E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

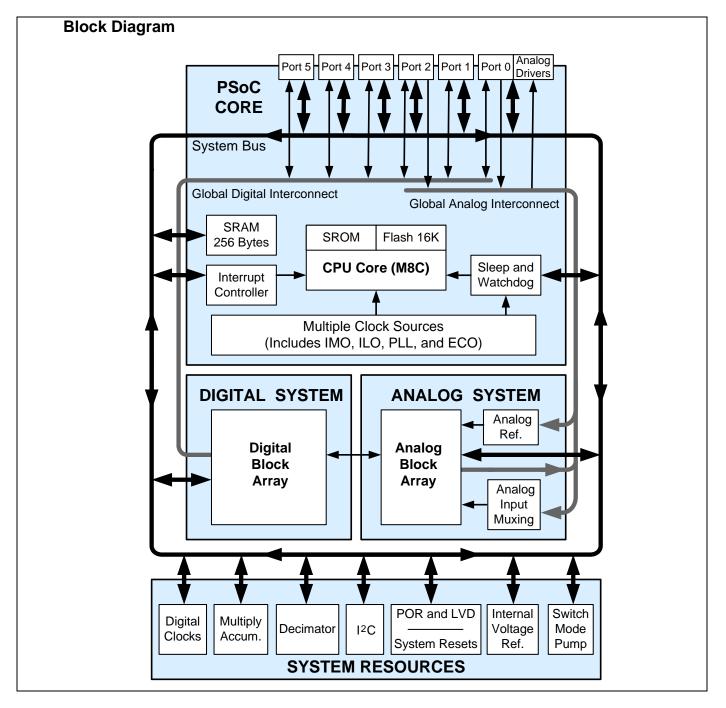
Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are angineered to

Details


Details	
Product Status	Obsolete
Applications	HB LED Controller
Core Processor	M8C
Program Memory Type	FLASH (16KB)
Controller Series	CY8CLED
RAM Size	256 x 8
Interface	I ² C, SPI, UART/USART
Number of I/O	44
Voltage - Supply	3V ~ 5.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	48-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8cled08-48pvxi

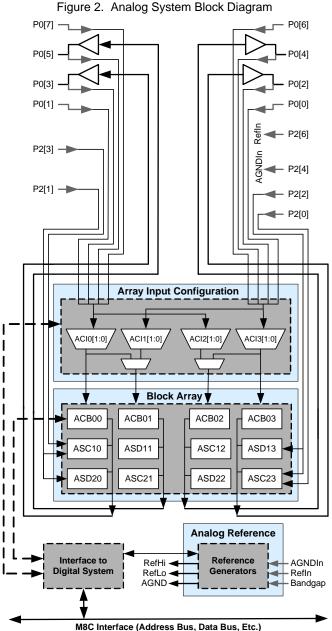
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

constraints of a fixed peripheral controller.

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the


Digital blocks are provided in rows of four, where the number of blocks varies by EZ-Color device family. This allows you the optimum choice of system resources for your application. Family resources are shown in the table titled EZ-Color Device Characteristics.

The Analog System

The Analog System is composed of 12 configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common EZ-Color analog functions (most available as user modules) are listed below.

- Analog-to-digital converters (up to 4, with 6- to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR)
- Filters (2, 4, 6, and 8 pole band-pass, low-pass, and notch)
- Amplifiers (up to 4, with selectable gain to 48x)
- Instrumentation amplifiers (up to 2, with selectable gain to 93x)
- Comparators (up to 4, with 16 selectable thresholds)
- DACs (up to 4, with 6- to 9-bit resolution)
- Multiplying DACs (up to 4, with 6- to 9-bit resolution)
- High current output drivers (four with 30 mA drive as a Core Resource)
- 1.3V reference (as a System Resource)
- DTMF Dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

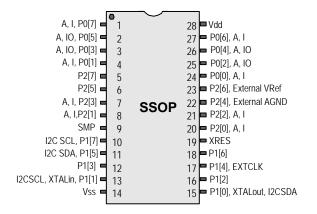
Analog blocks are provided in columns of three, which includes one CT (Continuous Time) and two SC (Switched Capacitor) blocks, as shown in the figure below.

Pin Information

Pinouts

Table 2. 48-Pin Part Pinout (SSOP) Figure 4. 48-Pin Device Type Pin Pin Description Name No. Digital Analog 1 IO I P0[7] Analog column mux input. 2 10 10 P0[5] Analog column mux input and column output. 3 10 10 P0[3] Analog column mux input and column output. 48 Vdd 47 P0[6], A, I 46 P0[4], A, IO A, I, P0[7] 🗖 4 10 P0[1] T Analog column mux input. A, IO, P0[5] 2 5 10 P2[7] A, IO, P0[3] 🗖 3 6 IO P2[5] A, I, P0[1] **=** 4 45 P0[2], A, IO 7 10 P2[3] I Direct switched capacitor block input. P2[7] 🗖 5 44 **P** P0[0], A, I P2[5] = 6 A, I, P2[3] = 7 8 10 I P2[1] Direct switched capacitor block input. 43 P2[6], External VRef 42 P2[4], External AGND 41 P2[2], A, I 40 P2[0], A, I 39 P4[6] 9 10 P4[7] A, I, P2[1] = 8 P4[7] = 9 P4[5] = 10 10 10 P4[5] 11 Ю P4[3] 12 IO P4[1] P4[3] 🗖 11 38 **P** P4[4] 13 Power SMP Switch Mode Pump (SMP) connection to exter- 37 P4[2] 36 P4[0] 35 XRES 34 P3[6] P4[1] = 12 SMP = 13 SSOP nal components required. 14 10 P3[7] P3[7] 🗖 14 15 Ю P3[5] P3[5] **=** 15 Ю 16 P3[3] P3[3] **=** 16 33 P P3[4] 10 17 P3[1] P3[1] **=** 17 32 P 93[2] 31 = P3[0] 30 = P5[2] 29 = P5[0] 28 = P1[6] P5[3] 🗖 18 18 Ю P5[3] P5[1] = 19 I2C SCL, P1[7] = 20 19 Ю P5[1] 20 Ю I2C Serial Clock (SCL). P1[7] I2C SDA, P1[5] **=** 21 21 Ю P1[5] I2C Serial Data (SDA). P1[3] **=** 22 27 P P1[4], EXTCLK P1[3] Ю 22 I2C SCL, XTALin, P1[1] = 23 26 P P1[2] 10 P1[1] Crystal Input (XTALin), I2C Serial Clock (SCL), 23 Vss 🗖 24 25 P1[0], XTALout, I2C SDA ISSP SCLK* 24 Power Vss Ground connection. 25 P1[0] Crystal Output (XTALout), I2C Serial Data 10 (SDA), ISSP SDATA.* 26 Ю P1[2] 27 10 Optional External Clock Input (EXTCLK). P1[4] Pin Pin Digital Analog Description No. Name P4[6] 28 10 P1[6] 39 10 29 IO P5[0] 39 10 P4[6] 30 Ю P5[2] 40 10 Т P2[0] Direct switched capacitor block input. 31 Ю P3[0] 41 ю Т P2[2] Direct switched capacitor block input. 32 42 IO P3[2] 10 P2[4] External Analog Ground (AGND). 43 Ю 33 Ю P3[4] P2[6] External Voltage Reference (VRef). 10 44 10 34 P3[6] T P0[0] Analog column mux input. 45 10 10 35 Input XRES Active high external reset with internal pull down. P0[2] Analog column mux input and column output. 36 10 10 ю P4[0] 46 P0[4] Analog column mux input and column output. 37 IO P4[2] 47 IO P0[6] Analog column mux input. T 48 38 IO P4[4] Power Vdd Supply voltage.

LEGEND: A = Analog, I = Input, and O = Output. * These are the ISSP pins, which are not High Z at POR (Power On Reset).



28-Pin Part Pinout

Table 4. 28-Pin Part Pinout (SSOP)

Pin	Ту	ре	Pin	Description				
No.	Digital	Analog	Name	Description				
1	10	I	P0[7]	Analog column mux input.				
2	10	10	P0[5]	Analog column mux input and column output.				
3	10	10	P0[3]	Analog column mux input and column output.				
4	10	I	P0[1]	Analog column mux input.				
5	10		P2[7]					
6	10		P2[5]					
7	10	I	P2[3]	Direct switched capacitor block input.				
8	10	Ι	P2[1]	Direct switched capacitor block input.				
9	Po	wer	SMP	Switch Mode Pump (SMP) connection to external components required.				
10	10		P1[7]	I2C Serial Clock (SCL).				
11	10		P1[5]	I2C Serial Data (SDA).				
12	10		P1[3]					
13	IO		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL), ISSP-SCLK*.				
14	Po	wer	Vss	Ground connection.				
15	IO		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA), ISSP-SDATA*.				
16	10		P1[2]					
17	10		P1[4]	Optional External Clock Input (EXTCLK).				
18	10		P1[6]					
19	Inț	out	XRES	Active high external reset with internal pull down.				
20	10	Ι	P2[0]	Direct switched capacitor block input.				
21	10	Ι	P2[2]	Direct switched capacitor block input.				
22	10		P2[4]	External Analog Ground (AGND).				
23	10		P2[6]	External Voltage Reference (VRef).				
24	ю	Ι	P0[0]	Analog column mux input.				
25	10	10	P0[2]	Analog column mux input and column output.				
26	10	10	P0[4]	Analog column mux input and column output.				
27	Ю	Ι	P0[6]	Analog column mux input.				
28	Po	wer	Vdd	Supply voltage.				

Figure 6. 28-Pin Device

LEGEND: A = Analog, I = Input, and O = Output. * These are the ISSP pins, which are not High Z at POR (Power On Reset).

Register Reference

This chapter lists the registers of the CY8CLED08 EZ-Color device.

Register Conventions

The register conventions specific to this section are listed in the following table. Register Mapping Tables

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The device has a total register address space of 512 bytes. The register space is referred to as IO space and is divided into two banks. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and should not be accessed.

Table 5. Register Map Bank 0 Table: User Space

Name	egister Map E Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASC10CR0	80	RW		CO	
PRT0IE	01	RW		41		ASC10CR1	81	RW		C1	
PRT0GS	02	RW		42		ASC10CR2	82	RW		C2	
PRT0DM2	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DR	04	RW		44		ASD11CR0	84	RW		C4	
PRT1IE	05	RW		45		ASD11CR1	85	RW		C5	
PRT1GS	06	RW		46		ASD11CR2	86	RW		C6	
PRT1DM2	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DR	08	RW		48		ASC12CR0	88	RW		C8	
PRT2IE	09	RW		49		ASC12CR1	89	RW		C9	
PRT2GS	0A	RW		4A		ASC12CR2	8A	RW		CA	
PRT2DM2	0B	RW		4B		ASC12CR3	8B	RW		СВ	
PRT3DR	0C	RW		4C		ASD13CR0	8C	RW		CC	
PRT3IE	0D	RW	-	4D		ASD13CR1	8D	RW		CD	
PRT3GS	0E	RW	-	4E		ASD13CR2	8E	RW		CE	<u> </u>
PRT3DM2	0F	RW		4F		ASD13CR3	8F	RW		CF	-
PRT4DR	10	RW		50		ASD20CR0	90	RW		D0	
PRT4DR	10	RW		50		ASD20CR0 ASD20CR1	91	RW		D0	
PRT4GS	12	RW		52		ASD20CR1 ASD20CR2	92	RW		D1 D2	
PRT4DM2		RW						RW		D2 D3	
PRT4DM2 PRT5DR	13 14	RW		53 54		ASD20CR3 ASC21CR0	93 94	RW	l	D3 D4	
PRT5DR PRT5IE	14	RW		54 55		ASC21CR0 ASC21CR1	94	RW	l	D4 D5	
PRT5IE PRT5GS	15 16	RW		55 56			95 96	RW	I2C CFG	D5 D6	RW
PRT5GS PRT5DM2	16 17	RW		56		ASC21CR2 ASC21CR3	96 97	RW	I2C_CFG I2C_SCR	D6 D7	RW #
PRISDIVIZ		RVV									
	18			58		ASD22CR0	98	RW	I2C_DR	D8	RW
	19		-	59		ASD22CR1	99	RW	I2C_MSCR	D9	#
	1A			5A		ASD22CR2	9A	RW	INT_CLR0	DA	RW
	1B			5B		ASD22CR3	9B	RW	INT_CLR1	DB	RW
	1C			5C		ASC23CR0	9C	RW		DC	
	1D			5D		ASC23CR1	9D	RW	INT_CLR3	DD	RW
	1E			5E		ASC23CR2	9E	RW	INT_MSK3	DE	RW
	1F			5F	-	ASC23CR3	9F	RW		DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	EO	RW
DBB00DR1	21	W		61			A1		INT_MSK1	E1	RW
DBB00DR2	22	RW		62			A2		INT_VC	E2	RC
DBB00CR0	23	#	ARF_CR	63	RW		A3	ļ	RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4		DEC_DH	E4	RC
DBB01DR1	25	W	ASY_CR	65	#		A5	ļ	DEC_DL	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7	ļ	DEC_CR1	E7	RW
DCB02DR0	28	#		68			A8		MUL_X	E8	W
DCB02DR1	29	W		69			A9		MUL_Y	E9	W
DCB02DR2	2A	RW		6A			AA		MUL_DH	EA	R
DCB02CR0	2B	#		6B			AB		MUL_DL	EB	R
DCB03DR0	2C	#		6C			AC		ACC_DR1	EC	RW
DCB03DR1	2D	W		6D			AD		ACC_DR0	ED	RW
DCB03DR2	2E	RW		6E			AE		ACC_DR3	EE	RW
DCB03CR0	2F	#		6F			AF		ACC_DR2	EF	RW
DBB10DR0	30	#	ACB00CR3	70	RW	RDIORI	B0	RW	I	F0	
DBB10DR1	31	W	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBB10DR2	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
DBB10CR0	33	#	ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
DBB11DR0	34	#	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBB11DR1	35	W	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBB11DR2	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	[
DBB11CR0	37	#	ACB01CR2	77	RW		B7		CPU_F	F7	RL
DCB12DR0	38	#	ACB02CR3	78	RW	RDI1RI	B8	RW		F8	
DCB12DR1	39	W	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	
DCB12DR2	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	
DCB12CR0	3B	#	ACB02CR2	7B	RW	RDI1LT0	BB	RW		FB	
	3C	#	ACB03CR3	7C	RW	RDI1LT1	BC	RW		FC	
DCB13DR0					RW	RDI1RO0	BD	RW	1	FD	1
DCB13DR0 DCB13DR1	3D	W	ACB03CR0	7D	RVV	RDITROU	БО	1.1.1		FD	
	3D 3E	W RW	ACB03CR0 ACB03CR1	7D 7E	RW	RDI1R00	BE	RW	CPU_SCR1	FE	#
DCB13DR1									CPU_SCR1 CPU_SCR0		#

Table 6. Register Map Bank 1 Table: Configuration Space

Name	Register Map	Access	Name	Addr (1,Hex)		Nome	Adds (1 Llaw)	A	Mama	A data (4 Llass)	A
PRT0DM0	Add (1,Hex)	RW	Name	40	Access	Name ASC10CR0	Addr (1,Hex) 80	Access RW	Name	Addr (1,Hex) C0	Access
PRT0DM1	01	RW		41		ASC10CR1	81	RW		C1	
PRTOICO	02	RW		42		ASC10CR2	82	RW		C2	
PRT0IC1	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	
PRT1DM0	05	RW		45		ASD11CR0 ASD11CR1	85	RW		C4 C5	
PRT1IC0	06	RW		46		ASD11CR1 ASD11CR2	86	RW		C6	
PRT1IC1	08	RW		40		ASD11CR2 ASD11CR3	87	RW		C6 C7	
PRT2DM0	08	RW		48		ASC12CR0	88	RW		C8	
PRT2DM1	09	RW		49		ASC12CR1	89	RW		C9	
PRT2IC0	0A	RW		4A		ASC12CR2	8A	RW		CA	
PRT2IC1	0B	RW		4B		ASC12CR3	8B	RW		СВ	
PRT3DM0	0C	RW		4C		ASD13CR0	8C	RW		CC	
PRT3DM1	0D	RW		4D		ASD13CR1	8D	RW		CD	
PRT3IC0	0E	RW		4E		ASD13CR2	8E	RW		CE	
PRT3IC1	0F	RW		4F		ASD13CR3	8F	RW		CF	
PRT4DM0	10	RW		50		ASD20CR0	90	RW	GDI_O_IN	D0	RW
PRT4DM1	11	RW		51		ASD20CR1	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW		52		ASD20CR2	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW	l	53		ASD20CR3	93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW		54		ASC21CR0	94	RW		D4	
PRT5DM0	15	RW		55		ASC21CR1	95	RW	1	D4 D5	
PRT5IC0	16	RW	ł	56		ASC21CR1 ASC21CR2	96	RW	ł	D5 D6	
PRT5IC0 PRT5IC1	17	RW		57		ASC21CR2 ASC21CR3	90	RW		D6 D7	
FICTOICT	17	ις γγ		57		ASC21CR3 ASD22CR0	97 98	RW		D7 D8	
	19			59		ASD22CR1	99	RW		D9	
	1A			5A		ASD22CR2	9A	RW		DA	
	1B			5B		ASD22CR3	9B	RW		DB	
	1C			5C		ASC23CR0	9C	RW		DC	
	1D			5D		ASC23CR1	9D	RW	OSC_GO_EN	DD	RW
	1E			5E		ASC23CR2	9E	RW	OSC_CR4	DE	RW
	1F			5F		ASC23CR3	9F	RW	OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	_	64			A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
DDD0100	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW	ALT_CR0	68	RW		A8		IMO TR	E8	W
						-			_		
DCB02IN	29	RW	CLK_CR2	69	RW		A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW		6C			AC		l	EC	
DCB03IN	2D	RW		6D			AD			ED	
DCB03OU	2E	RW		6E			AE			EE	
	2F			6F			AF			EF	
DBB10FN	30	RW	ACB00CR3	70	RW	RDIORI	B0	RW		F0	
DBB10IN	31	RW	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
			ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	33		AODOOONZ					DIA	1	F4	
DBB10OU	33 34	RW	ACB01CR3	74	RW	RDI0LT1	B4	RW			
DBB10OU DBB11FN		RW	ACB01CR3				B4 B5			F5	
DBB10OU DBB11FN DBB11IN	34 35	RW	ACB01CR3 ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBB10OU DBB11FN DBB11IN	34 35 36		ACB01CR3 ACB01CR0 ACB01CR1	75 76	RW RW		B5 B6		CPU F	F5 F6	RL
DBB10OU DBB11FN DBB11IN DBB11OU	34 35 36 37	RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2	75 76 77	RW RW RW	RDI0RO0 RDI0RO1	B5 B6 B7	RW RW	CPU_F	F5 F6 F7	RL
DBB10OU DBB11FN DBB11IN DBB11OU DCB12FN	34 35 36 37 38	RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3	75 76 77 78	RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI	B5 B6 B7 B8	RW RW RW	CPU_F	F5 F6 F7 F8	RL
DBB10OU DBB11FN DBB11IN DBB11OU DCB12FN DCB12IN	34 35 36 37 38 39	RW RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0	75 76 77 78 79	RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN	B5 B6 B7 B8 B9	RW RW RW RW	CPU_F	F5 F6 F7 F8 F9	RL
DBB10OU DBB11FN DBB11IN DBB11OU DCB12FN	34 35 36 37 38 39 3A	RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0 ACB02CR1	75 76 77 78 79 7A	RW RW RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN RDI1IS	B5 B6 B7 B8 B9 BA	RW RW RW RW RW	CPU_F	F5 F6 F7 F8 F9 FA	RL
DBB10OU DBB11FN DBB11IN DBB11OU DCB12FN DCB12IN DCB12OU	34 35 36 37 38 39 3A 38	RW RW RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0 ACB02CR1 ACB02CR2	75 76 77 78 79 7A 7B	RW RW RW RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN RDI1IS RDI1LT0	B5 B6 B7 B8 B9 BA BB	RW RW RW RW RW RW	CPU_F	F5 F6 F7 F8 F9 FA FB	RL
DBB100U DBB11FN DBB11IN DBB110U DCB12FN DCB12IN DCB12OU DCB13FN	34 35 36 37 38 39 3A 38 38 38 3C	RW RW RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0 ACB02CR1 ACB02CR2 ACB03CR3	75 76 77 78 79 7A 7B 7C	RW RW RW RW RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN RDI1IS RDI1LT0 RDI1LT1	B5 B6 B7 B8 B9 BA BB BC	RW RW RW RW RW RW RW	CPU_F	F5 F6 F7 F8 F9 FA FB FC	RL
DBB100U DBB11FN DBB11IN DBB110U DCB12FN DCB12IN DCB12OU DCB13FN DCB13IN	34 35 36 37 38 39 3A 38 3A 3B 3C 3D	RW RW RW RW RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0 ACB02CR1 ACB02CR2 ACB03CR3 ACB03CR0	75 76 77 78 79 7A 7B 7C 7D	RW RW RW RW RW RW RW RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN RDI1IS RDI1LT0 RDI1LT1 RDI1RO0	B5 B6 B7 B8 B9 BA BB BC BD	RW RW RW RW RW RW RW RW		F5 F6 F7 F8 F9 FA FB FC FD	
DBB100U DBB11FN DBB11IN DBB110U DCB12FN DCB12IN DCB12OU DCB13FN	34 35 36 37 38 39 3A 38 38 38 3C	RW RW RW RW RW	ACB01CR3 ACB01CR0 ACB01CR1 ACB01CR2 ACB02CR3 ACB02CR0 ACB02CR1 ACB02CR2 ACB03CR3	75 76 77 78 79 7A 7B 7C	RW RW RW RW RW RW RW RW	RDI0RO0 RDI0RO1 RDI1RI RDI1SYN RDI1IS RDI1LT0 RDI1LT1	B5 B6 B7 B8 B9 BA BB BC	RW RW RW RW RW RW RW	CPU_F CPU_SCR1 CPU_SCR0	F5 F6 F7 F8 F9 FA FB FC	RL

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8CLED08 EZ-Color device. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/ez-color.

Specifications are valid for $-40^{o}C \leq T_A \leq 85^{o}C$ and $T_J \leq 100^{o}C$, except where noted. Specifications for devices running at greater than 12 MHz are valid for $-40^{o}C \leq T_A \leq 70^{o}C$ and $T_J \leq 82^{o}C$.

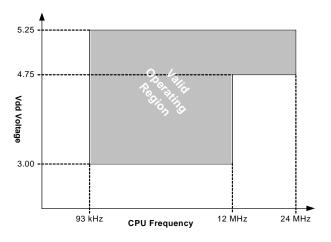


Figure 7. Voltage versus CPU Frequency

The following table lists the units of measure that are used in this section.

Table 7. Units of Meas	sure
------------------------	------

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	μW	microwatts
dB	decibels	mA	milli-ampere
fF	femto farad	ms	milli-second
Hz	hertz	mV	milli-volts
KB	1024 bytes	nA	nanoampere
Kbit	1024 bits	ns	nanosecond
kHz	kilohertz	nV	nanovolts
kΩ	kilohm	Ω	ohm
MHz	megahertz	pА	picoampere
MΩ	megaohm	pF	picofarad
μΑ	microampere	рр	peak-to-peak
μF	microfarad	ppm	parts per million
μH	microhenry	ps	picosecond
μS	microsecond	sps	samples per second
μV	microvolts	σ	sigma: one standard deviation
μVrms	microvolts root-mean-square	V	volts

Absolute Maximum Ratings

Table 8. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage Temperature	-55	25	+100	°C	Higher storage temperatures will reduce data retention time. Recommended storage temperature is $+25^{\circ}C \pm 25^{\circ}C$. Extended duration storage temperatures above $65^{\circ}C$ will degrade reliability.
T _A	Ambient Temperature with Power Applied	-40	-	+85	°C	
Vdd	Supply Voltage on Vdd Relative to Vss	-0.5	-	+6.0	V	
V _{IO}	DC Input Voltage	Vss- 0.5	-	Vdd + 0.5	V	
V _{IOZ}	DC Voltage Applied to Tri-state	Vss - 0.5	-	Vdd + 0.5	V	
I _{MIO}	Maximum Current into any Port Pin	-25	-	+50	mA	
I _{MAIO}	Maximum Current into any Port Pin Config- ured as Analog Driver	-50	-	+50	mA	
ESD	Electro Static Discharge Voltage	2000	-	-	V	Human Body Model ESD.
LU	Latch-up Current	-	-	200	mA	

Operating Temperature

Table 9. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient Temperature	-40	-	+85	°C	
TJ	Junction Temperature	-40	-	+100	°C	The temperature rise from ambient to junction is package specific. See "Thermal Impedances" on page 36. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 10. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vdd	Supply Voltage	3.00	-	5.25	V	
I _{DD}	Supply Current	-	5	8	mA	Conditions are Vdd = 5.0V, $T_A = 25$ °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{DD3}	Supply Current	-	3.3	6.0	mA	Conditions are Vdd = $3.3V$, T _A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{SB}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT. ^a	-	3	6.5	μΑ	Conditions are with internal slow speed oscillator, Vdd = 3.3V, -40 oC \leq T_A $\leq~55$ $^oC.$
I _{SBH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temperature. ^a	-	4	25	μΑ	Conditions are with internal slow speed oscillator, Vdd = 3.3V, 55 oC < T_A $\leq~85\ ^oC.$
I _{SBXTL}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal. ^a	-	4	7.5	μA	Conditions are with properly loaded, 1 μW max, 32.768 kHz crystal. Vdd = 3.3V, -40 $^oC \leq T_A \leq$ 55 $^oC.$
I _{SBXTLH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal at high temperature. ^a	-	5	26	μA	Conditions are with properly loaded, 1 μW max, 32.768 kHz crystal. Vdd = 3.3V, 55 °C < $T_A \leq 85$ °C.
V _{REF}	Reference Voltage (Bandgap) for Silicon A ^b	1.275	1.300	1.325	V	Trimmed for appropriate Vdd.
V _{REF}	Reference Voltage (Bandgap) for Silicon B ^b	1.280	1.300	1.320	V	Trimmed for appropriate Vdd.

a. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar functions enabled.

b. Refer to the "Ordering Information" on page 38.

DC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 11.	DC GPIO Specifications
-----------	-------------------------------

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull up Resistor	4	5.6	8	kΩ	
R _{PD}	Pull down Resistor	4	5.6	8	kΩ	
V _{OH}	High Output Level	Vdd - 1.0	-	-	V	IOH = 10 mA, Vdd = 4.75 to 5.25V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])).
V _{OL}	Low Output Level	-	-	0.75	V	IOL = 25 mA, Vdd = 4.75 to 5.25V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])).
V _{IL}	Input Low Level	-	-	0.8	V	Vdd = 3.0 to 5.25.
V _{IH}	Input High Level	2.1	-		V	Vdd = 3.0 to 5.25.
V _H	Input Hysterisis	-	60	-	mV	
IIL	Input Leakage (Absolute Value)	-	1	-	nA	Gross tested to 1 µA.
C _{IN}	Capacitive Load on Pins as Input	-	3.5	10	pF	Package and pin dependent. Temp = 25°C.
C _{OUT}	Capacitive Load on Pins as Output	-	3.5	10	pF	Package and pin dependent. Temp = 25 ^o C.

DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 12. 5V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input Offset Voltage (absolute value)					
	Power = Low, Opamp Bias = High	-	1.6	10	mV	
	Power = Medium, Opamp Bias = High	-	1.3	8	mV	
	Power = High, Opamp Bias = High	-	1.2	7.5	mV	
TCV _{OSOA}	Average Input Offset Voltage Drift	-	7.0	35.0	μV/ºC	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	20	-	pА	Gross tested to 1 µA.
CINOA	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25°C.
V _{CMOA}	Common Mode Voltage Range	0.0	-	Vdd	V	The common-mode input voltage range is mea-
	Common Mode Voltage Range (high power or high opamp bias)	0.5	-	Vdd - 0.5		sured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common Mode Rejection Ratio		-	-	dB	Specification is applicable at high power. For all
	Power = Low	60				other bias modes (except high power, high opamp bias), minimum is 60 dB.
	Power = Medium	60				
	Power = High	60				
G _{OLOA}	Open Loop Gain		-	-	dB	Specification is applicable at high power. For all
	Power = Low	60				other bias modes (except high power, high opamp bias), minimum is 60 dB.
	Power = Medium	60				opamp blas), minimum is oo ub.
	Power = High	80				
VOHIGHOA	High Output Voltage Swing (internal signals)					
	Power = Low	Vdd - 0.2	-	-	V	
	Power = Medium	Vdd - 0.2	-	-	V	
	Power = High	Vdd - 0.5	-	-	V	

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, or 2.4V to 3.0V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 14. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	Vdd - 1	V	
I _{SLPC}	LPC supply current	-	10	40	μΑ	
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV	

DC Analog Output Buffer Specifications

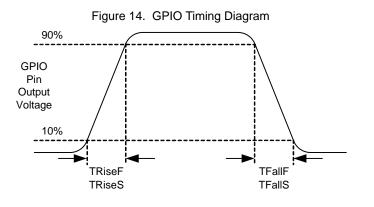
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 15. 5V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOB}	Input Offset Voltage (Absolute Value)	-	3	12	mV	
TCV _{OSOB}	Average Input Offset Voltage Drift	-	+6	-	μV/°C	
V _{CMOB}	Common-Mode Input Voltage Range	0.5	-	Vdd - 1.0	V	
R _{OUTOB}	Output Resistance					
	Power = Low	-	1	-	Ω	
	Power = High	-	1	-	Ω	
V _{OHIGHOB}	High Output Voltage Swing (Load = 32 ohms to Vdd/2) Power = Low Power = High	0.5 x Vdd + 1.3 0.5 x Vdd + 1.3	-	-	V V	
V _{OLOWOB}	Low Output Voltage Swing (Load = 32 ohms to Vdd/2) Power = Low Power = High	-	-	0.5 x Vdd - 1.3 0.5 x Vdd - 1.3	V V	
I _{SOB}	Supply Current Including Bias Cell (No Load) Power = Low Power = High	-	1.1 2.6	5.1 8.8	mA mA	
PSRR _{OB}	Supply Voltage Rejection Ratio	60	64	-	dB	

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.


Table 22. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
I _{DDP}	Supply Current During Programming or Verify	-	5	25	mA	
V _{ILP}	Input Low Voltage During Programming or Verify	-	-	0.8	V	
V _{IHP}	Input High Voltage During Programming or Verify	2.2	-	-	V	
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	-	-	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	-	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output Low Voltage During Programming or Verify	-	-	Vss + 0.75	V	
V _{OHV}	Output High Voltage During Programming or Verify	Vdd - 1.0	-	Vdd	V	
Flash _{ENPB}	Flash Endurance (per block)	50,000	-	-	-	Erase/write cycles per block.
Flash _{ENT}	Flash Endurance (total) ^a	1,800,000	-	-	-	Erase/write cycles.
Flash _{DR}	Flash Data Retention	10	-	-	Years	

a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles).

For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.

AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 85^{\circ}$ C, or 3.0V to 3.6V and -40°C $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only. Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block. Power = High and Opamp Bias = High is not supported at 3.3V.

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	3.9	μS	
	Power = Medium, Opamp Bias = High	-	-	0.72	μS	
	Power = High, Opamp Bias = High	-	-	0.62	μs	
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	5.9	μs	
	Power = Medium, Opamp Bias = High	-	-	0.92	μs	
	Power = High, Opamp Bias = High	-	-	0.72	μs	
SR _{ROA}	Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.15	-	-	V/µs	
	Power = Medium, Opamp Bias = High	1.7	-	-	V/μs	
	Power = High, Opamp Bias = High	6.5	-	-	V/µs	
SR _{FOA}	Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.01	-	-	V/μs	
	Power = Medium, Opamp Bias = High	0.5	-	-	V/µs	
	Power = High, Opamp Bias = High	4.0	-	-	V/µs	
BW _{OA}	Gain Bandwidth Product					
	Power = Low, Opamp Bias = Low	0.75	-	-	MHz	
	Power = Medium, Opamp Bias = High	3.1	-	-	MHz	
	Power = High, Opamp Bias = High	5.4	-	-	MHz	
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	-	100	-	nV/rt-Hz	

Table 25. 5V AC Operational Amplifier Specifications

Table 26. 3.3V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	3.92	μS	
	Power = Low, Opamp Bias = High	-	-	0.72	μs	
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	5.41	μs	
	Power = Medium, Opamp Bias = High	-	-	0.72	μs	
SR _{ROA}	Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.31	-	-	V/µs	
	Power = Medium, Opamp Bias = High	2.7	-	-	V/µs	
SR _{FOA}	Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.24	-	-	V/µs	
	Power = Medium, Opamp Bias = High	1.8	-	-	V/µs	
BW _{OA}	Gain Bandwidth Product					
	Power = Low, Opamp Bias = Low	0.67	-	-	MHz	
	Power = Medium, Opamp Bias = High	2.8	-	-	MHz	
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	-	100	-	nV/rt-Hz	

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

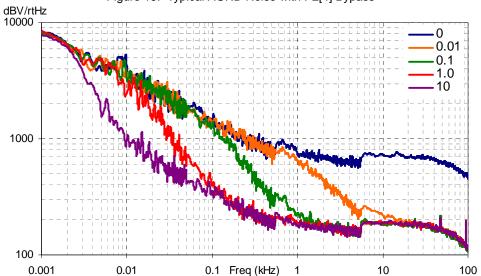


Figure 15. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

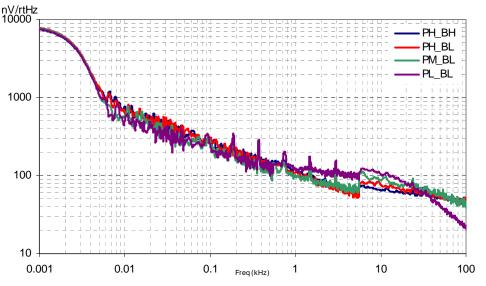


Figure 16. Typical Opamp Noise

AC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, or 2.4V to 3.0V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 27. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RLPC}	LPC response time	-	-	50	μs	\geq 50 mV overdrive comparator reference set within $V_{REFLPC}.$

AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 31. 5V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency	0.093	-	24.6	MHz	
-	High Period	20.6	-	5300	ns	
-	Low Period	20.6	-	-	ns	
-	Power Up IMO to Switch	150	-	-	μS	

Table 32. 3.3V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency with CPU Clock divide by 1 ^a	0.093	-	12.3	MHz	
F _{OSCEXT}	Frequency with CPU Clock divide by 2 or greater ^b	0.186	-	24.6	MHz	
-	High Period with CPU Clock divide by 1	41.7	-	5300	ns	
-	Low Period with CPU Clock divide by 1	41.7	-	-	ns	
-	Power Up IMO to Switch	150	-	-	μS	

a. Maximum CPU frequency is 12 MHz at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.

b. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider will ensure that the fifty percent duty cycle requirement is met.

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 33. A	C Programming	Specifications
-------------	---------------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	-	20	ns	
T _{FSCLK}	Fall Time of SCLK	1	-	20	ns	
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	-	-	ns	
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
T _{ERASEB}	Flash Erase Time (Block)	-	10	-	ms	
T _{WRITE}	Flash Block Write Time	-	10	-	ms	
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	-	-	45	ns	Vdd > 3.6
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	-	-	50	ns	$3.0 \leq V dd \leq 3.6$

AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

		Standard Mode		Fast Mode			
Symbol	Description	Min	Max	Min	Max	Units	Notes
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz	
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μs	
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	1.3	-	μS	
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	-	0.6	-	μS	
T _{SUSTAI2C}	Set-up Time for a Repeated START Condition	4.7	-	0.6	-	μS	
T _{HDDATI2C}	Data Hold Time	0	-	0	-	μS	
T _{SUDATI2C}	Data Set-up Time	250	-	100 ^a	-	ns	
T _{SUSTOI2C}	Set-up Time for STOP Condition	4.0	-	0.6	-	μS	
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	-	1.3	-	μS	
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	-	-	0	50	ns	

Table 34. AC Characteristics of the I²C SDA and SCL Pins

a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement $t_{SU:DAT} \ge 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{rmax} + t_{SU:DAT} = 1000 + 250 = 1250$ ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

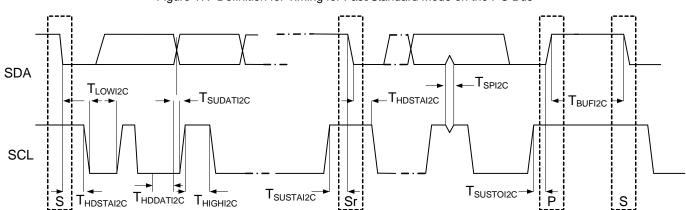
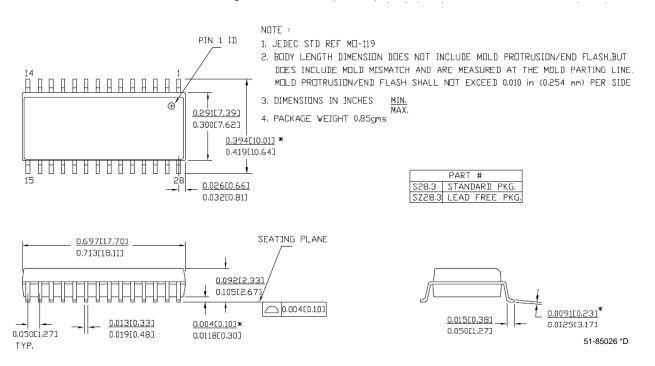


Figure 17. Definition for Timing for Fast/Standard Mode on the I²C Bus



Packaging Information

This section illustrates the packaging specifications for the CY8CLED08 EZ-Color device, along with the thermal impedances for each package and the typical package capacitance on crystal pins.


Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/design/MR10161.

Packaging Dimensions

Figure 20. 28-Lead (210-Mil) SSOP

Important Note For information on the preferred dimensions for mounting QFN packages, see the following Application Note at http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.

Important Note Pinned vias for thermal conduction are not required for the low-power device.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer or PSoC Express. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free ofcharge at http://www.cypress.com/psocpro-grammer.

CY3202-C iMAGEcraft C Compiler

CY3202 is the optional upgrade to PSoC Designer that enables the iMAGEcraft C compiler. It can be purchased from the Cypress Online Store. At http://www.cypress.com, click the Online Store shopping cart icon at the bottom of the web page, and click *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

CY3261A-RGB EZ-Color RGB Kit

The CY3261A-RGB board is a preprogrammed HB LED color mix board with seven pre-set colors using the CY8CLED16 EZ-Color HB LED Controller. The board is accompanied by a CD containing the color selector software application, PSoC Express 3.0 Beta 2, PSoC Programmer, and a suite of documents, schematics, and firmware examples. The color selector software application can be installed on a host PC and is used to control the EZ-Color HB LED controller using the included USB cable. The application enables you to select colors via a CIE 1931 chart or by entering coordinates. The kit includes:

- Training Board (CY8CLED16)
- One mini-A to mini-B USB Cable
- PSoC Express CD-ROM
- Design Files and Application Installation CD-ROM

To program and tune this kit via PSoC Express 3.0 you must use a Mini Programmer Unit (CY3217 Kit) and a CY3240-I2CUSB kit.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- 3 Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment. **Note**: CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable