E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

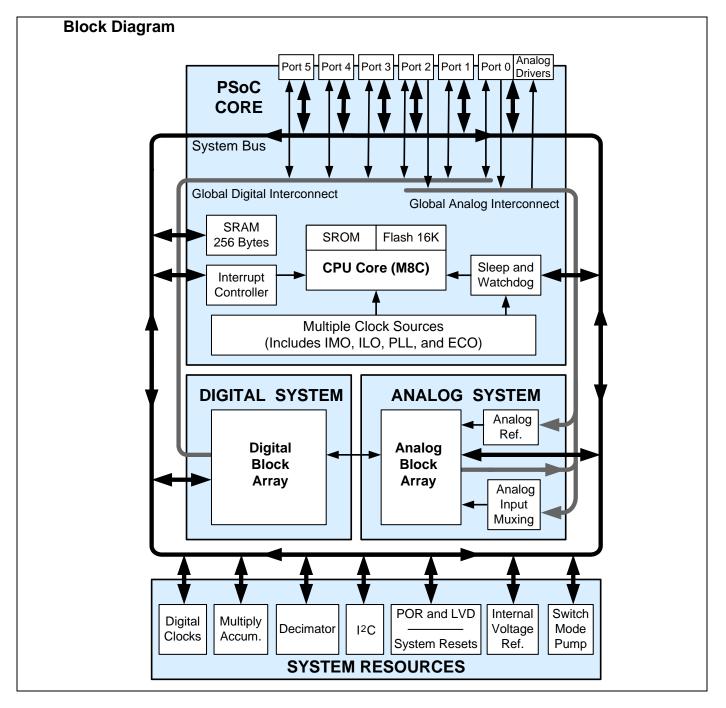
Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details


Details	
Product Status	Obsolete
Applications	HB LED Controller
Core Processor	M8C
Program Memory Type	FLASH (16KB)
Controller Series	CY8CLED
RAM Size	256 x 8
Interface	I²C, SPI, UART/USART
Number of I/O	24
Voltage - Supply	3V ~ 5.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8cled08-28pvxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

EZ-Color Functional Overview

Cypress' EZ-Color family of devices offers the ideal control solution for High Brightness LED applications requiring intelligent dimming control. EZ-Color devices combine the power and flexibility of PSoC (Programmable System-on-Chip™); with Cypress' PrISM (precise illumination signal modulation) modulation technology providing lighting designers a fully customizable and integrated lighting solution platform.

The EZ-Color family supports up to 16 independent LED channels with up to 32 bits of resolution per channel, enabling lighting designers the flexibility to choose the LED array size and color quality. PSoC Express software, with lighting specific drivers, can significantly cut development time and simplify implementation of fixed color points through temperature and LED binning compensation. EZ-Color's virtually limitless analog and digital customization allow for simple integration of features in addition to intelligent lighting, such as Battery Charging, Image Stabilization, and Motor Control during the development process. These features, along with Cypress' best-in-class quality and design support, make EZ-Color the ideal choice for intelligent HB LED control applications.

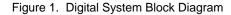
Target Applications

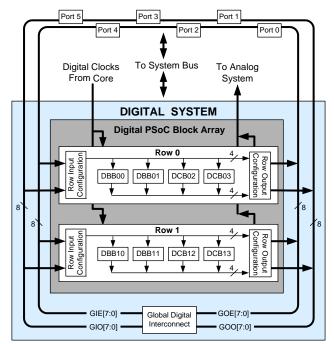
- LCD Backlight
- Large Signs
- General Lighting
- Architectural Lighting
- Camera/Cell Phone Flash
- Flashlights

The PSoC Core

The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIO (General Purpose IO).

The M8C CPU core is a powerful processor with speeds up to 48 MHz, providing a four MIPS 8-bit Harvard architecture microprocessor. The CPU utilizes an interrupt controller with 17 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and Watch Dog Timers (WDT).


Memory encompasses 16K of Flash for program storage, 256 bytes of SRAM for data storage, and up to 2K of EEPROM emulated using the Flash. Program Flash utilizes four protection levels on blocks of 64 bytes, allowing customized software IP protection.


The EZ-Color family incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator) accurate to 2.5% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz ILO (internal low speed oscillator) is provided for the Sleep timer and WDT. If crystal accuracy is desired, the ECO (32.768 kHz external crystal oscillator) is available for use as a Real Time Clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the EZ-Color device.

EZ-Color GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

The Digital System

The Digital System is composed of 8 digital blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references.

Digital peripheral configurations include those listed below.

- PrISM (8 to 32 bit)
- PWMs (8 to 32 bit)
- PWMs with Dead band (8 to 32 bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- UART 8 bit with selectable parity (up to 2)
- SPI slave and master (up to 2)
- I2C slave and multi-master (1 available as a System Resource)
- Cyclical Redundancy Checker/Generator (8 to 32 bit)
- IrDA (up to 2)
- Generators (8 to 32 bit)

Additional System Resources

System Resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, switch mode pump, low voltage detection, and power on reset. Statements describing the merits of each system resource are below.

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital blocks as clock dividers.
- Multiply accumulate (MAC) provides fast 8-bit multiplier with 32-bit accumulate, to assist in general math and digital filters.
- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.

- The I2C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.3V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch mode pump (SMP) generates normal operating voltages from a single 1.2V battery cell, providing a low cost boost converter.

EZ-Color Device Characteristics

Depending on your EZ-Color device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific EZ-Color device groups. The device covered by this data sheet is shown in the highlighted row of the table

Table 1. EZ-Color Device Characteristics

Part Number	LED Channels	Digital IO	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size	CapSense
CY8CLED02	2	16	1	4	8	0	2	4	256 Bytes	4K	No
CY8CLED04	4	56	1	4	48	2	2	6	1K	16K	Yes
CY8CLED08	8	44	2	8	12	4	4	12	256 Bytes	16K	No
CY8CLED16	16	64	4	16	12	4	4	12	2K	32K	No

and also add your own custom code to the project in the Project Manager.

Application Editor

The Application Editor allows you to edit custom.c and custom.h as well as any C or assembly language source code that you add to your project. With PSoC Express you can create application software without writing a single line of assembly or C code, but you have a full featured application editor at your finger tips if you want it.

Build Manager

The Build Manager gives you the ability to build the application software, assign pins, and generate the data sheet, schematic, and BOM for your project.

Board Monitor

The Board Monitor is a debugging tool designed to be used while attached to a prototype board through a communication interface that allows you to monitor changes in the various design elements in real time.

The default communication for the board monitor is I^2C . It uses the CY3240-I2USB I^2C to USB Bridge Debugging/Communication Kit.

Tuners

A Tuner is a visual interface for the Board Monitor that allows you to view the performance of the HB LED drivers on your test board while your program is running, and manually override values and see the results.

Document Conventions

Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 7 on page 14 lists all the abbreviations used to measure the devices.

Numeric Naming

Hexidecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexidecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (e.g., 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

Acronyms Used

The following table lists the acronyms that are used in this document.

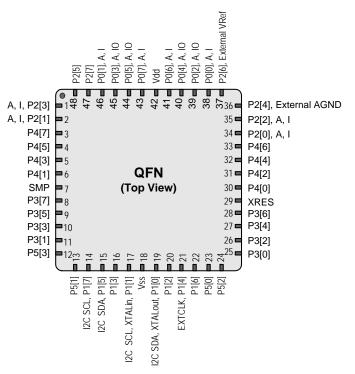
Acronym	Description
AC	alternating current
ADC	analog-to-digital converter
API	application programming interface
CPU	central processing unit
CT	continuous time
DAC	digital-to-analog converter
DC	direct current
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only mem- ory
FSR	full scale range
GPIO	general purpose IO
GUI	graphical user interface
HBM	human body model
ICE	in-circuit emulator
ILO	internal low speed oscillator
IMO	internal main oscillator
IO	input/output
IPOR	imprecise power on reset
LSb	least-significant bit
LVD	low voltage detect
MSb	most-significant bit
PC	program counter
PLL	phase-locked loop
POR	power on reset
PPOR	precision power on reset
PSoC®	Programmable System-on-Chip™
PWM	pulse width modulator
SC	switched capacitor
SLIMO	slow IMO
SMP	switch mode pump
SRAM	static random access memory

Pin Information

Pinouts

Table 2. 48-Pin Part Pinout (SSOP) Figure 4. 48-Pin Device Type Pin Pin Description Name No. Digital Analog 1 IO I P0[7] Analog column mux input. 2 10 10 P0[5] Analog column mux input and column output. 3 10 10 P0[3] Analog column mux input and column output. 48 Vdd 47 P0[6], A, I 46 P0[4], A, IO A, I, P0[7] 🗖 4 10 P0[1] T Analog column mux input. A, IO, P0[5] 2 5 10 P2[7] A, IO, P0[3] 🗖 3 6 IO P2[5] A, I, P0[1] **=** 4 45 P0[2], A, IO 7 10 P2[3] I Direct switched capacitor block input. P2[7] 🗖 5 44 **P** P0[0], A, I P2[5] = 6 A, I, P2[3] = 7 8 10 I P2[1] Direct switched capacitor block input. 43 P2[6], External VRef 42 P2[4], External AGND 41 P2[2], A, I 40 P2[0], A, I 39 P4[6] 9 10 P4[7] A, I, P2[1] = 8 P4[7] = 9 P4[5] = 10 10 10 P4[5] 11 Ю P4[3] 12 IO P4[1] P4[3] 🗖 11 38 **P** P4[4] 13 Power SMP Switch Mode Pump (SMP) connection to exter- 37 P4[2] 36 P4[0] 35 XRES 34 P3[6] P4[1] = 12 SMP = 13 SSOP nal components required. 14 10 P3[7] P3[7] 🗖 14 15 Ю P3[5] P3[5] **=** 15 Ю 16 P3[3] P3[3] **=** 16 33 P P3[4] 10 17 P3[1] P3[1] **=** 17 32 P 93[2] 31 = P3[0] 30 = P5[2] 29 = P5[0] 28 = P1[6] P5[3] 🗖 18 18 Ю P5[3] P5[1] = 19 I2C SCL, P1[7] = 20 19 Ю P5[1] 20 Ю I2C Serial Clock (SCL). P1[7] I2C SDA, P1[5] **=** 21 21 Ю P1[5] I2C Serial Data (SDA). P1[3] **=** 22 27 P P1[4], EXTCLK P1[3] Ю 22 I2C SCL, XTALin, P1[1] = 23 26 P P1[2] 10 P1[1] Crystal Input (XTALin), I2C Serial Clock (SCL), 23 Vss 🗖 24 25 P1[0], XTALout, I2C SDA ISSP SCLK* 24 Power Vss Ground connection. 25 P1[0] Crystal Output (XTALout), I2C Serial Data 10 (SDA), ISSP SDATA.* 26 Ю P1[2] 27 10 Optional External Clock Input (EXTCLK). P1[4] Pin Pin Digital Analog Description No. Name P4[6] 28 10 P1[6] 39 10 29 IO P5[0] 39 10 P4[6] 30 Ю P5[2] 40 10 Т P2[0] Direct switched capacitor block input. 31 Ю P3[0] 41 ю Т P2[2] Direct switched capacitor block input. 32 42 IO P3[2] 10 P2[4] External Analog Ground (AGND). 43 Ю 33 Ю P3[4] P2[6] External Voltage Reference (VRef). 10 44 10 34 P3[6] T P0[0] Analog column mux input. 45 10 10 35 Input XRES Active high external reset with internal pull down. P0[2] Analog column mux input and column output. 36 10 10 ю P4[0] 46 P0[4] Analog column mux input and column output. 37 IO P4[2] 47 IO P0[6] Analog column mux input. T 48 38 IO P4[4] Power Vdd Supply voltage.

LEGEND: A = Analog, I = Input, and O = Output. * These are the ISSP pins, which are not High Z at POR (Power On Reset).



48-Pin Part Pinout QFN

Table 3. 48-Pin Part Pinout (QFN**)

Pin	Ту	ре	Pin				
No.	Digital	Analog	Name	Description			
1	10	I	P2[3]	Direct switched capacitor block input.			
2	10	I	P2[1]	Direct switched capacitor block input.			
3	10		P4[7]				
4	10		P4[5]				
5	10		P4[3]				
6	10		P4[1]				
7	Pov	wer	SMP	Switch Mode Pump (SMP) connection to external components required.			
8	10		P3[7]				
9	10		P3[5]				
10	10		P3[3]				
11	10		P3[1]				
12	10		P5[3]				
13	10		P5[1]				
14	10		P1[7]	I2C Serial Clock (SCL).			
15	10		P1[5]	I2C Serial Data (SDA).			
16	10		P1[3]				
17	Ю		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL), ISSP-SCLK*.			
18	Pov	wer	Vss	Ground connection.			
19	ю		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA), ISSP-SDATA*.			
20	10		P1[2]				
21	10		P1[4]	Optional External Clock Input (EXTCLK).			
22	10		P1[6]				
23	10		P5[0]				
24	10		P5[2]				
25	10		P3[0]				
26	10		P3[2]				
27	10		P3[4]				
28	10		P3[6]				
29	Inp	out	XRES	Active high external reset with internal pull down.			
30	10		P4[0]				
31	10		P4[2]				
32	10		P4[4]				
33	10		P4[6]				
34	10	I	P2[0]	Direct switched capacitor block input.			
35	10	I	P2[2]	Direct switched capacitor block input.			
36	10		P2[4]	External Analog Ground (AGND).			
37	10		P2[6]	External Voltage Reference (VRef).			
38	10	I	P0[0]	Analog column mux input.			
39	10	IO	P0[2]	Analog column mux input and column output.			
40	10	IO	P0[4]	Analog column mux input and column output.			
41	10	I	P0[6]	Analog column mux input.			
42	Pov	wer	Vdd	Supply voltage.			
43	10	I	P0[7]	Analog column mux input.			
44	10	IO	P0[5]	Analog column mux input and column output.			
45	10	IO	P0[3]	Analog column mux input and column output.			
46	10	I	P0[1]	Analog column mux input.			
47	10		P2[7]				
48	10		P2[5]				
	•		-				

Figure 5. 48-Pin Device

LEGEND: A = Analog, I = Input, and O = Output. * These are the ISSP pins, which are not High Z at POR (Power On Reset).

** The QFN package has a center pad that must be connected to ground (Vss).

CY8CLED08

Table 6. Register Map Bank 1 Table: Configuration Space

Name	Register Map	Access	Name	Addr (1,Hex)		Nome	Adds (1 Llaw)	A	Mama	A data (4 Llass)	A
PRT0DM0	Add (1,Hex)	RW	Name	40	Access	Name ASC10CR0	Addr (1,Hex) 80	Access RW	Name	Addr (1,Hex) C0	Access
PRT0DM1	01	RW		41		ASC10CR1	81	RW		C1	
PRTOICO	02	RW		42		ASC10CR2	82	RW		C2	
PRT0IC1	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	
PRT1DM0	05	RW		45		ASD11CR0 ASD11CR1	85	RW		C4 C5	
PRT1IC0	06	RW		46		ASD11CR1 ASD11CR2	86	RW		C6	
PRT1IC1	08	RW		40		ASD11CR2 ASD11CR3	87	RW		C6 C7	
PRT2DM0	08	RW		48		ASC12CR0	88	RW		C8	
PRT2DM1	09	RW		49		ASC12CR1	89	RW		C9	
PRT2IC0	0A	RW		4A		ASC12CR2	8A	RW		CA	
PRT2IC1	0B	RW		4B		ASC12CR3	8B	RW		СВ	
PRT3DM0	0C	RW		4C		ASD13CR0	8C	RW		CC	
PRT3DM1	0D	RW		4D		ASD13CR1	8D	RW		CD	
PRT3IC0	0E	RW		4E		ASD13CR2	8E	RW		CE	
PRT3IC1	0F	RW		4F		ASD13CR3	8F	RW		CF	
PRT4DM0	10	RW		50		ASD20CR0	90	RW	GDI_O_IN	D0	RW
PRT4DM1	11	RW		51		ASD20CR1	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW		52		ASD20CR2	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW	l	53		ASD20CR3	93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW		54		ASC21CR0	94	RW		D4	
PRT5DM0	15	RW		55		ASC21CR1	95	RW	1	D4 D5	
PRT5IC0	16	RW	ł	56		ASC21CR1 ASC21CR2	96	RW	ł	D5 D6	
PRT5IC0 PRT5IC1	17	RW		57		ASC21CR2 ASC21CR3	90	RW		D6 D7	
FICTOICT	17	ις γγ		57		ASC21CR3 ASD22CR0	97 98	RW		D7 D8	
	19			59		ASD22CR1	99	RW		D9	
	1A			5A		ASD22CR2	9A	RW		DA	
	1B			5B		ASD22CR3	9B	RW		DB	
	1C			5C		ASC23CR0	9C	RW		DC	
	1D			5D		ASC23CR1	9D	RW	OSC_GO_EN	DD	RW
	1E			5E		ASC23CR2	9E	RW	OSC_CR4	DE	RW
	1F			5F		ASC23CR3	9F	RW	OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	_	64			A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
DDD0100	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW	ALT_CR0	68	RW		A8		IMO TR	E8	W
						-			_		
DCB02IN	29	RW	CLK_CR2	69	RW		A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW		6C			AC		l	EC	
DCB03IN	2D	RW		6D			AD			ED	
DCB03OU	2E	RW		6E			AE			EE	
	2F			6F			AF			EF	
DBB10FN	30	RW	ACB00CR3	70	RW	RDIORI	B0	RW		F0	
DBB10IN	31	RW	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
			ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	33		AODOOONZ					DIA	1	F4	
DBB10OU	33 34	RW	ACB01CR3	74	RW	RDI0LT1	B4	RW			
DBB10OU DBB11FN		RW	ACB01CR3				B4 B5			F5	
DBB10OU DBB11FN DBB11IN	34 35	RW	ACB01CR3 ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBB10OU DBB11FN DBB11IN	34 35 36		ACB01CR3 ACB01CR0 ACB01CR1	75 76	RW RW		B5 B6		CPU F	F5 F6	RL
DBB10OU DBB11FN DBB11IN DBB11OU	34 35 36 37	RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2	75 76 77	RW RW RW	RDI0RO0 RDI0RO1	B5 B6 B7	RW RW	CPU_F	F5 F6 F7	RL
DBB10OU DBB11FN DBB11IN DBB11OU DCB12FN	34 35 36 37 38	RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3	75 76 77 78	RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI	B5 B6 B7 B8	RW RW RW	CPU_F	F5 F6 F7 F8	RL
DBB10OU DBB11FN DBB11IN DBB11OU DCB12FN DCB12IN	34 35 36 37 38 39	RW RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0	75 76 77 78 79	RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN	B5 B6 B7 B8 B9	RW RW RW RW	CPU_F	F5 F6 F7 F8 F9	RL
DBB10OU DBB11FN DBB11IN DBB11OU DCB12FN	34 35 36 37 38 39 3A	RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0 ACB02CR1	75 76 77 78 79 7A	RW RW RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN RDI1IS	B5 B6 B7 B8 B9 BA	RW RW RW RW RW	CPU_F	F5 F6 F7 F8 F9 FA	RL
DBB10OU DBB11FN DBB11IN DBB11OU DCB12FN DCB12IN DCB12OU	34 35 36 37 38 39 3A 38	RW RW RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0 ACB02CR1 ACB02CR2	75 76 77 78 79 7A 7B	RW RW RW RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN RDI1IS RDI1LT0	B5 B6 B7 B8 B9 BA BB	RW RW RW RW RW RW	CPU_F	F5 F6 F7 F8 F9 FA FB	RL
DBB100U DBB11FN DBB11IN DBB110U DCB12FN DCB12IN DCB12OU DCB13FN	34 35 36 37 38 39 3A 38 38 38 3C	RW RW RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0 ACB02CR1 ACB02CR2 ACB03CR3	75 76 77 78 79 7A 7B 7C	RW RW RW RW RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN RDI1IS RDI1LT0 RDI1LT1	B5 B6 B7 B8 B9 BA BB BC	RW RW RW RW RW RW RW	CPU_F	F5 F6 F7 F8 F9 FA FB FC	RL
DBB100U DBB11FN DBB11IN DBB110U DCB12FN DCB12IN DCB12OU DCB13FN DCB13IN	34 35 36 37 38 39 3A 38 3A 3B 3C 3D	RW RW RW RW RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0 ACB02CR1 ACB02CR2 ACB03CR3 ACB03CR0	75 76 77 78 79 7A 7B 7C 7D	RW RW RW RW RW RW RW RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN RDI1IS RDI1LT0 RDI1LT1 RDI1RO0	B5 B6 B7 B8 B9 BA BB BC BD	RW RW RW RW RW RW RW RW		F5 F6 F7 F8 F9 FA FB FC FD	
DBB100U DBB11FN DBB11IN DBB110U DCB12FN DCB12IN DCB12OU DCB13FN	34 35 36 37 38 39 3A 38 38 38 3C	RW RW RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0 ACB02CR1 ACB02CR2 ACB03CR3	75 76 77 78 79 7A 7B 7C	RW RW RW RW RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN RDI1IS RDI1LT0 RDI1LT1	B5 B6 B7 B8 B9 BA BB BC	RW RW RW RW RW RW RW	CPU_F CPU_SCR1 CPU_SCR0	F5 F6 F7 F8 F9 FA FB FC	RL

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8CLED08 EZ-Color device. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/ez-color.

Specifications are valid for $-40^{o}C \leq T_A \leq 85^{o}C$ and $T_J \leq 100^{o}C$, except where noted. Specifications for devices running at greater than 12 MHz are valid for $-40^{o}C \leq T_A \leq 70^{o}C$ and $T_J \leq 82^{o}C$.

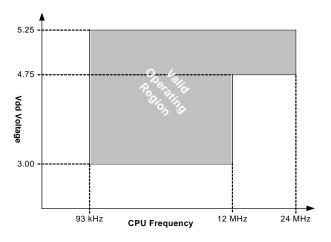


Figure 7. Voltage versus CPU Frequency

The following table lists the units of measure that are used in this section.

Table 7. Units of Meas	sure
------------------------	------

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	μW	microwatts
dB	decibels	mA	milli-ampere
fF	femto farad	ms	milli-second
Hz	hertz	mV	milli-volts
KB	1024 bytes	nA	nanoampere
Kbit	1024 bits	ns	nanosecond
kHz	kilohertz	nV	nanovolts
kΩ	kilohm	Ω	ohm
MHz	megahertz	pА	picoampere
MΩ	megaohm	pF	picofarad
μΑ	microampere	рр	peak-to-peak
μF	microfarad	ppm	parts per million
μH	microhenry	ps	picosecond
μS	microsecond	sps	samples per second
μV	microvolts	σ	sigma: one standard deviation
μVrms	microvolts root-mean-square	V	volts

Absolute Maximum Ratings

Table 8. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage Temperature	-55	25	+100	°C	Higher storage temperatures will reduce data retention time. Recommended storage temperature is $+25^{\circ}C \pm 25^{\circ}C$. Extended duration storage temperatures above $65^{\circ}C$ will degrade reliability.
T _A	Ambient Temperature with Power Applied	-40	-	+85	°C	
Vdd	Supply Voltage on Vdd Relative to Vss	-0.5	-	+6.0	V	
V _{IO}	DC Input Voltage	Vss- 0.5	-	Vdd + 0.5	V	
V _{IOZ}	DC Voltage Applied to Tri-state	Vss - 0.5	-	Vdd + 0.5	V	
I _{MIO}	Maximum Current into any Port Pin	-25	-	+50	mA	
I _{MAIO}	Maximum Current into any Port Pin Config- ured as Analog Driver	-50	-	+50	mA	
ESD	Electro Static Discharge Voltage	2000	-	-	V	Human Body Model ESD.
LU	Latch-up Current	-	-	200	mA	

Operating Temperature

Table 9. Operating Temperature

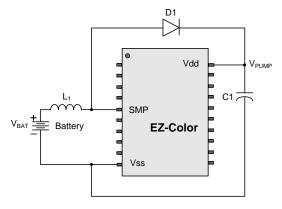
Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient Temperature	-40	-	+85	°C	
TJ	Junction Temperature	-40	-	+100	°C	The temperature rise from ambient to junction is package specific. See "Thermal Impedances" on page 36. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 10. DC Chip-Level Specifications


Symbol	Description	Min	Тур	Max	Units	Notes
Vdd	Supply Voltage	3.00	-	5.25	V	
I _{DD}	Supply Current	-	5	8	mA	Conditions are Vdd = 5.0V, $T_A = 25$ °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{DD3}	Supply Current	-	3.3	6.0	mA	Conditions are Vdd = $3.3V$, T _A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{SB}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT. ^a	-	3	6.5	μΑ	Conditions are with internal slow speed oscillator, Vdd = 3.3V, -40 oC \leq T_A $\leq~55$ $^oC.$
I _{SBH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temperature. ^a	-	4	25	μΑ	Conditions are with internal slow speed oscillator, Vdd = 3.3V, 55 oC < T_A $\leq~85\ ^oC.$
I _{SBXTL}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal. ^a	-	4	7.5	μA	Conditions are with properly loaded, 1 μW max, 32.768 kHz crystal. Vdd = 3.3V, -40 $^oC \leq T_A \leq$ 55 $^oC.$
I _{SBXTLH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal at high temperature. ^a	-	5	26	μA	Conditions are with properly loaded, 1 μW max, 32.768 kHz crystal. Vdd = 3.3V, 55 °C < $T_A \leq 85$ °C.
V _{REF}	Reference Voltage (Bandgap) for Silicon A ^b	1.275	1.300	1.325	V	Trimmed for appropriate Vdd.
V _{REF}	Reference Voltage (Bandgap) for Silicon B ^b	1.280	1.300	1.320	V	Trimmed for appropriate Vdd.

a. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar functions enabled.

b. Refer to the "Ordering Information" on page 38.

Figure 8. Basic Switch Mode Pump Circuit

DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer

to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Reference control power is high.

Table 18. 5V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Max	Units
BG	Bandgap Voltage Reference	1.28	1.30	1.32	V
-	$AGND = Vdd/2^a$	Vdd/2 - 0.030	Vdd/2	Vdd/2 + 0.007	V
-	AGND = 2 x BandGap ^a	2 x BG - 0.043	2 x BG	2 x BG + 0.024	V
-	AGND = P2[4] (P2[4] = Vdd/2) ^a	P2[4] - 0.011	P2[4]	P2[4] + 0.011	V
-	AGND = BandGap ^a	BG - 0.009	BG	BG + 0.009	V
-	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V
-	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	V
-	RefHi = Vdd/2 + BandGap	Vdd/2 + BG - 0.1	Vdd/2 + BG - 0.01	Vdd/2 + BG + 0.1	V
-	RefHi = 3 x BandGap	3 x BG - 0.06	3 x BG - 0.01	3 x BG + 0.06	V
-	RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)	2 x BG + P2[6] - 0.06	2 x BG + P2[6] - 0.01	2 x BG + P2[6] + 0.06	V
-	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	P2[4] + BG - 0.06	P2[4] + BG - 0.01	P2[4] + BG + 0.06	V
-	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] + P2[6] - 0.06	P2[4] + P2[6] - 0.01	P2[4] + P2[6] + 0.06	V
-	RefHi = 3.2 x BandGap	3.2 x BG - 0.06	3.2 x BG - 0.01	3.2 x BG + 0.06	V
-	RefLo = Vdd/2 - BandGap	Vdd/2 - BG - 0.051	Vdd/2 - BG + 0.01	Vdd/2 - BG + 0.06	V
-	RefLo = BandGap	BG - 0.06	BG + 0.01	BG + 0.06	V
-	RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)	2 x BG - P2[6] - 0.04	2 x BG - P2[6] + 0.01	2 x BG - P2[6] + 0.04	V
-	RefLo = P2[4] – BandGap (P2[4] = Vdd/2)	P2[4] - BG - 0.056	P2[4] - BG + 0.01	P2[4] - BG + 0.056	V
-	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] - P2[6] - 0.056	P2[4] - P2[6] + 0.01	P2[4] - P2[6] + 0.056	V

a. AGND tolerance includes the offsets of the local buffer in the PSoC block.

Table 19. 3.3V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Max	Units		
BG	Bandgap Voltage Reference	1.28	1.30	1.32	V		
-	$AGND = Vdd/2^{a}$	Vdd/2 - 0.027	Vdd/2	Vdd/2 + 0.005	V		
-	AGND = 2 x BandGap ^a	Not Allowed	•				
-	AGND = P2[4] (P2[4] = Vdd/2)	P2[4] - 0.008	P2[4]	P2[4] + 0.009	V		
-	AGND = BandGap ^a	BG - 0.009	BG	BG + 0.009	V		
-	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V		
-	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	mV		
_	RefHi = Vdd/2 + BandGap	Not Allowed					
-	RefHi = 3 x BandGap	Not Allowed					
-	RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)	Not Allowed					
-	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	Not Allowed					
-	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] + P2[6] - 0.06	P2[4] + P2[6] - 0.01	P2[4] + P2[6] + 0.057	V		
-	RefHi = 3.2 x BandGap	Not Allowed	•	•			
-	RefLo = Vdd/2 - BandGap	Not Allowed					
-	RefLo = BandGap	Not Allowed					
-	RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)	Not Allowed					
-	RefLo = P2[4] - BandGap (P2[4] = Vdd/2)	Not Allowed					
-	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] - P2[6] - 0.048	P2[4] - P2[6] + 0.01	P2[4] - P2[6] + 0.048	V		

a. AGND tolerance includes the offsets of the local buffer in the PSoC block.

Note See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 20. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{CT}	Resistor Unit Value (Continuous Time)	-	12.2	-	kΩ	
C _{SC}	Capacitor Unit Value (Switch Cap)	-	80	-	fF	

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register.

Table 21. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
	Vdd Value for PPOR Trip (positive ramp)					Vdd must be greater than or equal to 2.5V
V _{PPOR0R}	PORLEV[1:0] = 00b		2.91		V	during startup, reset from the XRES pin, or reset from Watchdog.
V _{PPOR1R}	PORLEV[1:0] = 01b	-	4.39	-	V	looot nom Watchaog.
V _{PPOR2R}	PORLEV[1:0] = 10b		4.55		V	
	Vdd Value for PPOR Trip (negative ramp)					
V _{PPOR0}	PORLEV[1:0] = 00b		2.82		V	
V _{PPOR1}	PORLEV[1:0] = 01b	-	4.39	-	V	
V _{PPOR2}	PORLEV[1:0] = 10b		4.55		V	
	PPOR Hysteresis					
V _{PH0}	PORLEV[1:0] = 00b	-	92	-	mV	
V _{PH1}	PORLEV[1:0] = 01b	-	0	-	mV	
V _{PH2}	PORLEV[1:0] = 10b	-	0	-	mV	
	Vdd Value for LVD Trip					
V _{LVD0}	VM[2:0] = 000b	2.86	2.92	2.98 ^a	v	
V _{LVD1}	VM[2:0] = 001b	2.96	3.02	3.08	v	
V _{LVD2}	VM[2:0] = 010b	3.07	3.13	3.20	V	
V _{LVD3}	VM[2:0] = 011b	3.92	4.00	4.08	V	
V _{LVD4}	VM[2:0] = 100b	4.39	4.48	4.57	V	
V _{LVD5}	VM[2:0] = 101b	4.55	4.64	4.74 ^b	V	
V _{LVD6}	VM[2:0] = 110b	4.63	4.73	4.82	V V	
V _{LVD7}	VM[2:0] = 111b	4.72	4.81	4.91	V	
	Vdd Value for PUMP Trip					
V _{PUMP0}	VM[2:0] = 000b	2.96	3.02	3.08	V	
V _{PUMP1}	VM[2:0] = 001b	3.03	3.10	3.16	V	
V _{PUMP2}	VM[2:0] = 010b	3.18	3.25	3.32	V	
V _{PUMP3}	VM[2:0] = 011b	4.11	4.19	4.28	V	
V _{PUMP4}	VM[2:0] = 100b	4.55	4.64	4.74	V V	
V _{PUMP5}	VM[2:0] = 101b	4.63	4.73	4.82	v	
V _{PUMP6}	VM[2:0] = 110b	4.72	4.82	4.91	v	
V _{PUMP7}	VM[2:0] = 111b	4.90	5.00	5.10	V	

a. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

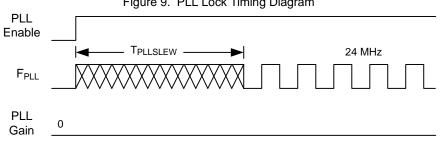
b. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

AC Electrical Characteristics

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO}	Internal Main Oscillator Frequency	23.4	24	24.6 ^a	MHz	Trimmed. Utilizing factory trim values.
F _{CPU1}	CPU Frequency (5V Nominal)	0.93	24	24.6 ^{a,b}	MHz	Trimmed. Utilizing factory trim values.
F _{CPU2}	CPU Frequency (3.3V Nominal)	0.93	12	12.3 ^{b,C}	MHz	Trimmed. Utilizing factory trim values.
F _{48M}	Digital PSoC Block Frequency	0	48	49.2 ^{a,b,d}	MHz	Refer to the AC Digital Block Specifications below.
F _{24M}	Digital PSoC Block Frequency	0	24	24.6 ^{b, d}	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	15	32	64	kHz	
F _{32K2}	External Crystal Oscillator	-	32.768	-	kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
F _{PLL}	PLL Frequency	-	23.986	-	MHz	Multiple (x732) of crystal frequency.
Jitter24M2	24 MHz Period Jitter (PLL)	-	-	600	ps	
T _{PLLSLEW}	PLL Lock Time	0.5	-	10	ms	
T _{PLLSLEWS} - LOW	PLL Lock Time for Low Gain Setting	0.5	-	50	ms	
T _{OS}	External Crystal Oscillator Startup to 1%	-	1700	2620	ms	
T _{OSACC}	External Crystal Oscillator Startup to 100 ppm	-	2800	3800	ms	The crystal oscillator frequency is within 100 ppm of its final value by the end of the T_{osacc} period. Correct operation assumes a properly loaded 1 uW maximum drive level 32.768 kHz crystal. 3.0V \leq Vdd \leq 5.5V, -40 $^{o}C \leq$ $T_{A} \leq$ 85 ^{o}C .
Jitter32k	32 kHz Period Jitter	-	100		ns	
T _{XRST}	External Reset Pulse Width	10	-	-	μs	
DC24M	24 MHz Duty Cycle	40	50	60	%	
Step24M	24 MHz Trim Step Size	-	50	-	kHz	
Fout48M	48 MHz Output Frequency	46.8	48.0	49.2 ^{a,c}	MHz	Trimmed. Utilizing factory trim values.
Jitter24M1	24 MHz Period Jitter (IMO)	-	600		ps	
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	
T _{RAMP}	Supply Ramp Time	0	-	-	μs	


Table 23. AC Chip-Level Specifications

a. 4.75V < Vdd < 5.25V.

b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.

c. 3.0V < Vdd < 3.6V. See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

d. See the individual user module data sheets for information on maximum frequencies for user modules.

Figure 9. PLL Lock Timing Diagram

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

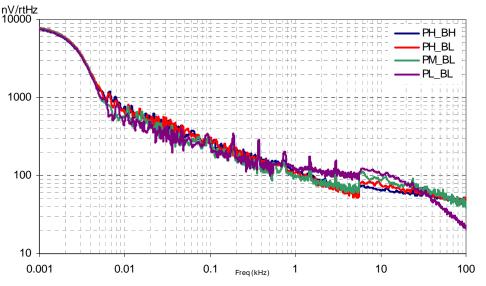


Figure 16. Typical Opamp Noise

AC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, or 2.4V to 3.0V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 27. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RLPC}	LPC response time	-	-	50	μs	\geq 50 mV overdrive comparator reference set within $V_{REFLPC}.$

AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Function	Description	Min	Тур	Max	Units	Notes
All	Maximum Block Clocking Frequency (> 4.75V)			49.2		4.75V < Vdd < 5.25V.
Functions	Maximum Block Clocking Frequency (< 4.75V)			24.6		3.0V < Vdd < 4.75V.
Timer	Capture Pulse Width	50 ^a	-	-	ns	
	Maximum Frequency, No Capture	-	-	49.2	MHz	4.75V < Vdd < 5.25V.
	Maximum Frequency, With Capture	-	-	24.6	MHz	
Counter	Enable Pulse Width	50 ^a	-	-	ns	
	Maximum Frequency, No Enable Input	-	-	49.2	MHz	4.75V < Vdd < 5.25V.
	Maximum Frequency, Enable Input	-	-	24.6	MHz	
Dead Band	Kill Pulse Width:					
	Asynchronous Restart Mode	20	-	-	ns	
	Synchronous Restart Mode	50 ^a	-	-	ns	
	Disable Mode	50 ^a	-	-	ns	
	Maximum Frequency	-	-	49.2	MHz	4.75V < Vdd < 5.25V.
CRCPRS (PRS Mode)	Maximum Input Clock Frequency	-	-	49.2	MHz	4.75V < Vdd < 5.25V.
CRCPRS (CRC Mode)	Maximum Input Clock Frequency	-	-	24.6	MHz	
SPIM	Maximum Input Clock Frequency	-	-	8.2	MHz	Maximum data rate at 4.1 MHz due to 2 x over clocking.
SPIS	Maximum Input Clock Frequency	-	-	4.1	ns	
	Width of SS_Negated Between Transmissions	50 ^a	-	-	ns	
Transmitter	Maximum Input Clock Frequency	-	_	24.6	MHz	Maximum data rate at 3.08 MHz due to 8 x over clocking.
	Maximum Input Clock Frequency with Vdd \geq 4.75V, 2 Stop Bits	-	-	49.2	MHz	Maximum data rate at 6.15 MHz due to 8 x over clocking.
Receiver	Maximum Input Clock Frequency	-	-	24.6	MHz	Maximum data rate at 3.08 MHz due to 8 x over clocking.
	Maximum Input Clock Frequency with Vdd \geq 4.75V, 2 Stop Bits	-	-	49.2	MHz	Maximum data rate at 6.15 MHz due to 8 x over clocking.

Table 28. AC Digital Block Specifications

a. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 31. 5V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency	0.093	-	24.6	MHz	
-	High Period	20.6	-	5300	ns	
-	Low Period	20.6	-	-	ns	
-	Power Up IMO to Switch	150	-	-	μS	

Table 32. 3.3V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency with CPU Clock divide by 1 ^a	0.093	-	12.3	MHz	
F _{OSCEXT}	Frequency with CPU Clock divide by 2 or greater ^b	0.186	-	24.6	MHz	
-	High Period with CPU Clock divide by 1	41.7	-	5300	ns	
-	Low Period with CPU Clock divide by 1	41.7	-	-	ns	
-	Power Up IMO to Switch	150	-	-	μS	

a. Maximum CPU frequency is 12 MHz at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.

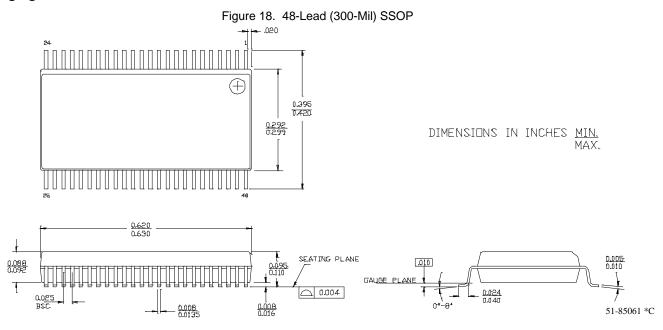
b. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider will ensure that the fifty percent duty cycle requirement is met.

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

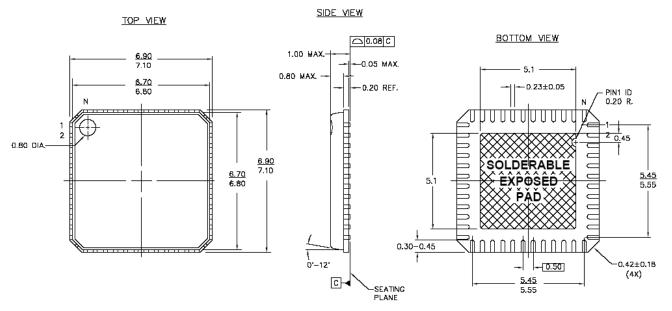
Table 33. A	C Programming	Specifications
-------------	---------------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	-	20	ns	
T _{FSCLK}	Fall Time of SCLK	1	-	20	ns	
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	-	-	ns	
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
T _{ERASEB}	Flash Erase Time (Block)	-	10	-	ms	
T _{WRITE}	Flash Block Write Time	-	10	-	ms	
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	-	-	45	ns	Vdd > 3.6
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	-	-	50	ns	$3.0 \leq Vdd \leq 3.6$



Packaging Information

This section illustrates the packaging specifications for the CY8CLED08 EZ-Color device, along with the thermal impedances for each package and the typical package capacitance on crystal pins.


Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/design/MR10161.

Packaging Dimensions

Figure 19. 48-Lead (7x7 mm) QFN

NOTES:

1. XXX HATCH AREA IS SOLDERABLE EXPOSED METAL.

- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: 0.13g
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]

5. PACKAGE CODE

PART #	DESCRIPTION
LF48A	STANDARD
LY48A	LEAD FREE

001-12919 *A

Thermal Impedances

Table 35. Thermal Impedances per Package

Package	Typical θ_{JA}^{*}
48 SSOP	69 °C/W
48 QFN**	18 °C/W
28 SSOP	95 °C/W

* T_J = T_A + POWER x θ_{JA}

** To achieve the thermal impedance specified for the QFN package, the center thermal pad should be soldered to the PCB ground plane.

Capacitance on Crystal Pins

Table 36. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance	
48 SSOP	3.3 pF	
48 QFN	2.3 pF	
28 SSOP	2.8 pF	

Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

Table 37.	Solder Reflow Peak Temperature
-----------	--------------------------------

Package	Minimum Peak Temperature*	Maximum Peak Temperature
48 SSOP	220°C	260 ⁰ C
48 QFN	240°C	260°C
28 SSOP	240°C	260°C

*Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are $220 \pm 5^{\circ}$ C with Sn-Pb or $245 \pm 5^{\circ}$ C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Development Tool Selection

This section presents the development tools available for all current PSoC based devices including the CY8CLED08 EZ-Color family.

Software Tools

PSoC Express™

As the newest addition to the PSoC development software suite, PSoC Express is the first visual embedded system design tool that allows a user to create an entire project and generate a schematic, BOM, and data sheet without writing a single line of code. Users work directly with application objects such as LEDs, switches, sensors, and fans. PSoC Express is available free of charge at http://www.cypress.com/psocexpress.

PSoC Designer™

Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for half a decade. PSoC Designer is available free of charge at http://www.cypress.com under DESIGN RESOURCES >> Software and Drivers.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer or PSoC Express. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free ofcharge at http://www.cypress.com/psocpro-grammer.

CY3202-C iMAGEcraft C Compiler

CY3202 is the optional upgrade to PSoC Designer that enables the iMAGEcraft C compiler. It can be purchased from the Cypress Online Store. At http://www.cypress.com, click the Online Store shopping cart icon at the bottom of the web page, and click *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Hardware Tools

In-Circuit Emulator

A low cost, high functionality ICE (In-Circuit Emulator) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of the USB port. The base unit is universal and will operate with all PSoC based devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.

I2C to USB Bridge

The I2C to USB Bridge is a quick and easy link from any design or application's I2C bus to a PC via USB for design testing, debugging and communication.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer or PSoC Express. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free ofcharge at http://www.cypress.com/psocpro-grammer.

CY3202-C iMAGEcraft C Compiler

CY3202 is the optional upgrade to PSoC Designer that enables the iMAGEcraft C compiler. It can be purchased from the Cypress Online Store. At http://www.cypress.com, click the Online Store shopping cart icon at the bottom of the web page, and click *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

CY3261A-RGB EZ-Color RGB Kit

The CY3261A-RGB board is a preprogrammed HB LED color mix board with seven pre-set colors using the CY8CLED16 EZ-Color HB LED Controller. The board is accompanied by a CD containing the color selector software application, PSoC Express 3.0 Beta 2, PSoC Programmer, and a suite of documents, schematics, and firmware examples. The color selector software application can be installed on a host PC and is used to control the EZ-Color HB LED controller using the included USB cable. The application enables you to select colors via a CIE 1931 chart or by entering coordinates. The kit includes:

- Training Board (CY8CLED16)
- One mini-A to mini-B USB Cable
- PSoC Express CD-ROM
- Design Files and Application Installation CD-ROM

To program and tune this kit via PSoC Express 3.0 you must use a Mini Programmer Unit (CY3217 Kit) and a CY3240-I2CUSB kit.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- 3 Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment. **Note**: CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable