61	0.04	1.04	0.41	3.68	2.86	3.28	3.63	5.88	5.07	ns
	–1	0.52	3.01	0.03	0.86	0.34	3.06	2.39	2.74	3.02	4.90	4.22	ns
16 mA	Std.	0.62	3.41	0.04	1.04	0.41	3.47	2.60	3.33	3.72	5.67	4.81	ns
	-1	0.52	2.84	0.03	0.86	0.34	2.89	2.17	2.78	3.10	4.73	4.01	ns
24 mA	Std.	0.62	3.14	0.04	1.04	0.41	3.20	2.17	3.39	4.10	5.40	4.38	ns
	–1	0.52	2.62	0.03	0.86	0.34	2.67	1.81	2.83	3.41	4.50	3.65	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-40 • 3.3 V LVTTL / 3.3 V LVCMOS Low SlewWorst Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V,Worst-Case VCCxxxxIOBx = 3.0 VApplicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	trout	top	ton	tov	trout	t-ı	tau	tı z	tuz	tzı o	tzuo	Units
eaeigai	orado	1000	*DP	UIN	491	LOOI	*ZL	•ZH	۹LZ	٩Z	•2L5	·2H5	•
4 mA	Std.	0.62	10.44	0.04	1.04	0.41	10.63	8.80	2.70	2.48	12.83	11.01	ns
	-1	0.52	8.70	0.03	0.86	0.34	8.86	7.34	2.25	2.07	10.70	9.17	ns
8 mA	Std.	0.62	7.45	0.04	1.04	0.41	7.59	6.27	3.04	3.08	9.79	8.47	ns
	-1	0.52	6.21	0.03	0.86	0.34	6.32	5.22	2.54	2.56	8.16	7.06	ns
12 mA	Std.	0.62	5.73	0.04	1.04	0.41	5.84	4.90	3.28	3.46	8.04	7.11	ns
	-1	0.52	4.78	0.03	0.86	0.34	4.87	4.09	2.73	2.88	6.70	5.92	ns
16 mA	Std.	0.62	5.36	0.04	1.04	0.41	5.46	4.60	3.33	3.56	7.67	6.81	ns
	-1	0.52	4.47	0.03	0.86	0.34	4.55	3.83	2.77	2.97	6.39	5.67	ns
24 mA	Std.	0.62	5.00	0.04	1.04	0.41	5.09	4.58	3.39	3.92	7.29	6.79	ns
	-1	0.52	4.16	0.03	0.86	0.34	4.24	3.82	2.82	3.27	6.08	5.66	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

```
Worst Military-Case Conditions: T_J = 125^{\circ}C, Worst-Case VCC = 1.425 V,
Worst-Case VCCxxxxIOBx = 3.0 V
Applicable to MSS I/O Banks
```

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
8 mA	Std.	0.23	2.47	0.09	1.00	1.40	0.23	2.52	1.99	2.35	2.62	ns
	–1	0.19	2.06	0.08	0.84	1.16	0.19	2.10	1.66	1.96	2.19	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Figure 2-14 • LVPECL Circuit Diagram and Board-Level Implementation

Table 2-67 •	Minimum and Maximum DC Ir	nput and (Output L	evels	

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCFPGAIOBx	Supply Voltage	3.0		3.3		3.6		V
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
VODIFF	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
VOCM	Output Common-Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
VICM	Input Common-Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
VIDIFF	Input Differential Voltage	300		300		300		mV

Table 2-68 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	V _{REF} (typ.) (V)
1.64	1.94	Cross point	-

Note: **Measuring point = Vtrip* See Table 2-22 on page 2-25 for a complete table of trip points.

Timing Characteristics

Table 2-69 • LVPECL Worst Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V,

Worst-Case VCCFPGAIOBx = 3.0 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.62	1.88	0.04	1.38	ns
-1	0.52	1.57	0.03	1.15	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

static Microsemi.

