



Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                               |
|----------------------------|---------------------------------------------------------------|
| Product Status             | Active                                                        |
| Core Processor             | -                                                             |
| Core Size                  | 8-Bit                                                         |
| Speed                      | 18MHz                                                         |
| Connectivity               | SIO, UART/USART                                               |
| Peripherals                | LCD, PWM, WDT                                                 |
| Number of I/O              | 29                                                            |
| Program Memory Size        | 256KB (256K x 8)                                              |
| Program Memory Type        | FLASH                                                         |
| EEPROM Size                | -                                                             |
| RAM Size                   | 8K x 8                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 3.6V                                                   |
| Data Converters            | A/D 15x12b                                                    |
| Oscillator Type            | Internal                                                      |
| Operating Temperature      | -40°C ~ 85°C (TA)                                             |
| Mounting Type              | Surface Mount                                                 |
| Package / Case             | 100-BQFP                                                      |
| Supplier Device Package    | 100-PQFP/QIP (20x14)                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/onsemi/lc87f7np6avuej-2h |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **Function Details**

#### ■Ports

• Normal withstand voltage I/O ports

Ports whose I/O direction can be designated in 1 bit units: 29 (P0n, P1n, P70 to P73, P8n, XT2)

• Normal withstand voltage input port: 1 (XT1)

• LCD ports

Segment output: 54 (S00 to S53)
Common output: 4 (COM0 to COM3)
Bias power sources for LCD driver: 3 (V1 to V3)

Other functions

Input/output ports: 54 (P3n, PAn, PBn, PCn, PDn, PEn, PFn)

Input ports: 7 (PLn)

• Dedicated oscillator ports: 2 (CF1, CF2)

• Reset pins: 1 (RES)

• Power pins: 6 (VSS1 to VSS3, VDD1 to VDD3)

#### ■LCD Controller

- 1) Seven display modes are available (static, 1/2, 1/3, 1/4 duty  $\times$  1/2, 1/3 bias)
- 2) Segment output and common output can be switched to general-purpose input/output ports
- ■Small Signal Detection (MIC signals etc.)
  - 1) Counts pulses with a level which is greater than a preset value
  - 2) 2-bit counter

#### **■**Timers

- Timer 0: 16-bit timer/counter with two capture registers.
  - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) × 2 channels
  - Mode 1: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) + 8-bit counter (with two 8-bit capture registers)
  - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture registers)
  - Mode 3: 16-bit counter (with two 16-bit capture registers)
- Timer1: 16-bit counter timer that supports PWM/toggle outputs
  - Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer counter with an 8-bit prescaler (with toggle outputs)
  - Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels
  - Mode 2: 16-bit counter timer with an 8-bit prescaler (with toggle outputs) (toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs) (The lower-order 8 bits can be used as PWM.)

- Timer4: 8-bit timer with a 6-bit prescaler
- Timer5: 8-bit timer with a 6-bit prescaler
- Timer6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer8: 16-bit timer
  - Mode 0: 8-bit timer with an 8-bit prescaler  $\times$  2 channels
  - Mode 1: 16-bit timer with an 8-bit prescaler
- Base Timer
  - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
  - 2) Interrupts programmable in 5 different time schemes
- Day and time counter
  - 1) Used with a base timer, the day and time counter can be used as a 65000 day + minute + second counter.

#### ■High-speed Clock Counter

- 1) Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).
- 2) Can generate output real-time.

#### ■ Serial Interfaces

- SIO0: 8-bit synchronous serial interface
  - 1) LSB first/MSB first made selectable
  - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle = 4/3tCYC)
  - 3) Automatic continuous data transmission (1 to 256 bits specifiable in 1-bit units, suspension and resumption of data transmission possible in 1-byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface
  - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
  - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
  - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
  - Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

#### ■UART1

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2 bits in continuous data transmission)
- Built-in baudrate generator

#### ■UART2

- Full duplex
- 7/8/9 bit data bits selectable
- 1 stop bit (2 bits in continuous data transmission)
- Built-in baudrate generator
- ■AD Converter: 12 bits × 15 channels
- ■PWM : Multi frequency 12-bit PWM × 2 channels
- Infrared Remote Control Receiver Circuit1
  - 1) Noise reduction function (Time constant of noise reduction filter: approx. 120µs, when selecting a 32.768kHz crystal oscillator as a reference clock)
  - 2) Supporting reception formats with a guide-pulse of half-clock/clock/none.
  - 3) Determines a end of reception by detecting a no-signal periods (No carrier). (Supports same reception format with a different bit length.)
  - 4) X'tal HOLD mode cancellation function

#### ■Infrared Remote Control Receiver Circuit2

- 1) Noise reduction function
  - (Time constant of noise reduction filter: approx.  $120\mu s$ , when selecting a 32.768kHz crystal oscillator as a reference clock.)
- 2) Supporting reception formats with a guide-pulse of half-clock/clock/none.
- 3) Determines a end of reception by detecting a no-signal periods (No carrier). (Supports same reception format with a different bit length.)
- 4) X'tal HOLD mode cancellation function

## ■Watchdog Timer

- 1) External RC watchdog timer
- 2) Interrupt and reset signals selectable

## ■Clock Output Function

- 1) Can output selected oscillation clock 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, or 1/64 as a system clock.
- 2) Can output the source oscillation clock for the sub clock.

## ■ Interrupt Source Flags

- 31 sources, 10 vector addresses
  - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
  - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

| No. | Vector Address | Level  | Interrupt Source                               |
|-----|----------------|--------|------------------------------------------------|
| 1   | 00003H         | X or L | INT0                                           |
| 2   | 0000BH         | X or L | INT1                                           |
| 3   | 00013H         | H or L | INT2/T0L/INT4/remote control receiver1         |
| 4   | 0001BH         | H or L | INT3/base timer/INT5/ remote control receiver2 |
| 5   | 00023H         | H or L | T0H/INT6                                       |
| 6   | 0002BH         | H or L | T1L/T1H/INT7                                   |
| 7   | 00033H         | H or L | SIO0/UART1 receive/ UART2 receive/T8L/T8H      |
| 8   | 0003BH         | H or L | SIO1/UART1 transmit/ UART2 transmit            |
| 9   | 00043H         | H or L | ADC/MIC/T6/T7/PWM4/PWM5                        |
| 10  | 0004BH         | H or L | Port 0/T4/T5                                   |

- Priority levels X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- IFLG (List of interrupt source flag function)
  - 1) Shows a list of interrupt source flags that caused a branching to a particular vector address.

#### ■Subroutine Stack Levels

• 4096/2048 levels maximum (The stack is allocated in RAM.)

#### ■High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
12 tCYC execution time)
24 bits ÷ 16 bits
12 tCYC execution time)
24 bits ÷ 16 bits
12 tCYC execution time)

#### ■Oscillation Circuits

- RC oscillation circuit (internal): For system clock
- CF oscillation circuit: For system clock, with internal Rf and external Rd
- Crystal oscillation circuit: For low-speed system clock, with internal Rf and external Rd
- Multifrequency RC oscillation circuit (internal): For system clock
  - 1) Adjustable in  $\pm 4\%$  (typ) increments from the selected center frequency.
  - 2) Measures the frequency of the source oscillation clock using the input signal from XT1 as the reference.

#### ■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2μs, 2.4μs, 4.8μs, 9.6μs, 19.2μs, 38.4μs, and 76.8μs (at a main clock rate of 10MHz).

## ■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation (Some parts of the serial transfer function stop operation).
  - 1) Oscillation is not stopped automatically.
  - 2) Canceled by a system reset or occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
  - 1) The CF, RC, X'tal, and multifrequency RC oscillators automatically stop operation.
  - 2) There are three ways of resetting the HOLD mode.
    - (1) Setting the reset pin to the low level
    - (2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
    - (3) Having an interrupt source established at port 0
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer and infrared remote controller circuit.
  - 1) The CF, RC, and multifrequency RC oscillators automatically stop operation.
  - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
  - 3) There are five ways of resetting the X'tal HOLD mode.
    - (1) Setting the reset pin to the low level
    - (2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
    - (3) Having an interrupt source established at port 0
    - (4) Having an interrupt source established in the base timer circuit
    - (5) Having an interrupt source established in the infrared remote control receiver circuit

#### ■On-chip Debugger Function

• Supports software debugging with the IC mounted on the target board.

#### ■Package Form

- QIP100E(14×20) : Pb-Free/Halogen Free type
- TQFP100(14×14) : Pb-Free/Halogen Free type [Under Development]

## **■**Development Tools

• On-chip Debugger: TCB87 TypeB +LC87F7Nxx A or TCB87 TypeC (3Lines Cable) +LC87F7NxxA

■Flash ROM Programming boards

| Package        | Programming Boards |
|----------------|--------------------|
| QIP100E(14×20) | W87FQ100           |
| TQFP100(14×14) | W87FSQ100          |

■Flash ROM Programmer

| Maker                                                         |                                         | Model                                                                                              | Supported Version             | Device                                 |  |
|---------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|--|
|                                                               | Single<br>Programmer                    | AF9709C                                                                                            | (Note 2)                      | LC87F7NP6A<br>LC87F7NJ2A<br>LC87F7NC8A |  |
| Flash Support Group, Inc<br>(FSG)                             | Gang                                    | AF9723/AF9723B(main unit)<br>(including models manufactured by<br>Ando Electric Co., Ltd.)         | (Note 2)                      | LC87F7NP6A                             |  |
|                                                               | Programmer                              | AF9833(unit) (including models manufactured by Ando Electric Co., Ltd.)                            | (Note 2)                      | LC87F7NJ2A<br>LC87F7NC8A               |  |
| Flash Support Group, Inc<br>(FSG)<br>+Our company<br>(Note 1) | In-circuit<br>Single/Gang<br>Programmer | AF9101/AF9103(main unit) (manufactured by FSG) SIB87 Type C (Interface Driver) (Our company model) | (Note 2)                      | LC87F7NP6A<br>LC87F7NJ2A<br>LC87F7NC8A |  |
|                                                               | Single/Gang<br>Programmer               | SKK Type B / Type C<br>(SanyoFWS)                                                                  | Application Version           | LC87F7NP6A                             |  |
| Our company                                                   | In-circuit<br>Single/Gang<br>Programmer | SKK-DBG Type B /Type C (SanyoFWS)                                                                  | Chip Data Version  2.44 later | LC87F7NJ2A<br>LC87F7NC8A               |  |

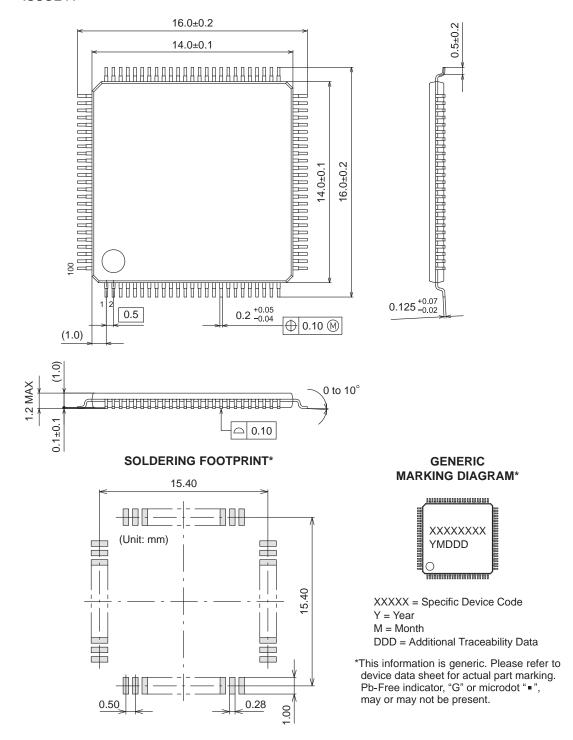
Contact information about the AF series:

Flash Support Group Company (TOA ELECTRONICS, Inc.)

Phone: 81-53-428-8380 E-mail: sales@j-fsg.co.jp

Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from our company (SIB87) together can give a PC-less, standalone on-board-programming capabilities.

Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or our company for the information.

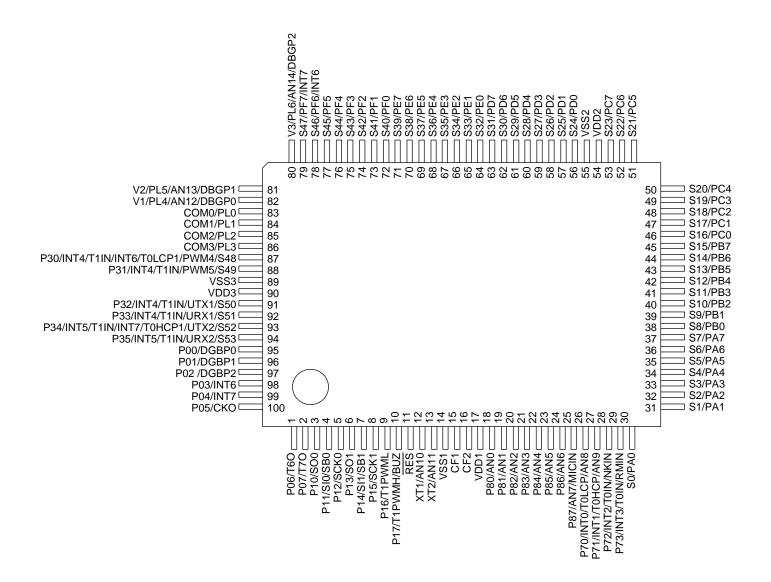

# **Package Dimensions**

unit: mm

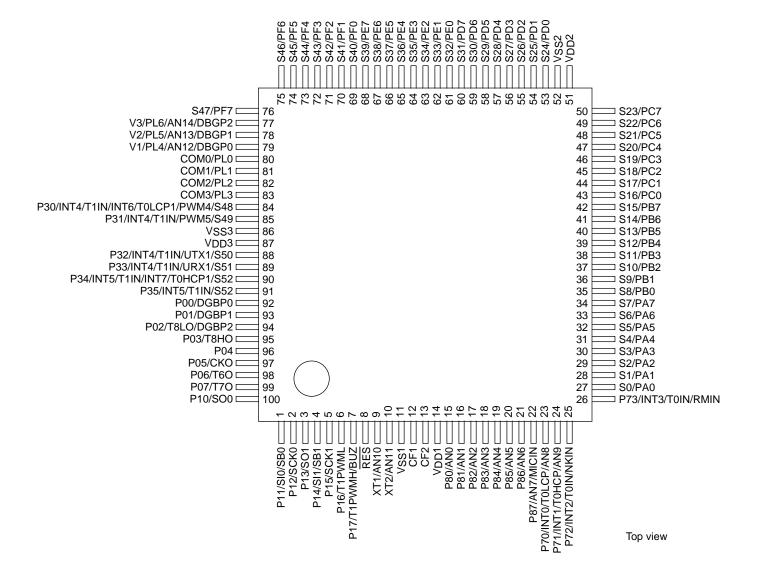
\*Package TQFP100(14×14) type is Under Development.

## TQFP100 14x14 / TQFP100

CASE 932AY ISSUE A




NOTE: The measurements are not to guarantee but for reference only.


\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## **Pin Assignment**

QIP100E(14×20), Pb-Free/Halogen Free type



TQFIP100(14×14), Pb-Free/Halogen Free type [Under Development]



# **Pin Description**

| Pin Name          | I/O |                |                     | D                   | escription           |                    |         | Option |
|-------------------|-----|----------------|---------------------|---------------------|----------------------|--------------------|---------|--------|
| V <sub>SS</sub> 1 | -   | - power sup    | ply pin             |                     |                      |                    |         | No     |
| V <sub>SS</sub> 2 |     |                |                     |                     |                      |                    |         |        |
| V <sub>SS</sub> 3 |     |                |                     |                     |                      |                    |         |        |
| V <sub>DD</sub> 1 | -   | + power sup    | ply pin             |                     |                      |                    |         | No     |
| V <sub>DD</sub> 2 |     |                |                     |                     |                      |                    |         |        |
| V <sub>DD</sub> 3 |     |                |                     |                     |                      |                    |         |        |
| Port 0            | I/O | • 8-bit I/O po | ort                 |                     |                      |                    |         | Yes    |
| P00 to P07        |     | • I/O specifia | able in 1-bit units |                     |                      |                    |         |        |
|                   |     | • Pull-up res  | istors can be turn  | ed on and off in 1  | -bit units.          |                    |         |        |
|                   |     | • Input for H  | OLD release         |                     |                      |                    |         |        |
|                   |     | • Input for po | ort 0 interrupt     |                     |                      |                    |         |        |
|                   |     | Shared pin     | S                   |                     |                      |                    |         |        |
|                   |     | P03: INT6      | input               |                     |                      |                    |         |        |
|                   |     | P04: INT7      | input               |                     |                      |                    |         |        |
|                   |     | P05: Clock     | output (system o    | clock/can selected  | from sub clock)      |                    |         |        |
|                   |     | P06: Timer     | 6 toggle output     |                     |                      |                    |         |        |
|                   |     | P07: Timer     | 7 toggle output     |                     |                      |                    |         |        |
|                   |     | On chip de     | bugger pins: DB0    | GP0 to DBGP2(P      | 00 to P02)           |                    |         |        |
| Port 1            | I/O | • 8-bit I/O po | ort                 |                     |                      |                    |         | Yes    |
| P10 to P17        |     | I/O specifia   | able in 1-bit units |                     |                      |                    |         |        |
|                   |     | Pull-up res    | istors can be turn  | ed on and off in 1  | -bit units.          |                    |         |        |
|                   |     | Shared pin     | S                   |                     |                      |                    |         |        |
|                   |     |                | data output         |                     |                      |                    |         |        |
|                   |     |                | data input/bus I/0  | )                   |                      |                    |         |        |
|                   |     | P12: SIO0      |                     |                     |                      |                    |         |        |
|                   |     |                | data output         |                     |                      |                    |         |        |
|                   |     |                | data input/bus I/0  | 0                   |                      |                    |         |        |
|                   |     | P15: SIO1      |                     |                     |                      |                    |         |        |
|                   |     |                | 1PWML output        |                     |                      |                    |         |        |
|                   |     |                | 1PWMH output/       | beeper output       |                      |                    |         |        |
| Port 3            | I/O | • 6-bit I/O po |                     |                     |                      |                    |         | Yes    |
| P30 to P35        |     | _              | utput for LCD       |                     |                      |                    |         |        |
|                   |     | -              | ible in 1-bit units | ad an and aff in 1  | hit unita            |                    |         |        |
|                   |     | Shared pin     |                     | ed on and off in 1  | -Dit units.          |                    |         |        |
|                   |     |                |                     | .D release input/ti | mor 1 ovent input    | t/timor OL capturo | input/  |        |
|                   |     | F 30 10 F 30   | timer 0H captur     | =                   | iller i everit ilipu | viillei oL capiule | iliput/ |        |
|                   |     | P34 to P35     | · ·                 | .D release input/ti | mer 1 event innut    | t/timer 01_capture | innut/  |        |
|                   |     | 10110100       | timer 0H captur     | =                   | mor rovom mpa        | vamor oz oaptaro   | При     |        |
|                   |     | P30: PWM       |                     | out/timer 0L captu  | re 1 input           |                    |         |        |
|                   |     | P31: PWM       |                     |                     |                      |                    |         |        |
|                   |     | P32: UAR1      | •                   |                     |                      |                    |         |        |
|                   |     | P33: UAR1      |                     |                     |                      |                    |         |        |
|                   |     | P34: UART      | 2 transmit/INT7 i   | nput/timer 0H cap   | ture 1 input         |                    |         |        |
|                   |     | P35: UART      |                     |                     | ·                    |                    |         |        |
|                   |     | Interrupt ack  | nowledge type       |                     |                      |                    |         |        |
|                   |     |                |                     | F.1"                | Rising &             |                    |         |        |
|                   |     |                | Rising              | Falling             | Falling              | H level            | L level |        |
|                   |     | INT4           | enable              | enable              | enable               | disable            | disable |        |
|                   |     | INT5           | enable              | enable              | enable               | disable            | disable |        |
|                   |     | INT6           | enable              | enable              | enable               | disable            | disable |        |
|                   |     | INT7           | enable              | enable              | enable               | disable            | disable |        |
|                   |     |                |                     |                     |                      |                    | _       |        |

Continued on next page.

Continued from preceding page.

| Pin Name                | I/O    | Description                                                                     | Option  |
|-------------------------|--------|---------------------------------------------------------------------------------|---------|
| Port 7                  | I/O    | • 4-bit I/O port                                                                | No      |
| P70 to P73              |        | • I/O specifiable in 1-bit units                                                |         |
|                         |        | Pull-up resistors can be turned on and off in 1-bit units.                      |         |
|                         |        | Shared pins                                                                     |         |
|                         |        | P70: INT0 input/HOLD release input/timer 0L capture input/watchdog timer ou     | put     |
|                         |        | P71: INT1 input/HOLD release input/timer 0H capture input                       |         |
|                         |        | P72: INT2 input/HOLD release input/timer 0 event input/timer 0L capture input   | 1       |
|                         |        | high speed clock counter input                                                  |         |
|                         |        | P73: INT3 input (with noise filter)/timer 0 event input/timer 0H capture input/ |         |
|                         |        | remote control receiver input                                                   |         |
|                         |        | AD converter input ports: AN8 (P70), AN9 (P71)                                  |         |
|                         |        | Interrupt acknowledge type                                                      |         |
|                         |        | Rising &                                                                        |         |
|                         |        | Rising Falling Falling H level                                                  | L level |
|                         |        | INTO enable enable disable enable                                               | enable  |
|                         |        | INT1 enable enable disable enable                                               | enable  |
|                         |        | INT2 enable enable disable                                                      | disable |
|                         |        | INT3 enable enable enable disable                                               | disable |
|                         |        | 1110 Chable Chable Chable disable                                               | disable |
| Port 8                  | I/O    | • 8-bit I/O port                                                                | No      |
| P80 to P87              | - ""   | • I/O specifiable in 1-bit units                                                |         |
| 1 00 10 1 07            |        | Shared pins                                                                     |         |
|                         |        | AD converter input ports: AN0 to AN7                                            |         |
|                         |        | Small signal detector input port: MICIN (P87)                                   |         |
| S0/PA0 to               | I/O    | Segment output for LCD                                                          | No      |
| S7/PA7                  | 1/0    | Can be used as general-purpose I/O port (PA)                                    | 110     |
| S8/PB0 to               | I/O    | Segment output for LCD                                                          | No      |
| S15/PB7                 | 1/0    | Can be used as general-purpose I/O port (PB)                                    | 110     |
| S16/PC0 to              | I/O    | Segment output for LCD                                                          | No      |
| \$10/PC0 to<br>\$23/PC7 | 1/0    |                                                                                 | NO      |
|                         | 1/0    | Can be used as general-purpose I/O port (PC)                                    | No      |
| S24/PD0 to              | I/O    | Segment output for LCD     Con he word on general numbers I/O part (PD)         | No      |
| S31/PD7                 | 1/0    | Can be used as general-purpose I/O port (PD)                                    |         |
| S32/PE0 to              | I/O    | Segment output for LCD     Con he would be record by record (PC)                | No      |
| S39/PE7<br>S40/PF0 to   | 1/0    | Can be used as general-purpose I/O port (PE)                                    | No      |
|                         | I/O    | Segment output for LCD     Con he wood on property suppose I/O part (PE)        | No      |
| S47/PF7                 |        | Can be used as general-purpose I/O port (PF)                                    |         |
|                         |        | PF6: INT6 input                                                                 |         |
| 00140/010               | 1/0    | PF7: INT7 input                                                                 |         |
| COM0/PL0 to             | I/O    | Common output for LCD     Combon output for LCD                                 | No      |
| COM3/PL3                |        | Can be used as general-purpose input port (PL)                                  |         |
| V1/PL4 to               | I/O    | LCD output bias power supply                                                    | No      |
| V3/PL6                  |        | Can be used as general-purpose input port (PL)                                  |         |
|                         |        | Shared pins                                                                     |         |
|                         |        | AD converter input ports: AN12 (V1) to AN14 (V3)                                |         |
|                         |        | On-chip debugger pins: DBGP0 (V1) to DBGP2 (V3)                                 |         |
| RES                     | Input  | Reset pin                                                                       | No      |
| XT1                     | Input  | • 32.768kHz crystal oscillator input pin                                        | No      |
|                         |        | Shared pins                                                                     |         |
|                         |        | General-purpose input port                                                      |         |
|                         |        | Must be connected to V <sub>DD</sub> 1 if not to be used.                       |         |
|                         |        | AD converter input port: AN10                                                   |         |
| XT2                     | I/O    | 32.768kHz crystal oscillator output pin                                         | No      |
| <u>.</u>                | 1,0    | Shared pins                                                                     |         |
|                         |        | ·                                                                               |         |
|                         |        | General-purpose I/O port                                                        |         |
|                         |        | Must be set for oscillation and kept open if not to be used.                    |         |
| CE4                     | la     | AD converter input port: AN11                                                   |         |
| CF1                     | Input  | Ceramic resonator input pin                                                     | No      |
| CF2                     | Output | Ceramic resonator output pin                                                    | No      |

# **Absolute Maximum Ratings** at $Ta = \underline{25}^{\circ}C$ , $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

|                           |                       |                     |                                                         | - 7                                                   | 55-                 |                 | Specif | fication             |       |
|---------------------------|-----------------------|---------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------|-----------------|--------|----------------------|-------|
|                           | Parameter             | Symbol              | Pin/Remarks                                             | Conditions                                            | V <sub>DD</sub> [V] | min             | typ    | max                  | unit  |
| Max                       | kimum supply voltage  | V <sub>DD</sub> max | V <sub>DD</sub> 1, V <sub>DD</sub> 2, V <sub>DD</sub> 3 | V <sub>DD</sub> 1=V <sub>DD</sub> 2=V <sub>DD</sub> 3 | 5511                | -0.3            |        | +4.6                 |       |
| sup                       | oply voltage for<br>D | VLCD                | V1/PL4, V2/PL5,<br>V3/PL6                               | V <sub>DD</sub> 1=V <sub>DD</sub> 2=V <sub>DD</sub> 3 |                     | -0.3            |        | V <sub>DD</sub>      |       |
| Inp                       | ut voltage            | V <sub>I</sub> (1)  | Port L<br>XT1, CF1, RES                                 |                                                       |                     | -0.3            |        | V <sub>DD</sub> +0.3 | V     |
|                           |                       | V <sub>I</sub> (2)  | V <sub>DD</sub> 2, V <sub>DD</sub> 3                    |                                                       |                     | V <sub>SS</sub> |        | V <sub>DD</sub> +0.1 |       |
| Inp                       | ut/output voltage     | V <sub>IO</sub> (1) | Ports 0, 1, 3, 7, 8<br>Ports A, B, C, D, E, F,<br>XT2   |                                                       |                     | -0.3            |        | V <sub>DD</sub> +0.3 |       |
|                           | Peak output current   | IOPH(1)             | Ports 0, 1, 32 to 35                                    | CMOS output selected     Current at each pin          |                     | -10             |        |                      |       |
|                           |                       | IOPH(2)             | Ports 30, 31                                            | CMOS output selected     Current at each pin          |                     | -20             |        |                      |       |
|                           |                       | IOPH(3)             | Ports 71 to 73                                          | Current at each pin                                   |                     | -5              |        |                      |       |
|                           |                       | IOPH(4)             | Ports A, B, C, D, E, F                                  | Current at each pin                                   |                     | -5              |        |                      |       |
| High level output current | Mean output current   | IOMH(1)             | Ports 0, 1, 32 to 35                                    | CMOS output selected     Current at each pin          |                     | -7.5            |        |                      |       |
|                           | (Note 1-1)            | IOMH(2)             | Ports 30, 31                                            | CMOS output selected     Current at each pin          |                     | -15             |        |                      |       |
| no le                     |                       | IOMH(3)             | Ports 71 to 73                                          | Current at each pin                                   |                     | -3              |        |                      |       |
| leve                      |                       | IOMH(4)             | Ports A, B, C, D, E, F                                  | Current at each pin                                   |                     | -3              |        |                      |       |
| _                         | Total output          | ΣΙΟΑΗ(1)            | Ports 0, 1, 32 to 35                                    | Total of all pins                                     |                     | -25             |        |                      |       |
|                           | current               | ΣΙΟΑΗ(2)            | Ports 30, 31                                            | Total of all pins                                     |                     | -25             |        |                      |       |
|                           |                       | ΣΙΟΑΗ(3)            | Ports 0, 1, 3                                           | Total of all pins                                     |                     | -45             |        |                      |       |
|                           |                       | ΣΙΟΑΗ(4)            | Ports 71 to 73                                          | Total of all pins                                     |                     | -5              |        |                      |       |
|                           |                       | ΣΙΟΑΗ(5)            | Ports A, B, C                                           | Total of all pins                                     |                     | -25             |        |                      |       |
|                           |                       | ΣΙΟΑΗ(6)            | Ports D, E, F                                           | Total of all pins                                     |                     | -25             |        |                      |       |
|                           |                       | ΣΙΟΑΗ(7)            | Ports A, B, C, D, E, F                                  | Total of all pins                                     |                     | -45             |        |                      | mA    |
|                           | Peak output           | IOPL(1)             | Ports 0, 1, 32 to 35                                    | Current at each pin                                   |                     |                 |        | 20                   | 11171 |
|                           | current               | IOPL(2)             | Ports 30, 31                                            | Current at each pin                                   |                     |                 |        | 30                   |       |
|                           |                       | IOPL(3)             | Ports 7, 8<br>XT2                                       | Current at each pin                                   |                     |                 |        | 10                   |       |
|                           |                       | IOPL(4)             | Ports A, B, C, D, E, F                                  | Current at each pin                                   |                     |                 |        | 10                   |       |
|                           | Mean output           | IOML(1)             | Ports 0, 1, 32 to 35                                    | Current at each pin                                   |                     |                 |        | 15                   |       |
| ent                       | current               | IOML(2)             | Ports 30, 31                                            | Current at each pin                                   |                     |                 |        | 20                   |       |
| Low level output current  | (Note 1-1)            | IOML(3)             | Ports 7, 8<br>XT2                                       | Current at each pin                                   |                     |                 |        | 7.5                  |       |
| l ou                      |                       | IOML(4)             | Ports A, B, C, D, E, F                                  | Current at each pin                                   |                     |                 |        | 7.5                  |       |
| leve                      | Total output          | ΣOAL(1)             | Ports 0,1,32 to 35                                      | Total of all pins                                     |                     |                 |        | 45                   |       |
| Low                       | current               | ΣIOAL(2)            | Ports 30, 31                                            | Total of all pins                                     |                     |                 |        | 45                   |       |
|                           |                       | ΣIOAL(3)            | Ports 0, 1, 3                                           | Total of all pins                                     |                     |                 |        | 80                   |       |
|                           |                       | ΣIOAL(4)            | Ports 7, 8<br>XT2                                       | Total of all pins                                     |                     |                 |        | 20                   |       |
|                           |                       | ΣIOAL(5)            | Ports A, B, C                                           | Total of all pins                                     |                     |                 |        | 45                   |       |
|                           |                       | ΣIOAL(6)            | Ports D, E, F                                           | Total of all pins                                     |                     |                 |        | 45                   |       |
|                           |                       | ΣIOAL(7)            | Ports A, B, C, D, E, F                                  | Total of all pins                                     |                     |                 |        | 80                   |       |
| Ма                        | ximum power           | Pd max              | QIP100E(14×20)                                          | Ta=-40 to +85°C                                       |                     |                 |        | 215                  |       |
| dis                       | sipation              |                     | TQFP100(14×14)                                          | Ta=-40 to +85°C                                       |                     |                 |        | TBD                  | mW    |
|                           | erating ambient       | Topr                |                                                         |                                                       |                     | -40             |        | +85                  |       |
|                           | orage ambient         | Tstg                |                                                         |                                                       |                     | -55             |        | +125                 | °C    |

Note 1-1: The mean output current is a mean value measured over 100ms.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

# Allowable Operating Range at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0$ V

| Danamatan                              | O. wash ad          | Dia/Damada                                           | O and distance                                                                                  |                     |                            | Specifi | cation                     |      |
|----------------------------------------|---------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------|----------------------------|---------|----------------------------|------|
| Parameter                              | Symbol              | Pin/Remarks                                          | Conditions                                                                                      | V <sub>DD</sub> [V] | min                        | typ     | max                        | unit |
| Operating                              | V <sub>DD</sub> (1) | $V_{DD}1=V_{DD}2=V_{DD}3$                            | 0.167μs≤tCYC≤200μs                                                                              |                     | 2.7                        |         | 3.6                        |      |
| supply voltage<br>(Note 2-1)           |                     |                                                      | 0.356μs≤tCYC≤200μs                                                                              |                     | 2.5                        |         | 3.6                        |      |
| Memory<br>sustaining<br>supply voltage | VHD                 | V <sub>DD</sub> 1                                    | RAM and register contents sustained in HOLD mode.                                               |                     | 2.0                        |         | 3.6                        |      |
| High level input voltage               | V <sub>IH</sub> (1) | Ports 0, 3, 8 Ports A, B, C, D, E, F Port L          | Output disabled                                                                                 | 2.5 to 3.6          | 0.3V <sub>DD</sub><br>+0.7 |         | V <sub>DD</sub>            |      |
|                                        | V <sub>IH</sub> (2) | Port 1 Ports 71 to 73 P70 port input/ interrupt side | Output disabled     When INT1VTSL=0     (P71 only)                                              | 2.5 to 3.6          | 0.3V <sub>DD</sub><br>+0.7 |         | V <sub>DD</sub>            |      |
|                                        | V <sub>IH</sub> (3) | P71 interrupt side                                   | Output disabled     When INT1VTSL=1                                                             | 2.5 to 3.6          | 0.85V <sub>DD</sub>        |         | $V_{DD}$                   |      |
|                                        | V <sub>IH</sub> (4) | P87 small signal input side                          | Output disabled                                                                                 | 2.5 to 3.6          | 0.75V <sub>DD</sub>        |         | V <sub>DD</sub>            |      |
|                                        | V <sub>IH</sub> (5) | P70 watchdog timer side                              | Output disabled                                                                                 | 2.5 to 3.6          | 0.9V <sub>DD</sub>         |         | V <sub>DD</sub>            | V    |
|                                        | V <sub>IH</sub> (6) | XT1, XT2, CF1, RES                                   |                                                                                                 | 2.5 to 3.6          | 0.75V <sub>DD</sub>        |         | $V_{DD}$                   |      |
| Low level input voltage                | V <sub>IL</sub> (1) | Ports 0, 3, 8 Ports A, B, C, D, E, F Port L          | Output disabled                                                                                 | 2.5 to 3.6          | V <sub>SS</sub>            |         | 0.2V <sub>DD</sub>         |      |
|                                        | V <sub>IL</sub> (2) | Port 1 Ports 71 to 73 P70 port input/ interrupt side | Output disabled    When INT1VTSL=0    (P71 only)                                                | 2.5 to 3.6          | V <sub>SS</sub>            |         | 0.2V <sub>DD</sub>         |      |
|                                        | V <sub>IL</sub> (3) | P71 interrupt side                                   | Output disabled    When INT1VTSL=1                                                              | 2.5 to 3.6          | V <sub>SS</sub>            |         | 0.45V <sub>DD</sub>        |      |
|                                        | V <sub>IL</sub> (4) | P87 small signal input side                          | Output disabled                                                                                 | 2.5 to 3.6          | V <sub>SS</sub>            |         | 0.25V <sub>DD</sub>        |      |
|                                        | V <sub>IL</sub> (5) | P70 watchdog timer side                              | Output disabled                                                                                 | 2.5 to 3.6          | V <sub>SS</sub>            |         | 0.8V <sub>DD</sub><br>-1.0 |      |
|                                        | V <sub>IL</sub> (6) | XT1, XT2, CF1, RES                                   |                                                                                                 | 2.5 to 3.6          | V <sub>SS</sub>            |         | 0.25V <sub>DD</sub>        |      |
| Instruction cycle                      | tCYC                |                                                      |                                                                                                 | 2.7 to 3.6          | 0.167                      |         | 200                        |      |
| time<br>(Note 2-2)                     |                     |                                                      |                                                                                                 | 2.5 to 3.6          | 0.356                      |         | 200                        | μS   |
| External system clock frequency        | FEXCF(1)            | CF1                                                  | CF2 pin open     System clock frequency division ratio=1/1     External system clock duty=50±5% | 2.5 to 3.6          | 0.1                        |         | 18                         | MHz  |
|                                        |                     |                                                      | CF2 pin open     System clock frequency division ratio=1/2                                      | 2.5 to 3.6          | 0.2                        |         | 36                         |      |

Note 2-1: V<sub>DD</sub> must be held greater than or equal to 3.0V in the flash ROM onboard programming mode.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Continued on next page.

