

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

-XE

Details	
Product Status	Active
Architecture	MCU, FPGA
Core Processor	ARM® Cortex®-M3
Flash Size	512KB
RAM Size	64KB
Peripherals	DMA, POR, WDT
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Speed	80MHz
Primary Attributes	ProASIC®3 FPGA, 500K Gates, 11520 D-Flip-Flops
Operating Temperature	-55°C ~ 125°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a2f500m3g-fgg256m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Microsemi

Military Grade SmartFusion Customizable System-on-Chip (cSoC)

SmartFusion cSoC Family Product Table

SmartFusion [®] cSoC		A2F060	A2F500			
FPGA Fabric	System Gates	60,000	500,000			
	Tiles (D-flip-flops)	1,536	11,520			
	RAM Blocks (4,608 bits)	8	24			
Microcontroller Subsystem (MSS)	Flash (Kbytes)	128	512			
	SRAM (Kbytes)	16	64			
	Cortex-M3 with memory protection unit (MPU)	Ye	es			
	10/100 Ethernet MAC	No	Yes			
	External Memory Controller (EMC)	24-bit addres	s,16-bit data			
	DMA	8 (Ch			
	l ² C	2				
	SPI	2				
	16550 UART	2	2			
	32-Bit Timer	2	2			
	PLL	1	2 ¹			
	32 KHz Low Power Oscillator	1				
	100 MHz On-Chip RC Oscillator	1				
	Main Oscillator (32 KHz to 20 MHz)	1				
Programmable Analog	ADCs (8-/10-/12-bit SAR)	1	3 ³			
	DACs (12-bit sigma-delta)	1	3 ³			
	Signal Conditioning Blocks (SCBs)	1	5 ³			
	Comparator ²	2	10 ³			
	Current Monitors ²	1	5 ³			
	Temperature Monitors ²	1	5 ³			
	Bipolar High Voltage Monitors ²	2	10 ³			

Notes:

 Two PLLs are available in FG484 (one PLL in FG256).
 These functions share I/O pins and may not all be available at the same time. See the "Analog Front-End Overview" section in the SmartFusion Programmable Analog User's Guide for details.

3. Available on FG484 only.

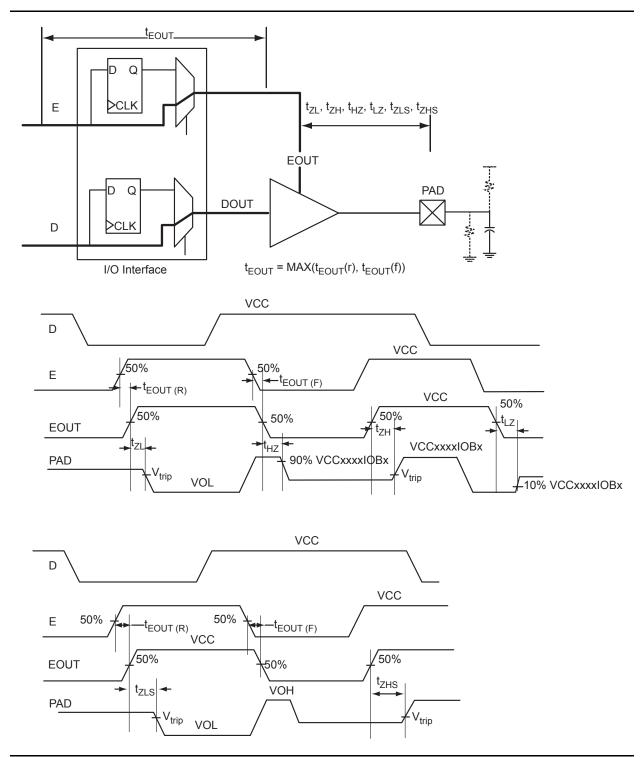


Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-19 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military Conditions—Software Default Settings Applicable to FPGA I/O Banks

			VIL		VIH		VOL	VOH	IOL ¹	IOH ¹		
I/O Standard	Drive Strgth.			Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA		
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12		
2.5 V LVCMOS	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12		
1.8 V LVCMOS	12 mA	High	-0.3	0.35 * VCCxxxxIOBx	0.65* VCCxxxxIOBx	3.6	0.45	VCCxxxxIOBx - 0.45	12	12		
1.5 V LVCMOS	12 mA	High	-0.3	0.35 * VCCxxxxIOBx	0.65* VCCxxxxIOBx	3.6	0.25 * VCCxxxxIOBx	0.75* VCCxxxxIOBx	12	12		
3.3 V PCI		Per PCI specifications										
3.3 V PCI-X					Per PCI-X spe	ecifica	tions					

Notes:

1. Currents are measured at 125°C junction temperature.

2. Output slew rate can be extracted by the IBIS Models.

Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military Conditions—Software Default Settings Applicable to MSS I/O Banks

				VIL	VIH		VOL	VOH	IOL ¹	IOH ¹
I/O Standard	Drive Strgth.	Slew Rate		Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
2.5 V LVCMOS	8 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	High	-0.3	0.35* VCCxxxxIOBx	0.65* VCCxxxxIOBx	3.6	0.45	VCCxxxxIOBx - 0.45	4	4
1.5 V LVCMOS	2 mA	High	-0.3	0.35* VCCxxxxIOBx	0.65* VCCxxxxIOBx	3.6	0.25* VCCxxxxIOBx	0.75* VCCxxxxIOBx	2	2

Notes:

1. Currents are measured at 125°C junction temperature.

2. Output slew rate can be extracted by the IBIS Models.

	Military*						
	IIL	IIH					
DC I/O Standards	μΑ	μA					
3.3 V LVTTL / 3.3 V LVCMOS	15	15					
2.5 V LVCMOS	15	15					
1.8 V LVCMOS	15	15					
1.5 V LVCMOS	15	15					
3.3 V PCI	15	15					
3.3 V PCI-X	15	15					

Table 2-21 • Summary of Maximum and Minimum DC Input Levels Applicable to Military Conditions in all I/O Bank Types

Note: *Military temperature Range: –55°C to 125°C.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-22 •	Summary of AC Measuring Points Applicable to All I/O Bank Types
--------------	---

Standard	Measuring Trip Point (V _{trip})				
3.3 V LVTTL / 3.3 V LVCMOS	1.4 V				
2.5 V LVCMOS	1.2 V				
1.8 V LVCMOS	0.90 V				
1.5 V LVCMOS	0.75 V				
3.3 V PCI	0.285 * VCCxxxxIOBx (RR)				
	0.615 * VCCxxxxlOBx (FF)				
3.3 V PCI-X	0.285 * VCCxxxxIOBx (RR)				
	0.615 * VCCxxxxlOBx (FF)				
LVDS	Cross point				
LVPECL	Cross point				

Table 2-23 • I/O AC Parameter Definitions

Parameter	Parameter Definition							
t _{DP}	Data to pad delay through the output buffer							
t _{PY}	Pad to data delay through the input buffer							
t _{DOUT}	Data to output buffer delay through the I/O interface							
t _{EOUT}	Enable to output buffer tristate control delay through the I/O interface							
t _{DIN}	Input buffer to data delay through the I/O interface							
t _{HZ}	Enable to pad delay through the output buffer—High to Z							
t _{ZH}	Enable to pad delay through the output buffer—Z to High							
t _{LZ}	Enable to pad delay through the output buffer—Low to Z							
t _{ZL}	Enable to pad delay through the output buffer—Z to Low							
t _{ZHS}	Enable to pad delay through the output buffer with delayed enable—Z to High							
t _{ZLS}	Enable to pad delay through the output buffer with delayed enable—Z to Low							

Timing Characteristics

Table 2-51 •1.8 V LVCMOS High Slew
Worst Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCxxxxIOBx = 1.7 V
Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.62	11.85	0.04	1.22	0.41	9.22	11.85	2.80	1.70	11.42	14.05	ns
	-1	0.52	9.87	0.03	1.02	0.34	7.68	9.87	2.33	1.42	9.52	11.71	ns
4 mA	Std.	0.62	6.91	0.04	1.22	0.41	5.92	6.91	3.26	2.85	8.13	9.12	ns
	-1	0.52	5.76	0.03	1.02	0.34	4.94	5.76	2.72	2.38	6.77	7.60	ns
6 mA	Std.	0.62	4.46	0.04	1.22	0.41	4.27	4.46	3.58	3.40	6.48	6.66	ns
	-1	0.52	3.71	0.03	1.02	0.34	3.56	3.71	2.98	2.84	5.40	5.55	ns
8 mA	Std.	0.62	3.95	0.04	1.22	0.41	4.02	3.93	3.65	3.55	6.23	6.14	ns
	-1	0.52	3.29	0.03	1.02	0.34	3.35	3.28	3.04	2.96	5.19	5.12	ns
12 mA	Std.	0.62	3.62	0.04	1.22	0.41	3.68	3.06	3.75	4.09	5.89	5.26	ns
	-1	0.52	3.01	0.03	1.02	0.34	3.07	2.55	3.12	3.41	4.91	4.39	ns
16 mA	Std.	0.62	3.62	0.04	1.22	0.41	3.68	3.06	3.75	4.09	5.89	5.26	ns
	-1	0.52	3.01	0.03	1.02	0.34	3.07	2.55	3.12	3.41	4.91	4.39	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Table 2-52 • 1.8 V LVCMOS Low Slew

Worst Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCxxxxIOBx = 1.7 V Applicable to FPGA I/O Banks, I/O Assigned to EMC I/O Pins

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.62	15.25	0.04	1.22	0.41	14.43	15.25	2.80	1.65	16.63	17.46	ns
	-1	0.52	12.71	0.03	1.02	0.34	12.02	12.71	2.34	1.37	13.86	14.55	ns
4 mA	Std.	0.62	10.43	0.04	1.22	0.41	10.62	10.31	3.27	2.75	12.82	12.51	ns
	-1	0.52	8.69	0.03	1.02	0.34	8.85	8.59	2.72	2.29	10.69	10.42	ns
6 mA	Std.	0.62	8.21	0.04	1.22	0.41	8.36	7.75	3.58	3.30	10.57	9.96	ns
	-1	0.52	6.84	0.03	1.02	0.34	6.97	6.46	2.98	2.75	8.81	8.30	ns
8 mA	Std.	0.62	7.66	0.04	1.22	0.41	7.80	7.22	3.65	3.44	10.01	9.43	ns
	-1	0.52	6.38	0.03	1.02	0.34	6.50	6.02	3.04	2.87	8.34	7.86	ns
12 mA	Std.	0.62	7.24	0.04	1.22	0.41	7.38	7.23	3.75	3.96	9.58	9.43	ns
	-1	0.52	6.04	0.03	1.02	0.34	6.15	6.02	3.13	3.30	7.98	7.86	ns
16 mA	Std.	0.62	7.24	0.04	1.22	0.41	7.38	7.23	3.75	3.96	9.58	9.43	ns
	-1	0.52	6.04	0.03	1.02	0.34	6.15	6.02	3.13	3.30	7.98	7.86	ns

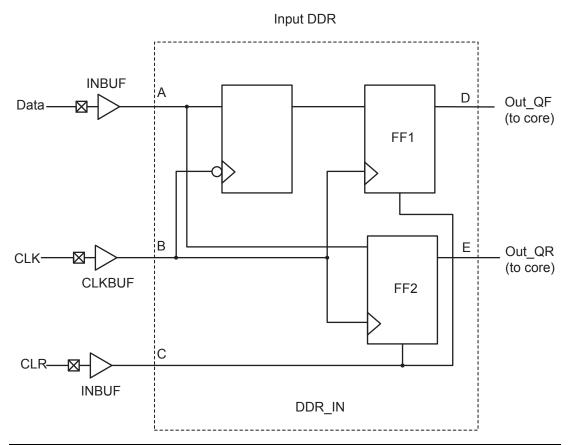
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

🌜 Microsemi.

SmartFusion DC and Switching Characteristics

Table 2-53 • 1.8 V LVCMOS High Slew
Worst Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCxxxxIOBx = 1.7 V
Applicable to MSS I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
4 mA	Std.	0.23	2.97	0.09	1.17	1.75	0.23	3.02	2.92	2.36	2.41	ns
	-1	0.19	2.47	0.08	0.98	1.46	0.19	2.52	2.43	1.97	2.00	ns


Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

DDR Module Specifications

Input DDR Module

Figure 2-20 • Input DDR Timing Model

Table 2-75 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR input	A, B
t _{DDRIHD}	Data Hold Time of DDR input	A, B
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	С, В
t _{DDRIRECCLR}	Clear Recovery	С, В

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The SmartFusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO/e, Fusion, ProASIC3/E, and SmartFusion Macro Library Guide*.

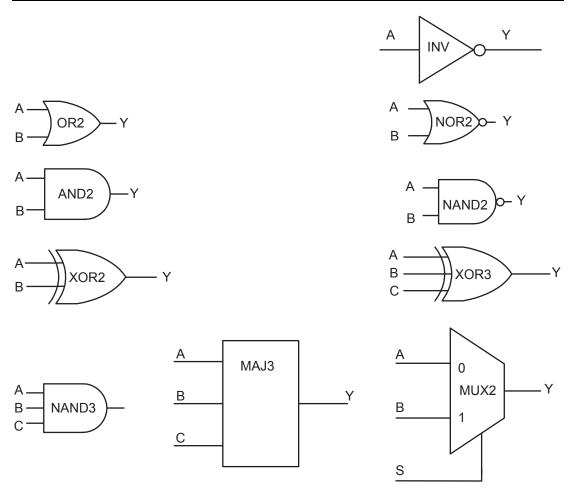


Figure 2-24 • Sample of Combinatorial Cells

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-86 • SmartFusion CCC/PLL Specification

Parameter	Minir	mum	Тур	ical	Maxir	num	Un	its	
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.	.5			35	0	MI	Hz	
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	, 0.7	75			350 ¹		MHz		
Delay Increments in Programmable Delay Blocks ^{2, 3}			16	0 ⁴			р	S	
Number of Programmable Values in Each Programmable Delay Block					32	2			
Input Period Jitter					1.	5	n	s	
Acquisition Time									
LockControl = 0					30	0	μ	s	
LockControl = 1					6.	6.0		IS	
Tracking Jitter ⁵									
LockControl = 0					1.	3 ns		s	
LockControl = 1					0.	0.8		s	
Output Duty Cycle	48	5.5			5.15 %		6		
Delay Range in Block: Programmable Delay 1 ^{2,3}	0.	.6			5.56 ns		s		
Delay Range in Block: Programmable Delay 2 ^{2,3}	0.0	25			5.56 ns		s		
Delay Range in Block: Fixed Delay ^{2,3}			2.	.2			n	ns	
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} ^{6.7}		Ma	aximum	Peak-to	-Peak F	Period J	itter		
	SSO ≤ 2 SS) ≤ 4	$SSO \leq 8$		SSO	≤ 16		
	FG/CS	PQ	FG/CS	PQ	FG/CS	PQ	FG/CS	PQ	
0.75 MHz to 50 MHz	0.5%	1.6%	0.9%	1.6%	0.9%	1.6%	0.9%	1.8%	
50 MHz to 250 MHz	1.75%	3.5%	9.3%	9.3%	9.3%	17.9%	10.0%	17.9%	
250 MHz to 350 MHz	2.5%	5.2%	13.0%	13.0%	13.0%	25.0%	14.0%	25.0%	

Notes:

- 1. One of the CCC outputs (GLA0) is used as an MSS clock and is limited to 100 MHz (maximum) by software. Details regarding CCC/PLL are in the "PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators" chapter of the SmartFusion Microcontroller Subsystem User's Guide.
- 2. This delay is a function of voltage and temperature. See Table 2-7 on page 2-9 for deratings.

3. $T_J = 25^{\circ}C$, VCC = 1.5 V

- 4. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to SmartGen online help for more information.
- 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
- 6. Measurement done with LVTTL 3.3 V 12 mA I/O drive strength and High slew rate. VCC/VCCPLL = 1.425 V, VCCI = 3.3V, 20 pF output load. All I/Os are placed outside of the PLL bank.
- 7. SSOs are outputs that are synchronous to a single clock domain and have their clock-to-out within ± 200 ps of each other.
- VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the % jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps.

FIFO

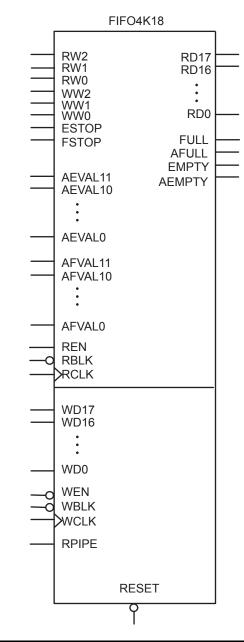
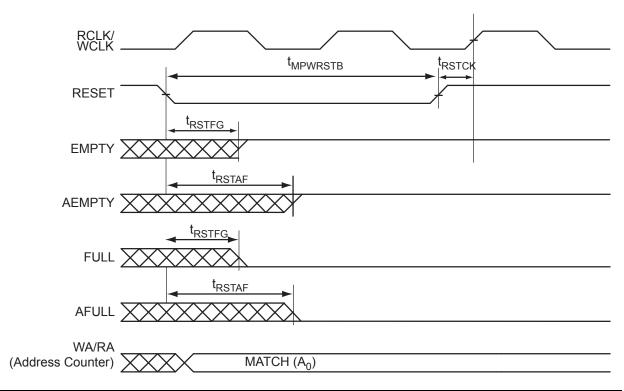



Figure 2-36 • FIFO Model

SmartFusion DC and Switching Characteristics

Timing Waveforms

Figure 2-37 • FIFO Reset

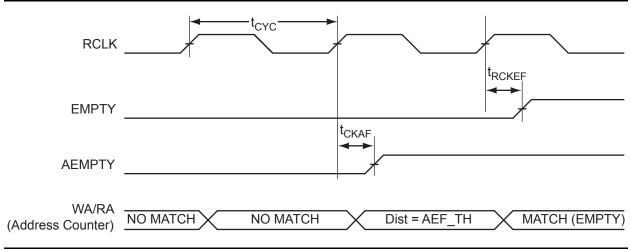


Figure 2-38 • FIFO EMPTY Flag and AEMPTY Flag Assertion

Embedded FlashROM (eFROM)

Electrical Characteristics

Table 2-91 describes the eFROM maximum performance

Table 2-01 .	ElashPOM Access Time	Worso Militar	Caso Conditions: T	」= 125°C, VCC = 1.425 V
	FIDSHRUW ACCess Time	, worse williar	y-case conultions. I	j - 125 C, VCC - 1.425 V

Parameter	Description	-1	Std.	Units
F _{max}	Maximum Clock frequency	15.00	15.00	MHz

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-20 for more details.

Timing Characteristics

Table 2-92 • JTAG 1532

Worst Military-Case Conditions: T_J = 125°C, Worst-Case VCC = 1.425 V

Parameter	Description	-1	Std.	Units
t _{DISU}	Test Data Input Setup Time	0.53	0.63	ns
t _{DIHD}	Test Data Input Hold Time	1.07	1.25	ns
t _{TMSSU}	Test Mode Select Setup Time	0.53	0.63	ns
t _{TMDHD}	Test Mode Select Hold Time	1.07	1.25	ns
t _{TCK2Q}	Clock to Q (data out)	5.33	6.27	ns
t _{RSTB2Q}	Reset to Q (data out)	21.31	25.07	ns
F _{TCKMAX}	TCK Maximum Frequency	26.00	30.59	MHz
t _{TRSTREM}	ResetB Removal Time	0.00	0.00	ns
t _{TRSTREC}	ResetB Recovery Time	0.21	0.25	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-9 for derating values.

Military Grade SmartFusion Customizable System-on-Chip (cSoC)

Analog-to-Digital Converter (ADC)

Unless otherwise noted, ADC direct input performance is specified at 25°C with nominal power supply voltages, with the output measured using the external voltage reference with the internal ADC in 12-bit mode and 500 KHz sampling frequency, after trimming and digital compensation.

Specification	Test Conditions	Min.	Тур.	Max.	Units	
Input voltage range (for driving ADC over its full range)			2.56		V	
Gain error			±0.4	±0.7	%	
	–55°C to +125°C		±0.4	±0.7	%	
Input referred offset voltage			±1	±2	mV	
	–55°C to +125°C		±1	±4	mV	
Integral non-linearity (INL)	RMS deviation from BFSL					
	12-bit mode		1.71		LSB	
	10-bit mode		0.60	1.00	LSB	
	8-bit mode		0.2	0.33	LSB	
Differential non-linearity (DNL)	12-bit mode		2.4		LSB	
	10-bit mode		0.80	0.94	LSB	
	8-bit mode		0.2	0.23	LSB	
Signal to noise ratio		62	64		dB	
Effective number of bits (ENOB)	-1 dBFS input					
$ENOB = \frac{SINAD - 1.76 \text{ dB}}{6.02 \text{ dB/bit}}$	12-bit mode 10 KHz	9.9	10		Bits	
6.02 dB/bit	12-bit mode 100 KHz	9.9	10		Bits	
EQ 10	10-bit mode 10 KHz	9.5	9.6		Bits	
	10-bit mode 100 KHz	9.5	9.6		Bits	
	8-bit mode 10 KHz	7.8	7.9		Bits	
	8-bit mode 100 KHz	7.8	7.9		Bits	
Full power bandwidth	At –3 dB; –1 dBFS input	300			KHz	
Analog settling time	To 0.1% of final value (with 1 Kohm source impedance and with ADC load)		2		μs	
Input capacitance	Switched capacitance (ADC sample capacitor)		12	15	pF	
	Cs: Static capacitance (Figure 2-43 on page 2-82)					
	CM[n] input		5	7	pF	
	TM[n] input		5	7	pF	
	ADC[n] input		5	7	pF	
Input resistance	Rin: Series resistance (Figure 2-43)		2		KΩ	
	Rsh: Shunt resistance, exclusive of switched capacitance effects (Figure 2-43)	10			MΩ	

Table 2-95 • ADC Specifications

Note: All 3.3 V supplies are tied together and varied from 3.0 V to 3.6 V. 1.5 V supplies are held constant.

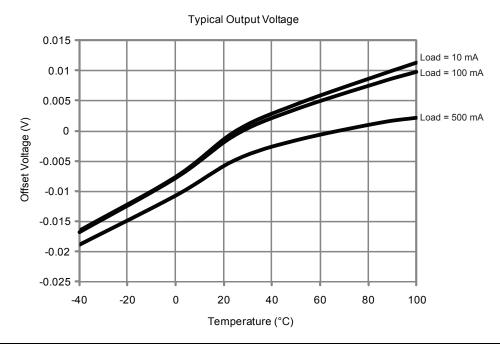


Figure 2-45 • Typical Output Voltage

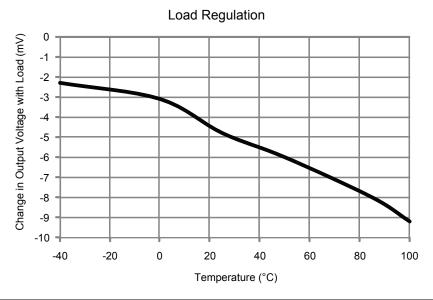


Figure 2-46 • Load Regulation

 Flash File System (RL-Flash) allows your embedded applications to create, save, read, and modify files in standard storage devices such as ROM, RAM, or FlashROM, using a standard serial peripheral interface (SPI). Many ARM-based microcontrollers have a practical requirement for a standard file system. With RL-FlashFS you can implement new features in embedded applications such as data logging, storing program state during standby modes, or storing firmware upgrades.

Micrium, in addition to μ C/OS-III[®], offers the following support for SmartFusion cSoC:

- µC/TCP-IP[™] is a compact, reliable, and high-performance stack built from the ground up by Micrium and has the quality, scalability, and reliability that translates into a rapid configuration of network options, remarkable ease-of-use, and rapid time-to-market.
- µC/Probe[™] is one of the most useful tools in embedded systems design and puts you in the driver's seat, allowing you to take charge of virtually any variable, memory location, and I/O port in your embedded product, while your system is running.

Special Function Pins

Name	Туре	Polarity/Bus Size	Description
NC			No connect This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.
DC			Do not connect. This pin should not be connected to any signals on the PCB. These pins should be left unconnected.
LPXIN	In	1	Low power 32 KHz crystal oscillator. Input from the 32 KHz oscillator. Pin for connecting a low power 32 KHz watch crystal. If not used, the LPXIN pin can be left floating. For more information, see the PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller Subsystem User's Guide</i> .
LPXOUT	In	1	Low power 32 KHz crystal oscillator. Output to the 32 KHz oscillator. Pin for connecting a low power 32 KHz watch crystal. If not used, the LPXOUT pin can be left floating. For more information, see the PLLs, Clock Conditioning Circuitry, and On- Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller</i> <i>Subsystem User's Guide</i> .
MAINXIN	In	1	Main crystal oscillator circuit. Input to the crystal oscillator circuit. Pin for connecting an external crystal, ceramic resonator, or RC network. When using an external crystal or ceramic oscillator, external capacitors are also recommended. Refer to documentation from the crystal oscillator manufacturer for proper capacitor value. If using an external RC network or clock input, MAINXIN should be grounded for better noise immunity. For more information, see the PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller Subsystem User's Guide</i> .
MAINXOUT	Out	1	Main crystal oscillator circuit. Output from the crystal oscillator circuit. Pin for connecting external crystal or ceramic resonator. When using an external crystal or ceramic oscillator, external capacitors are also recommended. Refer to documentation from the crystal oscillator manufacturer for proper capacitor value. If using external RC network or clock input, MAINXIN should be grounded and MAINXOUT left unconnected. For more information, see the PLLs, Clock Conditioning Circuitry, and On-Chip Crystal Oscillators section in the <i>SmartFusion Microcontroller Subsystem User's Guide</i> .
NCAP		1	Negative capacitor connection. This is the negative terminal of the charge pump. A capacitor, with a 2.2 μ F recommended value, is required to connect between PCAP and NCAP. Analog charge pump capacitors are not needed if none of the analog SCB features are used and none of the SDDs are used. In that case it should be left unconnected.

Military Grade SmartFusion Customizable System-on-Chip (cSoC)

Analog Front-End Pin-Level Function Multiplexing

Table 5-2 describes the relationships between the various internal signals found in the analog front-end (AFE) and how they are multiplexed onto the external package pins. Note that, in general, only one function is available for those pads that have numerous functions listed. The exclusion to this rule is when a comparator is used; the ADC can still convert either input side of the comparator.

Pin	ADC Channel	DirIn Option	Prescaler	Current Mon.	Temp. Mon.	Compar.	LVTTL	SDD MUX	SDD
ABPS0	ADC0_CH1		ABPS0_IN						
ABPS1	ADC0_CH2		ABPS1_IN						
ABPS2	ADC0_CH5		ABPS2_IN						
ABPS3	ADC0_CH6		ABPS3_IN						
ABPS4	ADC1_CH1		ABPS4_IN						
ABPS5	ADC1_CH2		ABPS5_IN						
ABPS6	ADC1_CH5		ABPS6_IN						
ABPS7	ADC1_CH6		ABPS7_IN						
ABPS8	ADC2_CH1		ABPS8_IN						
ABPS9	ADC2_CH2		ABPS9_IN						
ADC0	ADC0_CH9	Yes				CMP1_P	LVTTL0_IN		
ADC1	ADC0_CH10	Yes				CMP1_N	LVTTL1_IN	SDDM0_OUT	
ADC2	ADC0_CH11	Yes				CMP3_P	LVTTL2_IN		
ADC3	ADC0_CH12	Yes				CMP3_N	LVTTL3_IN	SDDM1_OUT	
ADC4	ADC1_CH9	Yes				CMP5_P	LVTTL4_IN		
ADC5	ADC1_CH10	Yes				CMP5_N	LVTTL5_IN	SDDM2_OUT	
ADC6	ADC1_CH11	Yes				CMP7_P	LVTTL6_IN		
ADC7	ADC1_CH12	Yes				CMP7_N	LVTTL7_IN	SDDM3_OUT	
ADC8	ADC2_CH9	Yes				CMP9_P	LVTTL8_IN		
ADC9	ADC2_CH10	Yes				CMP9_N	LVTTL9_IN	SDDM4_OUT	
ADC10	ADC2_CH11	Yes					LVTTL10_IN		
ADC11	ADC2_CH12	Yes					LVTTL11_IN		
CM0	ADC0_CH3	Yes		CM0_H		CMP0_P			
CM1	ADC0_CH7	Yes		CM1_H		CMP2_P	1		
CM2	ADC1_CH3	Yes		CM2_H		CMP4_P	1		
CM3	ADC1_CH7	Yes		CM3_H		CMP6_P	1		
CM4	ADC2_CH3	Yes		CM4_H		CMP8_P	1		
SDD0	ADC0_CH15						1		SDD0_OUT
SDD1	ADC1_CH15						1		SDD1_OUT

Table 5-2 • Relationships Between Signals in the Analog Front-End

Notes:

1. ABPSx_IN: Input to active bipolar prescaler channel x.

2. CMx_H/L: Current monitor channel x, high/low side.

3. TMx_IO: Temperature monitor channel x.

4. CMPx_P/N: Comparator channel x, positive/negative input.

5. LVTTLx_IN: LVTTL I/O channel x.

6. SDDMx_OUT: Output from sigma-delta DAC MUX channel x.

7. SDDx_OUT: Direct output from sigma-delta DAC channel x.

🌜 Microsemi.

Military Grade SmartFusion Customizable System-on-Chip (cSoC)

	FG484
Pin Number	A2F500 Function
W5	MAC_TXD[1]/IO64RSB4V0
W6	SDD2
W7	GNDA
W8	ТМО
W9	ABPS2
W10	GND33ADC0
W11	VCC15ADC1
W12	ABPS6
W13	CM4
W14	ABPS9
W15	VCC33ADC2
W16	GNDA
W17	PU_N
W18	GNDSDD1
W19	SPI_0_CLK/GPIO_18
W20	GND
W21	SPI_1_SS/GPIO_27
W22	UART_1_RXD/GPIO_29
Y1	GPIO_3/IO53RSB4V0
Y2	VCCMSSIOB4
Y3	GPIO_15/IO43RSB4V0
Y4	MAC_TXEN/IO61RSB4V0
Y5	VCCMSSIOB4
Y6	GNDSDD0
Y7	CM0
Y8	GNDTM0
Y9	ADC0
Y10	VCC15ADC0
Y11	ABPS7
Y12	TM3
Y13	ABPS8
Y14	GND33ADC2
Y15	VCC15ADC2
Y16	VCCMAINXTAL
Y17	SDD1
Y18	PTEM
Y19	VCC33A
1	

FG484					
Pin Number	A2F500 Function				
Y20	SPI_0_SS/GPIO_19				
Y21	VCCMSSIOB2				
Y22	UART_0_TXD/GPIO_20				

6 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the SmartFusion datasheet.

Revision	Changes	Page
	Updated information about unused MSS I/O configuration in "User I/O Naming Conventions" (SAR 62994).	5-6
	The status was changed from Preliminary to Production for A2F060 and A2F500 in the "SmartFusion cSoC Device Status" table (SAR 41135).	III

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,400 employees globally. Learn more at **www.microsemi.com**.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.