SmartFusion DC and Switching Characteristics

Timing Characteristics

Table 2-89 • FIFO

Worst Military-Case Conditions: T_J = 125°C, VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.46	1.75	ns
t _{ENH}	REN, WEN Hold Time	0.02	0.02	ns
t _{BKS}	BLK Setup Time	0.19	0.19	ns
t _{BKH}	BLK Hold Time	0.00	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.19	0.23	ns
t _{DH}	Input Data (WD) Hold Time	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.49	2.99	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.95	1.13	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.82	2.18	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.72	2.07	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	6.54	7.85	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.79	2.15	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	6.48	7.77	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	0.97	1.17	ns
	RESET Low to Data Out Low on RD (pipelined)	0.97	1.17	ns
t _{REMRSTB}	RESET Removal	0.30	0.36	ns
t _{RECRSTB}	RESET Recovery	1.59	1.90	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.23	0.26	ns
t _{CYC}	Clock Cycle Time	3.41	4.01	ns
F _{MAX}	Maximum Frequency for FIFO	293.08	249.12	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Embedded Nonvolatile Memory Block (eNVM)

Electrical Characteristics

Table 2-90 describes the eNVM maximum performance.

Table 2-90 •	eNVM Block Timing	, Worst Military-Case	e Conditions: T _J = 12	5°C, VCC = 1.425 V
--------------	-------------------	-----------------------	-----------------------------------	--------------------

		A2F060		A2F500		
Parameter	Description	-1	Std.	-1	Std.	Units
t _{FMAXCLKeNVM}	Maximum frequency for clock for the control logic – 5 cycles (5:1:1:1*)	50	50	50	50	MHz
t _{FMAXCLKeNVM}	Maximum frequency for clock for the control logic – 6 cycles (6:1:1:1*)	50	50	50	50	MHz

Note: *6:1:1:1 *indicates* 6 *cycles* for the first access and 1 each for the next three accesses. 5:1:1:1 *indicates* 5 *cycles* for the first access and 1 each for the next three accesses.

Programmable Analog Specifications

Current Monitor

Unless otherwise noted, current monitor performance is specified at 25°C with nominal power supply voltages, with the output measured using the internal voltage reference with the internal ADC in 12-bit mode and 91 Ksps, after digital compensation. All results are based on averaging over 16 samples.

 Table 2-93 • Current Monitor Performance Specification

Specification	Test Conditions	Min.	Typical	Max.	Units
Input voltage range (for driving ADC over full range)		0 – 48	0 – 50	1 – 51	mV
Analog gain	From the differential voltage across the input pads to the ADC input		50		V/V
Input referred offset voltage	Input referred offset voltage	0	0.1	0.5	mV
	–55°C to +125°C	0	0.1	0.5	mV
Gain error	Slope of BFSL vs. 50 V/V		±0.1	±0.7	% nom.
	–55°C to +125°C			±0.7	% nom.
Overall Accuracy	Peak error from ideal transfer function, 25°C		±(0.1 + 0.25%)	±(0.4 + 1.5%)	mV plus % reading
	–55°C to +125°C		±(0.1 + 0.25%)	±(1.5 + 1.5%)	mV plus % reading
Input referred noise	0 VDC input (no output averaging)	0.3	0.4	0.5	mVrms
Common-mode rejection ratio	0 V to 12 VDC common-mode voltage	-86	-87		dB
Analog settling time	To 0.1% of final value (with ADC load)				
	From CM_STB (High)	5			μs
	From ADC_START (High)	5		200	μs
Input capacitance			8		pF
Input biased current	CM[n] or TM[n] pad, –40°C to +100°C over maximum input voltage range (plus is into pad)				
	Strobe = 0; IBIAS on CM[n]		0		μA
	Strobe = 1; IBIAS on CM[n]		1		μA
	Strobe = 0; IBIAS on TM[n]		2		μA
	Strobe = 1; IBIAS on TM[n]		1		μA
Power supply rejection ratio	DC (0 – 10 KHz)	41	42		dB
Incremental operational current	VCC33A		150		μA
monitor power supply current requirements (per current monitor	VCC33AP		140		μA
instance, not including ADC or VAREFx)	VCC15A		50		μA

Note: Under no condition should the TM pad ever be greater than 10 mV above the CM pad. This restriction is applicable only if current monitor is used.

Figure 2-45 • Typical Output Voltage

Figure 2-46 • Load Regulation

Symbol	Description and Condition	A2F060	A2F500	Unit
sp6	Data from master (SPI_x_DO) setup time ²	1	1	pclk cycles
sp7	Data from master (SPI_x_DO) hold time ²	1	1	pclk cycles
sp8	SPI_x_DI setup time ²	1	1	pclk cycles
sp9	SPI_x_DI hold time ²	1	1	pclk cycles

Table 2-101 • SPI Characteristics Military-Case Conditions: T_J =125°C, VDD = 1.425 V, –1 Speed Grade (continued)

Notes:

 These values are provided for a load of 35 pF. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/download/ibis/default.aspx.

2. For allowable pclk configurations, refer to the Serial Peripheral Interface Controller section in the SmartFusion Microcontroller Subsystem User's Guide.

🌜 🤇 Microsemi.

3 – SmartFusion Development Tools

Designing with SmartFusion cSoCs involves three different types of design: FPGA design, embedded design and analog design. These roles can be filled by three different designers, two designers or even a single designer, depending on company structure and project complexity.

Types of Design Tools

Microsemi has developed design tools and flows to meet the needs of these three types of designers so they can work together smoothly on a single project (Figure 3-1).

Figure 3-1 • Three Design Roles

FPGA Design

Libero System-on-Chip (SoC) software is Microsemi's comprehensive software toolset for designing with all Microsemi FPGAs and cSoCs. Libero SoC includes industry-leading synthesis, simulation and debug tools from Synopsys[®] and Mentor Graphics[®], as well as innovative timing and power optimization and analysis.

Microcontroller Subsystem (MSS)

Name	Туре	Polarity/ Bus Size	Description				
External Memory Controller							
EMC_ABx	Out	26	External memory controller address bus				
			Can also be used as an FPGA user I/O (see "IO" on page 5-5).				
EMC_BYTENx	Out	LOW/2	External memory controller byte enable				
			Can also be used as an FPGA user I/O (see "IO" on page 5-5).				
EMC_CLK	Out	Rise	External memory controller clock				
			Can also be used as an FPGA user I/O (see "IO" on page 5-5).				
EMC_CSx_N	Out	LOW/2	External memory controller chip selects				
			Can also be used as an FPGA User IO (see "IO" on page 5-5).				
EMC_DBx	In/out	16	External memory controller data bus				
			Can also be used as an FPGA user I/O (see "IO" on page 5-5).				
EMC_OENx_N	Out	LOW/2	External memory controller output enables				
			Can also be used as an FPGA User IO (see "IO" on page 5-5).				
EMC_RW_N	Out	Level	External memory controller read/write. Read = High, write = Low.				
			Can also be used as an FPGA user I/O (see "IO" on page 5-5).				
Inter-Integrated C	ircuit (I ² C)	Peripherals					
I2C_0_SCL	In/out	1	I ² C bus serial clock output. First I ² C.				
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-5).				
I2C_0_SDA	In/out 1 I ² C bus serial data input/output.		I ² C bus serial data input/output. First I ² C.				
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-5).				
I2C_1_SCL	In/out	1	I ² C bus serial clock output. Second I ² C.				
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-5).				
I2C_1_SDA	In/out	1	I ² C bus serial data input/output. Second I ² C.				
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-5).				
Serial Peripheral	Interface (SPI) Controlle	ers				
SPI_0_CLK	Out	1	Clock. First SPI.				
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-5).				
SPI_0_DI	In	1	Data input. First SPI.				
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-5).				
SPI_0_DO	Out	1	Data output. First SPI.				
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-5).				
SPI_0_SS	Out	1	Slave select (chip select). First SPI.				
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-5).				
SPI_1_CLK	Out	1	Clock. Second SPI.				
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-5).				
SPI_1_DI	In	1	Data input. Second SPI.				
			Can also be used as an MSS GPIO (see "GPIO_x" on page 5-5).				

Military Grade SmartFusion Customizable System-on-Chip (cSoC)

Analog Front-End Pin-Level Function Multiplexing

Table 5-2 describes the relationships between the various internal signals found in the analog front-end (AFE) and how they are multiplexed onto the external package pins. Note that, in general, only one function is available for those pads that have numerous functions listed. The exclusion to this rule is when a comparator is used; the ADC can still convert either input side of the comparator.

Pin	ADC Channel	DirIn Option	Prescaler	Current Mon.	Temp. Mon.	Compar.	LVTTL	SDD MUX	SDD
ABPS0	ADC0_CH1		ABPS0_IN						
ABPS1	ADC0_CH2		ABPS1_IN						
ABPS2	ADC0_CH5		ABPS2_IN						
ABPS3	ADC0_CH6		ABPS3_IN						
ABPS4	ADC1_CH1		ABPS4_IN						
ABPS5	ADC1_CH2		ABPS5_IN						
ABPS6	ADC1_CH5		ABPS6_IN						
ABPS7	ADC1_CH6		ABPS7_IN						
ABPS8	ADC2_CH1		ABPS8_IN						
ABPS9	ADC2_CH2		ABPS9_IN						
ADC0	ADC0_CH9	Yes				CMP1_P	LVTTL0_IN		
ADC1	ADC0_CH10	Yes				CMP1_N	LVTTL1_IN	SDDM0_OUT	
ADC2	ADC0_CH11	Yes				CMP3_P	LVTTL2_IN		
ADC3	ADC0_CH12	Yes				CMP3_N	LVTTL3_IN	SDDM1_OUT	
ADC4	ADC1_CH9	Yes				CMP5_P	LVTTL4_IN		
ADC5	ADC1_CH10	Yes				CMP5_N	LVTTL5_IN	SDDM2_OUT	
ADC6	ADC1_CH11	Yes				CMP7_P	LVTTL6_IN		
ADC7	ADC1_CH12	Yes				CMP7_N	LVTTL7_IN	SDDM3_OUT	
ADC8	ADC2_CH9	Yes				CMP9_P	LVTTL8_IN		
ADC9	ADC2_CH10	Yes				CMP9_N	LVTTL9_IN	SDDM4_OUT	
ADC10	ADC2_CH11	Yes					LVTTL10_IN		
ADC11	ADC2_CH12	Yes					LVTTL11_IN		
CM0	ADC0_CH3	Yes		CM0_H		CMP0_P			
CM1	ADC0_CH7	Yes		CM1_H		CMP2_P			
CM2	ADC1_CH3	Yes		CM2_H		CMP4_P			
CM3	ADC1_CH7	Yes		CM3_H		CMP6_P			
CM4	ADC2_CH3	Yes		CM4_H		CMP8_P			
SDD0	ADC0_CH15								SDD0_OUT
SDD1	ADC1_CH15								SDD1_OUT

Table 5-2 • Relationships Between Signals in the Analog Front-End

Notes:

1. ABPSx_IN: Input to active bipolar prescaler channel x.

2. CMx_H/L: Current monitor channel x, high/low side.

3. TMx_IO: Temperature monitor channel x.

4. CMPx_P/N: Comparator channel x, positive/negative input.

5. LVTTLx_IN: LVTTL I/O channel x.

6. SDDMx_OUT: Output from sigma-delta DAC MUX channel x.

7. SDDx_OUT: Direct output from sigma-delta DAC channel x.