Continued from preceding page.

| Parameter                     | Symbol              | Pin/Remarks                                                           | Conditions                                                                  |                     |                      | Specific           | ation |     |
|-------------------------------|---------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|----------------------|--------------------|-------|-----|
| raiametei                     | Syllibol            | FIII/Nemarks                                                          | Conditions                                                                  | V <sub>DD</sub> [V] | min                  | typ                | max   | uni |
| High level output             | V <sub>OH</sub> (1) | Ports 0, 1, 32 to 35                                                  | I <sub>OH</sub> =-0.4mA                                                     | 2.5 to 3.6          | V <sub>DD</sub> -0.4 |                    |       |     |
| voltage                       | V <sub>OH</sub> (2) | Ports 30, 31                                                          | I <sub>OH</sub> =-1.6mA                                                     | 2.5 to 3.6          | V <sub>DD</sub> -0.4 |                    |       |     |
|                               | V <sub>OH</sub> (3) | Ports 71 to 73                                                        | I <sub>OH</sub> =-0.4mA                                                     | 2.5 to 3.6          | V <sub>DD</sub> -0.4 |                    |       |     |
|                               | V <sub>OH</sub> (4) | Ports A, B, C<br>Ports D, E, F                                        | I <sub>OH</sub> =-0.4mA                                                     | 2.5 to 3.6          | V <sub>DD</sub> -0.4 |                    |       |     |
| Low level output voltage      | V <sub>OL</sub> (1) | Ports 0, 1, 32 to 35<br>Ports 30, 31<br>(PWM function<br>output mode) | I <sub>OL</sub> =1.6mA                                                      | 2.5 to 3.6          |                      |                    | 0.4   |     |
|                               | V <sub>OL</sub> (2) | Ports 30, 31<br>(Port function<br>output mode)                        | I <sub>OL</sub> =5mA                                                        | 2.5 to 3.6          |                      |                    | 0.4   | V   |
|                               | V <sub>OL</sub> (3) | Ports 7, 8<br>XT2                                                     | I <sub>OL</sub> =1.6mA                                                      | 2.5 to 3.6          |                      |                    | 0.4   | İ   |
|                               | V <sub>OL</sub> (4) | Ports A, B, C<br>Ports D, E, F                                        | I <sub>OL</sub> =1.6mA                                                      | 2.5 to 3.6          |                      |                    | 0.4   |     |
| LCD output voltage regulation | VODLS               | S0 to S53                                                             | I <sub>O</sub> =0mA     VLCD, 2/3VLCD, 1/3VLCD level output     See Fig. 8. | 2.5 to 3.6          | 0                    |                    | ±0.2  |     |
|                               | VODLC               | COM0 to COM3                                                          | IO=0mA     VLCD, 2/3VLCD, 1/2VLCD,     1/3VLCD level output     See Fig. 8. | 2.5 to 3.6          | 0                    |                    | ±0.2  |     |
| LCD bias resistor             | RLCD(1)             | Resistance per one bias resister                                      | See Fig. 8.                                                                 | 2.5 to 3.6          |                      | 60                 |       |     |
|                               | RLCD(2)             | Resistance per<br>one bias resister<br>1/2R mode                      | See Fig. 8.                                                                 | 2.5 to 3.6          |                      | 30                 |       | kΩ  |
| Resistance of pull-up MOS Tr. | Rpu(1)              | Ports 0, 1, 3, 7<br>Ports A, B, C, D, E,<br>F                         | V <sub>OH</sub> =0.9V <sub>DD</sub>                                         | 2.5 to 3.6          | 18                   | 50                 | 50    |     |
| Hysterisis voltage            | VHYS(1)             | Ports 1, 7                                                            |                                                                             | 2.5 to 3.6          |                      | 0.1V <sub>DD</sub> |       | V   |
|                               | VHYS(2)             | P87 small signal input side                                           |                                                                             | 2.5 to 3.6          |                      | 0.1V <sub>DD</sub> |       | V   |
| Pin capacitance               | СР                  | All pins                                                              | • For pins other than that under test:  VIN=VSS • f=1MHz • Ta=25°C          | 2.5 to 3.6          |                      | 10                 |       | pF  |
| Input sensitivity             | Vsen                | P87 small signal input side                                           |                                                                             | 2.5 to 3.6          | 0.12V <sub>DD</sub>  |                    |       | Vpp |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Serial I/O Characteristics at  $Ta=-40^{\circ}C$  to  $+85^{\circ}C$ ,  $V_{SS}1=V_{SS}2=V_{SS}3=0V$ ,  $0.190\mu s \le tCYC \le 200\mu s$  SIO0 Serial I/O Characteristics (Note 4-1-1) at  $V_{DD}=2.7~V$  to 3.6V,  $0.190\mu s \le tCYC \le 200\mu s$ 

|              | D.                         | arameter                                                        | Symbol                                  | Pin/Remarks           | Conditions                                                                               |                     |                    | Specif | fication                    |      |       |  |
|--------------|----------------------------|-----------------------------------------------------------------|-----------------------------------------|-----------------------|------------------------------------------------------------------------------------------|---------------------|--------------------|--------|-----------------------------|------|-------|--|
|              | Г                          | arameter                                                        | Symbol                                  | FIII/IXeIIIaiks       | Conditions                                                                               | V <sub>DD</sub> [V] | min                | typ    | max                         | unit |       |  |
|              |                            | Frequency                                                       | tSCK(1)                                 | SCK0(P12)             | See Fig. 6.                                                                              |                     | 2                  |        |                             |      |       |  |
|              | ¥                          | Low level pulse width                                           | tSCKL(1)                                |                       |                                                                                          |                     | 1                  |        |                             |      |       |  |
|              | put cloc                   | High level pulse width                                          | tSCKH(1)                                |                       |                                                                                          | 2.5 to 3.6          | 1                  |        |                             |      |       |  |
| clock        | n                          |                                                                 | tSCKHA(1)                               |                       | Continuous data<br>transmission/reception mode     See Fig. 6.<br>(Note 4-1-2)           |                     | 4                  |        |                             | tCYC |       |  |
| Serial clock |                            | Frequency                                                       | tSCK(2)                                 | SCK0(P12)             | CMOS output selected     See Fig. 6.                                                     |                     | 4/3                |        |                             |      |       |  |
|              | ž                          | Low level pulse width                                           | tSCKL(2)                                |                       |                                                                                          | ļ                   |                    |        | 1/2                         |      | 12016 |  |
|              | tput clo                   | Your pulse width High level pulse width  High level pulse width | tSCKH(2)                                |                       |                                                                                          | 2.5 to 3.6          | to 3.6             |        | tSCK                        |      |       |  |
|              | nO                         |                                                                 | tSCKHA(2)                               |                       | Continuous data     transmission/reception mode     CMOS output selected     See Fig. 6. |                     | tSCKH(2)<br>+2tCYC |        | tSCKH(2)<br>+(10/3)<br>tCYC | tCYC |       |  |
| input        | Da                         | ta setup time                                                   | tsDI(1)                                 | SB0(P11),<br>SI0(P11) |                                                                                          |                     | 0.03               |        |                             |      |       |  |
| Serial input | Da                         | ta hold time                                                    | thDI(1)                                 |                       | • See Fig. 6.                                                                            | 2.5 to 3.6          | 0.03               |        |                             |      |       |  |
|              | clock                      | Output<br>delay time                                            | tdD0(1)                                 | SO0(P10),<br>SB0(P11) | Continuous data<br>transmission/reception mode<br>(Note 4-1-3)                           |                     |                    |        | (1/3)tCYC<br>+0.05          | μS   |       |  |
| l output     | Serial output Output clock | tdD0(2)                                                         | Synchronous 8-bit mode     (Note 4-1-3) | 2.5 to 3.6            |                                                                                          |                     | 1tCYC<br>+0.05     |        |                             |      |       |  |
| Seria        |                            |                                                                 | tdD0(3)                                 |                       | (Note 4-1-3)                                                                             | _ 2.5 to 3.6        |                    |        | (1/3)tCYC<br>+0.05          |      |       |  |

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SI0RUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.

# AD Converter Characteristics at $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

#### <12bits AD Converter Mode at Ta =-30 to +70°C>

|                            | 0 1 1  | D: /D                               | 0 - 1111                        |                     | Specification   |     |                 |      |
|----------------------------|--------|-------------------------------------|---------------------------------|---------------------|-----------------|-----|-----------------|------|
| Parameter                  | Symbol | Pin/Remarks                         | Conditions                      | V <sub>DD</sub> [V] | min             | typ | max             | unit |
| Resolution                 | N      | AN0(P80) to                         |                                 | 2.5 to 3.6          |                 | 12  |                 | bit  |
| Absolute accuracy          | - '    | AN7(P87),<br>AN8(P70),<br>AN9(P71), | (Note 6-1)                      | 2.5 to 3.6          |                 |     | ±16             | LSB  |
| Conversion time            | tCAD   | AN9(P71),                           | See Conversion time calculation | 3.0 to 3.6          | 64              |     | 115             |      |
|                            |        | AN10(XT1),<br>AN11(XT2)             | formulas.<br>(Note 6-2)         | 2.7 to 3.6          | 128             |     | 230             | μS   |
|                            |        | ANTI(X12)                           |                                 | 2.5 to 3.6          | 256             |     | 460             |      |
| Analog input voltage range | VAIN   |                                     |                                 |                     | V <sub>SS</sub> |     | V <sub>DD</sub> | V    |
| Analog port input current  | IAINH  |                                     | VAIN=V <sub>DD</sub>            | 2.5 to 3.6          |                 |     | 1               |      |
|                            | IAINL  |                                     | VAIN=V <sub>SS</sub>            | 2.5 to 3.6          | -1              |     |                 | μА   |

#### <8bits AD Converter Mode at Ta =-30 to +70°C>

| Danamatan                  | O. mah ad | Dis /D a see a dea                  | O a malifica ma                 |                     | Specification   |     |                 |      |
|----------------------------|-----------|-------------------------------------|---------------------------------|---------------------|-----------------|-----|-----------------|------|
| Parameter                  | Symbol    | Pin/Remarks                         | Conditions                      | V <sub>DD</sub> [V] | min             | typ | max             | unit |
| Resolution                 | N         | AN0(P80) to                         |                                 | 2.5 to 3.6          |                 | 8   |                 | bit  |
| Absolute accuracy          | ET        | AN7(P87),<br>AN8(P70),<br>AN9(P71), | (Note 6-1)                      | 2.5 to 3.6          |                 |     | ±1.5            | LSB  |
| Conversion                 | TCAD      | ` '                                 | See Conversion time calculation | 3.0 to 3.6          | 39              |     | 71              |      |
| time                       |           | AN10(XT1),<br>AN11(XT2)             | formulas.                       | 2.7 to 3.6          | 79              |     | 140             | μS   |
|                            |           | ANTI(X12)                           | (Note 6-2)                      | 2.5 to 3.6          | 157             |     | 280             |      |
| Analog input voltage range | VAIN      |                                     |                                 |                     | V <sub>SS</sub> |     | V <sub>DD</sub> | V    |
| Analog port                | IAINH     |                                     | VAIN=V <sub>DD</sub>            | 2.5 to 3.6          |                 |     | 1               |      |
| input current              | IAINL     |                                     | VAIN=VSS                        | 2.5 to 3.6          | -1              |     |                 | μА   |

#### <Conversion time calculation formulas>

12bits AD Converter Mode:  $tCAD(Conversion\ time) = ((52/(division\ ratio)) + 2) \times (1/3) \times tCYC$ 8bits AD Converter Mode:  $tCAD(Conversion\ time) = ((32/(division\ ratio)) + 2) \times (1/3) \times tCYC$ 

- Note 6-1: The quantization error  $(\pm 1/2LSB)$  must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.
- Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

# $\textbf{Consumption Current Characteristics} \ \ \text{at Ta} = -40^{\circ}\text{C to} \ \ +85^{\circ}\text{C}, \ V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V_{SS} = 0.$

| Parameter                                           | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pin/                                                          | Conditions                                                                                                                                                                                                             |                     | Specification |      |      |      |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|------|------|------|--|
| Farameter                                           | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remarks                                                       | Conditions                                                                                                                                                                                                             | V <sub>DD</sub> [V] | min           | typ  | max  | unit |  |
| Normal mode<br>consumption<br>current<br>(Note 7-1) | IDDOP(1)                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>DD</sub> 1<br>=V <sub>DD</sub> 2<br>=V <sub>DD</sub> 3 | FmCF=18MHz ceramic oscillation mode FmX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side Internal RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio | 2.7 to 3.6          |               | 6.1  | 15.6 |      |  |
|                                                     | IDDOP(2)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               | FmCF=8MHz ceramic oscillation mode FmX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side Internal RC oscillation stopped. Frequency variable RC oscillation stopped.  1/1 frequency division ratio | 2.5 to 3.6          |               | 3.9  | 8.8  |      |  |
|                                                     | IDDOP(3)  • FmCF=0Hz (oscillation stopped) • FmX'tal=32.768kHz crystal oscillation mode • System clock set to internal RC oscillation • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio  IDDOP(4)  • FmCF=0Hz (oscillation stopped) • FmX'tal=32.768kHz crystal oscillation mode • Internal RC oscillation stopped. • System clock set to 10MHz with frequency variable RC oscillation • 1/1 frequency division ratio |                                                               | FmX'tal=32.768kHz crystal oscillation mode     System clock set to internal RC oscillation     Frequency variable RC oscillation stopped.                                                                              | 2.5 to 3.6          |               | 0.4  | 1.7  | mA   |  |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               | 2.5 to 3.6                                                                                                                                                                                                             |                     | 4.3           | 12.0 |      |      |  |
|                                                     | IDDOP(5)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               | FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz crystal oscillation mode Internal RC oscillation stopped. System clock set to 4MHz with frequency variable RC oscillation  1/1 frequency division ratio               | 2.5 to 3.6          |               | 2.1  | 6.6  |      |  |
|                                                     | IDDOP(6)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               | FmCF=0Hz (oscillation stopped) FmX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio  | 2.5 to 3.6          |               | 19.3 | 73   | μΑ   |  |

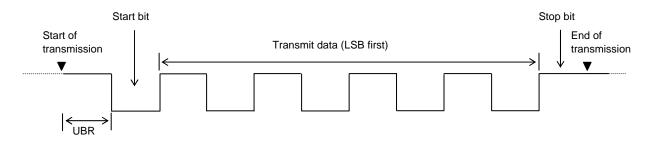
Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

Continued on next page.

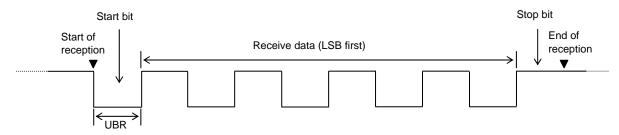
# F-ROM Write Characteristics at $Ta = +10^{\circ}\text{C}$ to $+55^{\circ}\text{C}$ , $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0\text{V}$

| D                           | 0        | D' (D             | O a malikia ma            |                     | Specification |     |     |      |  |
|-----------------------------|----------|-------------------|---------------------------|---------------------|---------------|-----|-----|------|--|
| Parameter                   | Symbol   | Pin/Remarks       | Conditions                | V <sub>DD</sub> [V] | min           | typ | max | unit |  |
| Onboard programming current | IDDFW(1) | V <sub>DD</sub> 1 | Without CPU current       | 3.0 to 3.6          |               | 7   | 11  | mA   |  |
| Programming                 | tFW(1)   |                   | 2K-byte erase operation   | 3.0 to 3.6          |               | 12  | 15  | ms   |  |
| time                        | tFW(2)   |                   | 2K-byte writing operation | 3.0 to 3.6          |               | 35  | 45  | μS   |  |

# **UART (Full Duplex) Operating Conditions** at Ta = +40 to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0$ V


| Danamatan     | 0      | D: /D       | O and distance |                     | Specification |     |        |      |  |
|---------------|--------|-------------|----------------|---------------------|---------------|-----|--------|------|--|
| Parameter     | Symbol | Pin/Remarks | Conditions     | V <sub>DD</sub> [V] | min           | typ | max    | unit |  |
| Transfer rate | UBR    | UTX(S32),   |                | 2.5 to 3.6          | 16/3          |     | 8192/3 | tCYC |  |
|               |        | URX(S33)    |                | 2.5 to 5.0          | 10/3          |     | 0132/3 | 1010 |  |

Data length: 7/8/9 bits (LSB first)


Stop bits: 1 bit (2-bit in continuous data transmission)

Parity bits: None

Example of 8-bit Data Transmission Mode Processing (Transmit Data=55H)



Example of 8-bit Data Reception Mode Processing (Receive Data=55H)



## Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

| Nominal Vendor |                 | Oscillator Name  | Circuit Constant |            |            |              | Operating<br>Voltage | Oscillation<br>Stabilization<br>Time |                                               | Remarks                                                 |  |
|----------------|-----------------|------------------|------------------|------------|------------|--------------|----------------------|--------------------------------------|-----------------------------------------------|---------------------------------------------------------|--|
| Frequency Name | C1<br>[pF]      |                  | C2<br>[pF]       | Rf1<br>[Ω] | Rd1<br>[Ω] | Range<br>[V] | typ<br>[ms]          | max<br>[ms]                          |                                               |                                                         |  |
| 400411         |                 | CSTCE18M0V51-R0  | (5)              | (5)        | OPEN       | 150          | 2.7 to 3.6           | 0.05                                 | 0.15                                          | Values shown in parentheses                             |  |
| 18MHz MURATA   | CSTLS18M0X51-B0 | (5)              | (5)              | OPEN       | 0          | 2.7 to 3.6   | 0.11                 | 0.33                                 | are capacitance included<br>in the oscillator |                                                         |  |
| 400411-        | MUDATA          | CSTCE10M00G52-R0 | (10)             | (10)       | OPEN       | 680          | 2.5 to 3.6           | 0.05                                 | 0.15                                          | Values shown in parentheses<br>are capacitance included |  |
| 10MHz          | MURATA          | CSTLS10M00G53-B0 | (15)             | (15)       | OPEN       | 1.5k         | 2.5 to 3.6           | 0.05                                 | 0.15                                          | in the oscillator                                       |  |
| OMI I=         | 8MHz MURATA     | CSTCE8M00G52-R0  | (10)             | (10)       | OPEN       | 680          | 2.5 to 3.6           | 0.05                                 | 0.15                                          | Values shown in parentheses<br>are capacitance included |  |
| 8IVIHZ         |                 | CSTLS8M00G53-B0  | (15)             | (15)       | OPEN       | 1.5k         | 2.5 to 3.6           | 0.05                                 | 0.15                                          | in the oscillator                                       |  |

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V<sub>DD</sub> goes above the operating voltage lower limit (see Figure 4).

## **Characteristics of a Sample Subsystem Clock Oscillator Circuit**

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillation Circuit with a Crystal Oscillation

| Nominal   |                  | Oscillator | Circuit Constant |            |            |            | Operating<br>Voltage | Oscillation Stabilization Time |            | B        |  |
|-----------|------------------|------------|------------------|------------|------------|------------|----------------------|--------------------------------|------------|----------|--|
| Frequency | Vendor Name      | Name       | C3<br>[pF]       | C4<br>[pF] | Rf2<br>[Ω] | Rd2<br>[Ω] | Range<br>[V]         | typ<br>[s]                     | max<br>[s] | Remarks  |  |
|           |                  |            | [br]             | [bL]       | [22]       | [22]       | [v]                  | [5]                            | [5]        |          |  |
| 32.768kHz | EPSON<br>TOYOCOM | MC-306     | 9                | 9          | Open       | 330k       | 2.5 to 3.6           | 1.0                            | 3.0        | CL=7.0pF |  |

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Fig. 4).

Caution: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

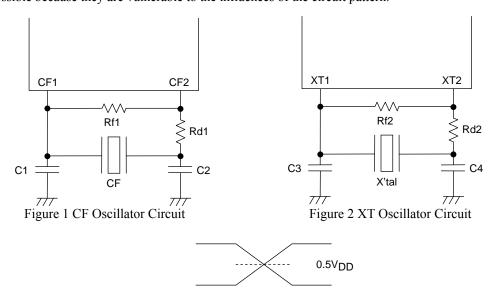
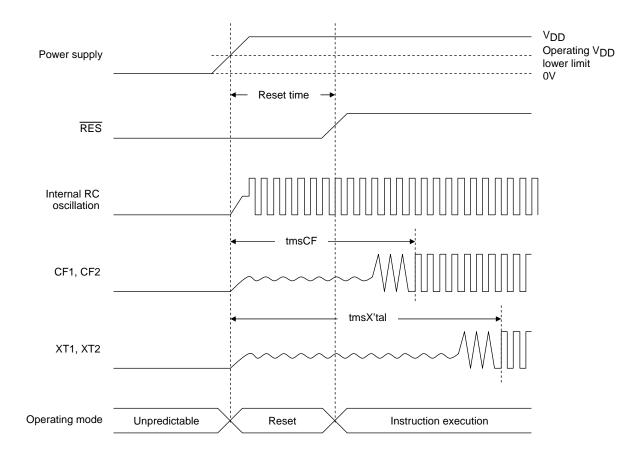
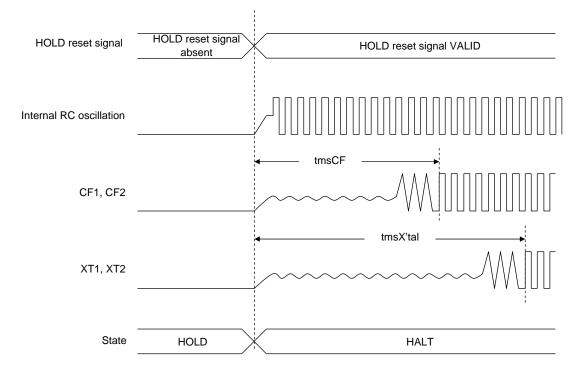





Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilization Time



HOLD Reset Signal and Oscillation Stabilization Time

Figure 4 Oscillation Stabilization Times

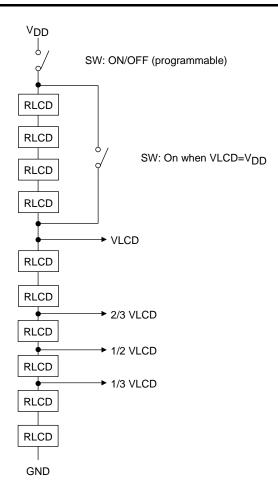



Figure 8 LCD bias resistor

#### ORDERING INFORMATION

| Device            | Package                                    | Shipping (Qty / Packing) |  |  |  |
|-------------------|--------------------------------------------|--------------------------|--|--|--|
| LC87F7NC8AUEJ-2H  | QIP100E(14×20)<br>(Pb-Free / Halogen Free) | 50 / Tray Foam           |  |  |  |
| LC87F7NC8AVUEJ-2H | QIP100E(14×20)<br>(Pb-Free / Halogen Free) | 50 / Tray Foam           |  |  |  |

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent re